1
|
Prenzel T, Schwarz N, Hammes J, Krähe F, Pschierer S, Winter J, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Highly Selective Electrosynthesis of 1 H-1-Hydroxyquinol-4-ones-Synthetic Access to Versatile Natural Antibiotics. Org Process Res Dev 2024; 28:3922-3928. [PMID: 39444427 PMCID: PMC11494660 DOI: 10.1021/acs.oprd.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
1H-1-Hydroxyquinolin-4-ones represent a broad class of biologically active heterocycles having an exocyclic N,O motif. Electrosynthesis offers direct, highly selective, and sustainable access to 1-hydroxyquinol-4-ones by nitro reduction. A versatile synthetic route starting from easily accessible 2-nitrobenzoic acids was established. The broad applicability of this protocol was demonstrated on 26 examples with up to 93% yield, highlighted by the naturally occurring antibiotics Aurachin C and HQNO. The practicability and technical relevance were underlined by multigram scale electrolysis.
Collapse
Affiliation(s)
- Tobias Prenzel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Nils Schwarz
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Jasmin Hammes
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Franziska Krähe
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Sarah Pschierer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Johannes Winter
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | | | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Biological and Chemical Systems−Functional Molecular Systems
(IBCS-FMS), Karlsruhe Institute of Technology
(KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Pollok D, Großmann LM, Behrendt T, Opatz T, Waldvogel SR. A General Electro-Synthesis Approach to Amaryllidaceae Alkaloids. Chemistry 2022; 28:e202201523. [PMID: 35662286 PMCID: PMC9543536 DOI: 10.1002/chem.202201523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Amaryllidaceae alkaloids appeal to organic chemists with their attractive structures and their impressive antitumor and acetylcholinesterase inhibitory properties. We demonstrate a highly versatile access to this family of natural products. A general protocol with high yields in a sustainable electro-organic key transformation on a metal-free anode to spirodienones facilitates functionalization to the alkaloids. The biomimetic syntheses start with the readily available, inexpensive biogenic starting materials methyl gallate, O-methyl tyramine, and vanillin derivatives. Through known dynamic resolutions, this technology provides access to both enantiomeric series of (epi-)martidine, (epi-)crinine, siculine, and galantamine, clinically prescribed for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Luca M. Großmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Torsten Behrendt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
3
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
4
|
Kisukuri CM, Bednarz RJ, Kampf C, Arndt S, Waldvogel SR. Robust and Self-Cleaning Electrochemical Production of Periodate. CHEMSUSCHEM 2022; 15:e202200874. [PMID: 35670517 PMCID: PMC9546426 DOI: 10.1002/cssc.202200874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Indexed: 05/19/2023]
Abstract
Periodate, a platform oxidizer, can be electrochemically recycled in a self-cleaning process. Electrosynthesis of periodate is well established at boron-doped diamond (BDD) anodes. However, recovered iodate and other iodo species for recycling can contain traces of organic impurities from previous applications. For the first time, it was shown that the organic impurities do not hamper the electrochemical re-oxidation of used periodate. In a hydroxyl-mediated environment, the organic compounds form CO2 and H2 O during the degradation process. This process is often referred to as "cold combustion" and provides orthogonal conditions to periodate synthesis. To demonstrate the strategy, different dyes, pharmaceutically active ingredients, and iodine compounds were added as model contaminations into the process of electrochemical periodate production. UV/Vis spectroscopy, NMR spectroscopy, and mass spectrometry (MS) were used to monitor the degradation of organic molecules, and liquid chromatography-MS was used to control the purity of periodate. As a representative example, dimethyl 5-iodoisophthalate (2 mm), was degraded in 90, 95, and 99 % while generating 0.042, 0.054, and 0.082 kilo equiv. of periodate, respectively. In addition, various organic iodo compounds could be fed into the periodate generation for upcycling such iodo-containing waste, for example, contrast media.
Collapse
Affiliation(s)
- Camila M. Kisukuri
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | | | - Christopher Kampf
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Sebastian Arndt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
5
|
Berger M, Lenhard MS, Waldvogel SR. Para-Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes. Chemistry 2022; 28:e202201029. [PMID: 35510825 PMCID: PMC9401020 DOI: 10.1002/chem.202201029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The para-selective fluorination reaction of anilides using electrochemically generated hypervalent ArIF2 is reported, with Et3 N ⋅ 5HF serving as fluoride source and as supporting electrolyte. This electrochemical reaction is characterized by a simple set-up, easy scalability and affords a broad variety of fluorinated anilides from easily accessible anilides in good yields up to 86 %.
Collapse
Affiliation(s)
- Michael Berger
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Marola S. Lenhard
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
6
|
Pollok D, Rausch FU, Beil SB, Franzmann P, Waldvogel SR. Allocolchicines─Synthesis with Electro-organic Key Transformations. Org Lett 2022; 24:3760-3765. [PMID: 35503929 DOI: 10.1021/acs.orglett.2c01084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The naturally occurring colchicine and allocolchicines in the meadow saffron are potentially active ingredients for cancer therapy. A concise protocol for the sustainable synthesis of allocolchicines using up to two electro-organic key transformations is demonstrated. This straightforward synthesis of N-acetylcolchinol methyl ether in a five-step protocol was adopted using protecting groups to enable access to N-acetylcolchinol and the phosphate derivative ZD6126.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Florian U Rausch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sebastian B Beil
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Peter Franzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
7
|
Hielscher M, Oehl EK, Gleede B, Buchholz J, Waldvogel SR. Optimization Strategies for the Anodic Phenol‐Arene Cross‐Coupling Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian Hielscher
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Elisabeth K. Oehl
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Barbara Gleede
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Julian Buchholz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
8
|
Wirtanen T, Prenzel T, Tessonnier JP, Waldvogel SR. Cathodic Corrosion of Metal Electrodes-How to Prevent It in Electroorganic Synthesis. Chem Rev 2021; 121:10241-10270. [PMID: 34228450 PMCID: PMC8431381 DOI: 10.1021/acs.chemrev.1c00148] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The critical aspects
of the corrosion of metal electrodes in cathodic
reductions are covered. We discuss the involved mechanisms including
alloying with alkali metals, cathodic etching in aqueous and aprotic
media, and formation of metal hydrides and organometallics. Successful
approaches that have been implemented to suppress cathodic corrosion
are reviewed. We present several examples from electroorganic synthesis
where the clever use of alloys instead of soft neat heavy metals and
the application of protective cationic additives have allowed to successfully
exploit these materials as cathodes. Because of the high overpotential
for the hydrogen evolution reaction, such cathodes can contribute
toward more sustainable green synthetic processes. The reported strategies
expand the applications of organic electrosynthesis because a more
negative regime is accessible within protic media and common metal
poisons, e.g., sulfur-containing substrates, are compatible with these
cathodes. The strongly diminished hydrogen evolution side reaction
paves the way for more efficient reductive electroorganic conversions.
Collapse
Affiliation(s)
- Tom Wirtanen
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Prenzel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, 617 Bissell Road, Ames, Iowa 50011-1098, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa, 50011-1098, United States
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
9
|
Beil SB, Pollok D, Waldvogel SR. Reproducibility in Electroorganic Synthesis-Myths and Misunderstandings. Angew Chem Int Ed Engl 2021; 60:14750-14759. [PMID: 33428811 PMCID: PMC8251947 DOI: 10.1002/anie.202014544] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/17/2022]
Abstract
The use of electric current as a traceless activator and reagent is experiencing a renaissance. This sustainable synthetic method is evolving into a hot topic in contemporary organic chemistry. Since researchers with various scientific backgrounds are entering this interdisciplinary field, different parameters and methods are reported to describe the experiments. The variation in the reported parameters can lead to problems with the reproducibility of the reported electroorganic syntheses. As an example, parameters such as current density or electrode distance are in some cases more significant than often anticipated. This Minireview provides guidelines on reporting electrosynthetic data and dispels myths about this technique, thereby streamlining the experimental parameters to facilitate reproducibility.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Dennis Pollok
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
10
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
11
|
Beil SB, Pollok D, Waldvogel SR. Reproduzierbarkeit in der elektroorganischen Synthese – Mythen und Missverständnisse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sebastian B. Beil
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Dennis Pollok
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
12
|
Fangmeyer J, Behrens A, Gleede B, Waldvogel SR, Karst U. Mass-Spectrometric Imaging of Electrode Surfaces-a View on Electrochemical Side Reactions. Angew Chem Int Ed Engl 2020; 59:20428-20433. [PMID: 33448566 PMCID: PMC7693111 DOI: 10.1002/anie.202010134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Electrochemical side reactions, often referred to as "electrode fouling", are known to be a major challenge in electro-organic synthesis and the functionality of modern batteries. Often, polymerization of one or more components is observed. When reaching their limit of solubility, those polymers tend to adsorb on the surface of the electrode, resulting in a passivation of the respective electrode area, which may impact electrochemical performance. Here, matrix-assisted laser-desorption/ionization mass spectrometry (MALDI-MS) is presented as valuable imaging technique to visualize polymer deposition on electrode surfaces. Oligomer size distribution and its dependency on the contact time were imaged on a boron-doped diamond (BDD) anode of an electrochemical flow-through cell. The approach allows to detect weak spots, where electrode fouling may take place and provides insight into the identity of side-product pathways.
Collapse
Affiliation(s)
- Jens Fangmeyer
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstrasse 3048149MünsterGermany
| | - Arne Behrens
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstrasse 3048149MünsterGermany
| | - Barbara Gleede
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Uwe Karst
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstrasse 3048149MünsterGermany
| |
Collapse
|
13
|
Fangmeyer J, Behrens A, Gleede B, Waldvogel SR, Karst U. Mass‐Spectrometric Imaging of Electrode Surfaces—a View on Electrochemical Side Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jens Fangmeyer
- Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 30 48149 Münster Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 30 48149 Münster Germany
| | - Barbara Gleede
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 30 48149 Münster Germany
| |
Collapse
|
14
|
Selt M, Franke R, Waldvogel SR. Supporting-Electrolyte-Free and Scalable Flow Process for the Electrochemical Synthesis of 3,3′,5,5′-Tetramethyl-2,2′-biphenol. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maximilian Selt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772 Marl, Germany
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
15
|
Pollok D, Waldvogel SR. Electro-organic synthesis - a 21 st century technique. Chem Sci 2020; 11:12386-12400. [PMID: 34123227 PMCID: PMC8162804 DOI: 10.1039/d0sc01848a] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
The severe limitations of fossil fuels and finite resources influence the scientific community to reconsider chemical synthesis and establish sustainable techniques. Several promising methods have emerged, and electro-organic conversion has attracted particular attention from international academia and industry as an environmentally benign and cost-effective technique. The easy application, precise control, and safe conversion of substrates with intermediates only accessible by this method reveal novel pathways in synthetic organic chemistry. The popularity of electricity as a reagent is accompanied by the feasible conversion of bio-based feedstocks to limit the carbon footprint. Several milestones have been achieved in electro-organic conversion at rapid frequency, which have opened up various perspectives for forthcoming processes.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany www.aksw.uni-mainz.de
| |
Collapse
|
16
|
Gutmann A, Wesenberg LJ, Peez N, Waldvogel SR, Hoffmann T. Charged Tags for the Identification of Oxidative Drug Metabolites Based on Electrochemistry and Mass Spectrometry. ChemistryOpen 2020; 9:568-572. [PMID: 32382470 PMCID: PMC7202420 DOI: 10.1002/open.202000084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the active pharmaceutical ingredients like Metoprolol are oxidatively metabolized by liver enzymes, such as Cytochrome P450 monooxygenases into oxygenates and therefore hydrophilic products. It is of utmost importance to identify the metabolites and to gain knowledge on their toxic impacts. By using electrochemistry, it is possible to mimic enzymatic transformations and to identify metabolic hot spots. By introducing charged-tags into the intermediate, it is possible to detect and isolate metabolic products. The identification and synthesis of initially oxidized metabolites are important to understand possible toxic activities. The gained knowledge about the metabolism will simplify interpretation and predictions of metabolitic pathways. The oxidized products were analyzed with high performance liquid chromatography-mass spectrometry using electrospray ionization (HPLC-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. For proof-of-principle, we present a synthesis of one pyridinated main oxidation product of Metoprolol.
Collapse
Affiliation(s)
- Alexandra Gutmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Lars Julian Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Nadine Peez
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
- Institute for Integrated Natural SciencesUniversity of KoblenzUniversitätsstraße 156072KoblenzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Thorsten Hoffmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
17
|
Wirtanen T, Rodrigo E, Waldvogel SR. Recent Advances in the Electrochemical Reduction of Substrates Involving N−O Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000349] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tom Wirtanen
- epartment ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Eduardo Rodrigo
- epartment ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- epartment ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
18
|
Arndt S, Weis D, Donsbach K, Waldvogel SR. The "Green" Electrochemical Synthesis of Periodate. Angew Chem Int Ed Engl 2020; 59:8036-8041. [PMID: 32181555 PMCID: PMC7317427 DOI: 10.1002/anie.202002717] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/03/2023]
Abstract
High-grade periodate is relatively expensive, but is required for many sensitive applications such as the synthesis of active pharmaceutical ingredients. These high costs originate from using lead dioxide anodes in contemporary electrochemical methods and from expensive starting materials. A direct and cost-efficient electrochemical synthesis of periodate from iodide, which is less costly and relies on a readily available starting material, is reported. The oxidation is conducted at boron-doped diamond anodes, which are durable, metal-free, and nontoxic. The avoidance of lead dioxide ultimately lowers the cost of purification and quality assurance. The electrolytic process was optimized by statistical methods and was scaled up in an electrolysis flow cell that enhanced the space-time yields by a cyclization protocol. An LC-PDA analytical protocol was established enabling simple quantification of iodide, iodate, and periodate simultaneously with remarkable precision.
Collapse
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dominik Weis
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Kai Donsbach
- PharmaZell GmbH, Hochstrass-Süd 7, 83064, Raubling, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
19
|
Arndt S, Weis D, Donsbach K, Waldvogel SR. Die “grüne” elektrochemische Synthese von Periodat. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastian Arndt
- Department of ChemistryJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Dominik Weis
- Department of ChemistryJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Kai Donsbach
- PharmaZell GmbH Hochstraß Süd 7 83064 Raubling Deutschland
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
20
|
Röckl JL, Pollok D, Franke R, Waldvogel SR. A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls. Acc Chem Res 2020; 53:45-61. [PMID: 31850730 DOI: 10.1021/acs.accounts.9b00511] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The importance of sustainable and green synthetic protocols for the synthesis of fine chemicals has rapidly increased during the last decades in an effort to reduce the use of fossil fuels and other finite resources. The replacement of common reagents by electricity provides a cost- and atom-efficient, environmentally friendly, and inherently safe access to novel synthetic routes. The selective formation of carbon-carbon bonds between two distinct substrates is a crucial tool in organic chemistry. This fundamental transformation enables access to a broad variety of complex molecular architectures. In particular, the aryl-aryl bond formation has high significance for the preparation of organic materials, drugs, and natural products. Besides well-known and well-established reductive- and oxidative-reagent-mediated or transition-metal-catalyzed coupling reactions, novel synthetic protocols have arisen, which require fewer steps than conventional synthetic approaches. Electroorganic conversions can be categorized according to the nature of the electron transfer processes occurring. Direct transformations at inert electrode materials are environmentally benign and cost-effective, whereas catalytic processes at active electrodes and mediated electrosynthesis using an additional soluble reagent can have beneficial properties in terms of selectivity and reactivity. In general, these conversions require challenging optimization of the reaction parameters and the appropriate cell design. Galvanostatic reactions enable fast conversions with a rather simple setup, whereas potentiostatic electrolysis may enhance selectivity. This Account discusses the development of seminal carbon-carbon bond formations over the past two decades, focusing on phenols leading to precursors for ligands in, e.g., hydroformylation reaction. A key element in the success of these electrochemical transformations is the application of electrochemically inert, non-nucleophilic, highly fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which exhibit a large potential window for transformations and enable selective cross-coupling reactions. This selectivity is based on the capability of HFIP to stabilize organic radicals. Inert, carbon-based and metal-free electrode materials like graphite or boron-doped diamond (BDD) open up novel electroorganic pathways. Furthermore, novel active electrode materials have been developed to enable intra- and intermolecular dehydrogenative coupling reactions of electron-rich aryls. The application of 2,2'-biphenol derivatives as ligand components for catalysts requires reactions to be carried out on larger scale. In order to achieve this, continuous flow transformations have been established to overcome the drawbacks of heat transfer, overconversion, and conductivity. Modular cell designs enable the transfer of a broad variety of electroorganic conversions into continuous processes. Recent results demonstrate the application of organic electrochemistry to natural product synthesis of the pharmaceutically relevant opiate alkaloids (-)-thebaine or (-)-oxycodone.
Collapse
Affiliation(s)
- Johannes L. Röckl
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Dennis Pollok
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Str. 1, 45772 Marl, Germany
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätstraße 150, 44801 Bochum, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
21
|
Herszman JD, Berger M, Waldvogel SR. Fluorocyclization of N-Propargylamides to Oxazoles by Electrochemically Generated ArIF2. Org Lett 2019; 21:7893-7896. [DOI: 10.1021/acs.orglett.9b02884] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John D. Herszman
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Berger
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
22
|
Nikl J, Ravelli D, Schollmeyer D, Waldvogel SR. Straightforward Electrochemical Sulfonylation of Arenes and Aniline Derivatives using Sodium Sulfinates. ChemElectroChem 2019. [DOI: 10.1002/celc.201901212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Davide Ravelli
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- PhotoGreen Lab Department of Chemistry Viale Taramelli 12 27100 Pavia Italy
| | - Dieter Schollmeyer
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
23
|
Gleede B, Yamamoto T, Nakahara K, Botz A, Graßl T, Neuber R, Matthée T, Einaga Y, Schuhmann W, Waldvogel SR. Influence of the Nature of Boron‐Doped Diamond Anodes on the Dehydrogenative Phenol‐Phenol Cross‐Coupling. ChemElectroChem 2019. [DOI: 10.1002/celc.201900225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Barbara Gleede
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Takashi Yamamoto
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Kenshin Nakahara
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Alexander Botz
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr-University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Tobias Graßl
- CONDIAS GmbH Fraunhofer Straße 1b 25524 Itzehoe Germany
| | - Rieke Neuber
- CONDIAS GmbH Fraunhofer Straße 1b 25524 Itzehoe Germany
| | | | - Yasuaki Einaga
- Department of ChemistyKeio University Hiyoshi 3-14-1 Yokohama 233-8522 Japan
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr-University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
24
|
Nikl J, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Direct Metal‐ and Reagent‐Free Sulfonylation of Phenols with Sodium Sulfinates by Electrosynthesis. Chemistry 2019; 25:6891-6895. [DOI: 10.1002/chem.201900850] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Straße 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
25
|
Połczyński P, Jurczakowski R, Grzelak A, Goreshnik E, Mazej Z, Grochala W. Preparative Electrosynthesis of Strong Oxidizers at Boron‐Doped Diamond Electrode in Anhydrous HF. Chemistry 2019; 25:4927-4930. [DOI: 10.1002/chem.201806274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Piotr Połczyński
- Faculty of ChemistryUniversity of Warsaw Pasteur 1 02093 Warsaw Poland
| | | | - Adam Grzelak
- Center of New TechnologiesUniversity of Warsaw Zwirki i Wigury 93 02089 Warsaw Poland
| | - Evgeny Goreshnik
- Department of Inorganic Chemistry and TechnologyJozef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
| | - Zoran Mazej
- Department of Inorganic Chemistry and TechnologyJozef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
| | - Wojciech Grochala
- Center of New TechnologiesUniversity of Warsaw Zwirki i Wigury 93 02089 Warsaw Poland
| |
Collapse
|
26
|
Lips S, Waldvogel SR. Use of Boron‐Doped Diamond Electrodes in Electro‐Organic Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801620] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany) Homepage: http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| |
Collapse
|
27
|
Gieshoff T, Trieu V, Heijl J, Waldvogel SR. Direct electrochemical generation of organic carbonates by dehydrogenative coupling. Beilstein J Org Chem 2018; 14:1578-1582. [PMID: 30013685 PMCID: PMC6037012 DOI: 10.3762/bjoc.14.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023] Open
Abstract
Organic carbonates are an important source for polycarbonate synthesis. However, their synthesis generally requires phosgene, sophisticated catalysts, harsh reaction conditions, or other highly reactive chemicals. We present the first direct electrochemical generation of mesityl methyl carbonate by C–H activation. Although this reaction pathway is still challenging concerning scope and efficiency, it outlines a new strategy for carbonate generation.
Collapse
Affiliation(s)
- Tile Gieshoff
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Vinh Trieu
- Covestro AG, Kaiser-Wilhelm-Allee 60, 51373 Leverkusen, Germany
| | - Jan Heijl
- Covestro NV, Haven 507 - Scheldelaan 420, 2040 Antwerpen, Belgium
| | - Siegfried R Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
28
|
Abstract
Arylated products are found in various fields of chemistry and represent essential entities for many applications. Therefore, the formation of this structural feature represents a central issue of contemporary organic synthesis. By the action of electricity the necessity of leaving groups, metal catalysts, stoichiometric oxidizers, or reducing agents can be omitted in part or even completely. The replacement of conventional reagents by sustainable electricity not only will be environmentally benign but also allows significant short cuts in electrochemical synthesis. In addition, this methodology can be considered as inherently safe. The current survey is organized in cathodic and anodic conversions as well as by the number of leaving groups being involved. In some electroconversions the reagents used are regenerated at the electrode, whereas in other electrotransformations free radical sequences are exploited to afford a highly sustainable process. The electrochemical formation of the aryl-substrate bond is discussed for aromatic substrates, heterocycles, other multiple bond systems, and even at saturated carbon substrates. This survey covers most of the seminal work and the advances of the past two decades in this area.
Collapse
Affiliation(s)
- Siegfried R Waldvogel
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| | - Sebastian Lips
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Maximilian Selt
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany
| | - Barbara Riehl
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Christopher J Kampf
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| |
Collapse
|
29
|
Yang N, Waldvogel SR, Jiang X. Electrochemistry of Carbon Dioxide on Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28357-28371. [PMID: 26683764 DOI: 10.1021/acsami.5b09825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carbon electrodes have the advantages of being chemically inert at negative potential ranges in all media and high offset potentials for hydrogen evolution in comparison to metal electrodes, and therefore are the most suitable electrodes for electrochemistry and electrochemical conversion of CO2 into valuable chemicals. Herein we summarize on carbon electrodes the voltammetry, electrochemical and electrocatalytic CO2 reduction, as well as electron synthesis using CO2 and carbon electrodes. The electrocatalytic CO2 reduction using carbocatalyts and the future activities about electrochemical CO2 conversion are highlighted.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Siegfried R Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , 55128 Mainz, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| |
Collapse
|
30
|
Herold S, Möhle S, Zirbes M, Richter F, Nefzger H, Waldvogel SR. Electrochemical Amination of Less-Activated Alkylated Arenes Using Boron-Doped Diamond Anodes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600048] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Turygin VV, Tomilov AP. Possible trends in the development of applied electrochemical synthesis of organic compounds (Review). RUSS J ELECTROCHEM+ 2015. [DOI: 10.1134/s1023193515110191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Kojima T, Obata R, Saito T, Einaga Y, Nishiyama S. Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products. Beilstein J Org Chem 2015; 11:200-3. [PMID: 25815070 PMCID: PMC4361996 DOI: 10.3762/bjoc.11.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/16/2015] [Indexed: 11/25/2022] Open
Abstract
The electroreduction reaction of methyl cinnamate on a boron-doped diamond (BDD) electrode was investigated. The hydrodimer, dimethyl 3,4-diphenylhexanedioate (racemate/meso = 74:26), was obtained in 85% yield as the major product, along with small amounts of cyclic methyl 5-oxo-2,3-diphenylcyclopentane-1-carboxylate. Two new neolignan-type products were synthesized from the hydrodimer.
Collapse
Affiliation(s)
- Taiki Kojima
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1 Kohoku-ku, Yokohama 223-8522, Japan
| | - Rika Obata
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1 Kohoku-ku, Yokohama 223-8521, Japan
| | - Tsuyoshi Saito
- International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan ; Japan Science and Technology Agency (JST), CREST, Hiyoshi 3-14-1, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1 Kohoku-ku, Yokohama 223-8522, Japan ; Japan Science and Technology Agency (JST), CREST, Hiyoshi 3-14-1, Yokohama 223-8522, Japan
| | - Shigeru Nishiyama
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1 Kohoku-ku, Yokohama 223-8522, Japan ; Japan Science and Technology Agency (JST), CREST, Hiyoshi 3-14-1, Yokohama 223-8522, Japan
| |
Collapse
|
33
|
Edinger C, Waldvogel SR. Electrochemical Deoxygenation of Aromatic Amides and Sulfoxides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Metall- und reagensfreie hochselektive anodische Kreuzkupplung von Phenolen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400627] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angew Chem Int Ed Engl 2014; 53:5210-3. [PMID: 24644088 DOI: 10.1002/anie.201400627] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/06/2022]
Abstract
The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert-butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products.
Collapse
Affiliation(s)
- Bernd Elsler
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz (Germany) http//www.chemie.uni-mainz.de/OC/AK-Waldvogel/
| | | | | | | | | |
Collapse
|
36
|
Kashiwagi T, Atobe M. Development of Novel Organic Electrosynthetic Processes Utilizing Electrochemical Microreactor. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
|
39
|
Kirste A, Hayashi S, Schnakenburg G, Malkowsky IM, Stecker F, Fischer A, Fuchigami T, Waldvogel SR. Highly Selective Electrosynthesis of Biphenols on Graphite Electrodes in Fluorinated Media. Chemistry 2011; 17:14164-9. [DOI: 10.1002/chem.201102182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Indexed: 11/08/2022]
|