1
|
Waghmare PS, Chabukswar AR, Raut KG, Giri PT. A Review on Carbazole and Its Derivatives as Anticancer Agents From 2013 to 2024. Chirality 2025; 37:e70021. [PMID: 39887861 DOI: 10.1002/chir.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Carbazole, a natural alkaloid, has been recognized as an effective anticancer agent for over 40 years. However, only a limited number of carbazole-based compounds have received FDA approval for cancer treatment. Current cancer therapies are often associated with significant side effects, causing physical, emotional, and financial burdens for patients. Additionally, despite advancements, cancer prevention and treatment remain challenging due to suboptimal clinical outcomes. The development of new drugs is crucial for achieving safer and more effective cancer therapies. This review focuses on various carbazole derivatives and hybrid composites, highlighting their interactions with distinct receptors and their mechanisms of anticancer action, along with a general structure-activity relationship (SAR). It also emphasizes carbazole-based compounds employed in chemoprevention, which aim to delay or prevent malignant progression. By covering carbazole derivatives and their anticancer potential from 2013 to the present, along with their current clinical status, this study offers valuable insights and updates for researchers in the field.
Collapse
Affiliation(s)
- Priyanka Sanjay Waghmare
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Anuruddha Rajaram Chabukswar
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Kunal Ganesh Raut
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Pooja Tanaji Giri
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| |
Collapse
|
2
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
3
|
Rannaud-Bartaire P, Demeneix BA, Fini JB. Pressures of the urban environment on the endocrine system: Adverse effects and adaptation. Mol Cell Endocrinol 2024; 583:112125. [PMID: 38147952 DOI: 10.1016/j.mce.2023.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
With an increasing collective awareness of the rapid environmental changes, questions and theories regarding the adaptability of organisms are emerging. Global warming as well as chemical and non-chemical pollution have been identified as triggers of these adaptative changes, but can we link different kinds of stressors to certain phenotypic traits? The physiological adaptation, and particularly endocrine system adaptation, of living beings to urban environments is a fascinating way of studying urban endocrinology, which has emerged as a research field in 2007. In this paper, we stress how endocrine disruption in humans and environment can be studied in the urban environment by measuring the levels of pollution, endocrine activities or adversity. We broaden the focus to include not only exposure to the chemicals that have invaded our private spheres and their effects on wild and domestic species but also non-chemical effectors such as light, noise and climate change. We argue that taking into account the various urban stress factors and their effects on the endocrine system would enable the adoption of new approaches to protect living organisms.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France; Université Catholique de Lille, l'hôpital Saint-Vincent-De-Paul, Boulevard de Belfort, 59000, Lille, France
| | - Barbara A Demeneix
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France
| | - Jean-Baptiste Fini
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France.
| |
Collapse
|
4
|
Nakatake R, Okuyama T, Hashimoto Y, Ishizaki M, Yanagida H, Kitade H, Yoshizawa K, Nishizawa M, Sekimoto M. Sulforaphane Is Protective against Warm Ischemia/Reperfusion Injury and Partial Hepatectomy in Rats. Int J Mol Sci 2024; 25:579. [PMID: 38203749 PMCID: PMC10778753 DOI: 10.3390/ijms25010579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Sulforaphane (SFN) has various beneficial effects on organ metabolism. However, whether SFN affects inflammatory mediators induced by warm hepatic ischemia/reperfusion injury (HIRI) is unclear. To investigate the hepatoprotective effects of SFN using an in vivo model of HIRI and partial hepatectomy (HIRI + PH), rats were subjected to 15 min of hepatic ischemia with blood inflow occlusion, followed by 70% hepatectomy and release of the inflow occlusion. SFN (5 mg/kg) or saline was randomly injected intraperitoneally 1 and 24 h before ischemia. Alternatively, ischemia was prolonged for 30 min to evaluate the effect on mortality. The influence of SFN on the associated signaling pathways was analyzed using the interleukin 1β (IL-1β)-treated primary cultured rat hepatocytes. In the HIRI + PH-treated rats, SFN reduced serum liver enzyme activities and the frequency of pathological liver injury, such as apoptosis and neutrophil infiltration. SFN suppressed tumor necrosis factor-alpha (TNF-α) mRNA expression and inhibited nuclear factor-kappa B (NF-κB) activation by HIRI + PH. Mortality was significantly reduced by SFN. In IL-1β-treated hepatocytes, SFN suppressed the expression of inflammatory cytokines and NF-κB activation. Taken together, SFN may have hepatoprotective effects in HIRI + PH in part by inhibiting the induction of inflammatory mediators, such as TNF-α, via the suppression of NF-κB in hepatocytes.
Collapse
Affiliation(s)
- Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Yuki Hashimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Morihiko Ishizaki
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Hidesuke Yanagida
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Hiroaki Kitade
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women’s University, 6-46 Ikebiraki-cho, Nishinomiya 663-8558, Hyogo, Japan;
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| |
Collapse
|
5
|
Hsieh CC, Yang CY, Peng B, Ho SL, Tsao CH, Lin CK, Lin CS, Lin GJ, Lin HY, Huang HC, Chang SC, Sytwu HK, Chia WT, Chen YW. Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis. Biomedicines 2023; 11:2669. [PMID: 37893043 PMCID: PMC10604360 DOI: 10.3390/biomedicines11102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate (AITC), a natural dietary chemotherapeutic and epigenetic modulator. This study aimed to investigate AITC's impact on the KDM8/CCNA1 axis to elucidate its role in oral squamous cell carcinoma (OSCC) tumorigenesis. The expression of KDM8 and CCNA1 was assessed using a tissue microarray (TMA) immunohistochemistry (IHC) assay. In vitro experiments with OSCC cell lines and in vivo experiments with patient-derived tumor xenograft (PDTX) and SAS subcutaneous xenograft tumor models were conducted to explore AITC's effects on their expression and cell proliferation. The results showed elevated KDM8 and CCNA1 levels in the OSCC patient samples. AITC exhibited inhibitory effects on OSCC tumor growth in vitro and in vivo. Additionally, AITC downregulated KDM8 and CCNA1 expression while inducing histone H3K36me2 expression in oral cancer cells. These findings underscore AITC's remarkable anticancer properties against oral cancer, highlighting its potential as a therapeutic option for oral cancer treatment by disrupting the cell cycle by targeting the KDM8/CCNA1 axis.
Collapse
Grants
- TSGH-C01-109017, TSGH-C05-110035, TSGH-C04-111037, TSGH-D-110148, TSGH-D-110149, TSGH-D-110151, TSGH-D-110152, TSGH-D-110154, TSGH-C02-112032 Tri-Service General Hospital, Taiwan, Republic of China
- MAB-E-109003, MAB-D-110003, MND-MAB-110-043, MND-MAB-110-076, MND-MAB-C-111036, MAB-E-111002, MND-MAB-D-111149, MND-MAB-D-112176, MND-MAB-C08-112033 Ministry of National Defense, Taiwan, Republic of China
- MOST 108-2314-B-016-005 Ministry of Science and Technology, Taiwan, Republic of China
- KAFGH-E-111047, KAFGH_E_112061 Kaohsiung Armed Forces General Hospital, Taiwan, Republic of China
- KSVGH112-135 Kaohsiung Veterans General Hospital, Taiwan, Republic of China
- HAFGH_E_112018 Hualien Armed Forces General Hospital, Taiwan, Republic of China
- CTH107A-2C01 Cardinal Tien Hospital, Taipei, Taiwan, Republic of China
Collapse
Affiliation(s)
- Cheng-Chih Hsieh
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Pharmacy and Institute of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Bo Peng
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Sien-Lin Ho
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, New Taipei City 231, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei 114, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Heng-Yi Lin
- Department of Dentistry, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Hung-Chi Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Hualien Armed Forces General Hospital, Hualien 971, Taiwan
| | - Szu-Chien Chang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Nursing, Yuan Pie University of Medical Technology, Hsinchu 302, Taiwan
- Tri-Service General Hospital, Taipei 114, Taiwan
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|
6
|
Nowrasteh G, Zand A, Raposa LB, Szabó L, Tomesz A, Molnár R, Kiss I, Orsós Z, Gerencsér G, Gyöngyi Z, Varjas T. Fruit Extract, Rich in Polyphenols and Flavonoids, Modifies the Expression of DNMT and HDAC Genes Involved in Epigenetic Processes. Nutrients 2023; 15:nu15081867. [PMID: 37111085 PMCID: PMC10144600 DOI: 10.3390/nu15081867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, the field of epigenetics has been intensively studied in relation to nutrition. In our study, the gene expression patterns of histone deacetylases (HDACs), which regulate the stability of histone proteins, and DNA methyltransferases (DNMTs), which regulate DNA methylation, were determined in mice. The animals were fed a human-equivalent dose of the aqueous extract of fruit seeds and peels, which is rich in flavonoids and polyphenols, for 28 days and then exposed to the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). The concentrations of trans-resveratrol and trans-piceid were determined in the consumed extract by HPLC and were 1.74 mg/L (SD 0.13 mg/L) and 2.37 mg/L (SD 0.32 mg/L), respectively, which corresponds to the consumption of 0.2-1 L of red wine, the main dietary source of resveratrol, in humans daily. Subsequently, 24 h after DMBA exposure, the expression patterns of the HDAC and DNMT genes in the liver and kidneys were determined by qRT-PCR. The DMBA-induced expression of the tested genes HDAC1, HDAC2, DNMT1, DNMT3A and DNMT3B was reduced in most cases by the extract. It has already been shown that inhibition of the DNMT and HDAC genes may delay cancer development and tumour progression. We hypothesise that the extract studied may exert chemopreventive effects.
Collapse
Affiliation(s)
- Ghodratollah Nowrasteh
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | | | - László Szabó
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - András Tomesz
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Richárd Molnár
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsa Orsós
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gellért Gerencsér
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tímea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
7
|
De Guzman MB, Buhay MNM. Nutrigenomics and nutrigenetics: Importance in health and diseases. ROLE OF NUTRIGENOMICS IN MODERN-DAY HEALTHCARE AND DRUG DISCOVERY 2023:19-34. [DOI: 10.1016/b978-0-12-824412-8.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
9
|
Boretti A. Natural Products as Cancer Chemo Preventive Agents: Where We Stand. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221144579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This work briefly reviews cancer chemoprevention. This is a very challenging field, as products with a high level of toxicity such as chemotherapeutic agents may be proposed and accepted only under life-threatening conditions. Cancer chemoprevention is otherwise limited to completely safe substances, preferably having neither toxic nor side effects, administered in relatively low amounts. Phases of clinical trials, therapeutic end-points, and biomarkers of chemoprevention are difficult to be defined. The clinical trials needed to prove the efficacy of chemopreventive agents must be very long and extremely widespread to achieve significance, with many variables difficult to control, and therefore subjected to many confounding factors. This makes them almost impossible. It is, therefore, no surprise, if the progress of chemoprevention has been so far very limited. There are only a few examples of direct use of chemopreventive agents, under investigation, but with anything but established protocols, in addition to indirect uses such as general supplementation with antioxidant, anti-inflammatory, and immune-supportive agents. Cancer chemoprevention remains a potentially very rewarding approach, certainly worth further study, but extremely difficult to pursue, in need of different methodological approaches to producing valuable chemopreventive compounds of clear dosages and benefits.
Collapse
|
10
|
Rannaud-Bartaire P. Perturbateurs endocriniens et origine environnementale des maladies : intégrer ces données pour un nouveau modèle d’accompagnement des patients vers la santé environnementale. Rech Soins Infirm 2022; 149:7-18. [DOI: 10.3917/rsi.149.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Wang W, Li W, Zhang H. An Overview of DNA Methylation Indicators for the Course of Oral Precancer. Appl Bionics Biomech 2022; 2022:6468773. [PMID: 36060560 PMCID: PMC9439927 DOI: 10.1155/2022/6468773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a physiologically epigenetic alteration that happens when a methyl group is introduced to a CpG dinucleotide in the gene-regulating sequence of DNA. However, the majority of oral cancers have a well-defined precancerous stage; there are few clinical and morphological parameters for detecting and signalling the progression of precancerous to malignant tumours. DNA methylation forms are dynamic and reversible, allowing them to adjust to environmental or therapeutic changes. We did an extensive investigation to compile the data supporting aberrant DNA methylation forms as a possible biomarker for prediction. According to two longitudinal studies, p16 hypermethylation was considerably higher in precancerous lesions that progressed to cancer than in lesions that shrank. Most of the studies examined for this study were tiny cross-sectional research with scant validation and inadequately specified control groups. Existing evidence suggests that DNA methylation sequences can be relevant as a diagnostic biomarker for OPS development; however, sample size and research design restrictions make it difficult to draw definitive conclusions. Strong studies, including extensive epigenome-wide methylation scans of OPS with longitudinal monitoring, are necessary in this study in order to corroborate the recently discovered signals and discover new risk loci and disease progression molecular pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Wei Li
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Hongyi Zhang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
12
|
Sayed AR, Al-Faiyz YS, Elsawy H, Shaaban S, Mohamed MA. Synthesis and Biochemical Studies of Novel Mon-Azothiazoles and Bis-Azothiazoles Based on 2-(4-(Dimethylamino)Benzylidene)Hydrazine-1-Carbothioamide. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2049326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Yasair S. Al-Faiyz
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hany Elsawy
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Saad Shaaban
- Department of Chemistry, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mahmoud A. Mohamed
- Technology of Textile Department, Faculty of Technology & Education, Beni-Suef University, Beni-Suef, Egypt
- Department of Chemistry, Faculty of Science and Humanity Study, Shaqra University, Afif, Saudi Arabia
| |
Collapse
|
13
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
14
|
Rana D, Salave S, Perla A, Nadkarni A, Kohle S, Jindal AB, Mandoli A, Dwivedi P, Benival D. Bugs as Drugs: Understanding the Linkage between Gut Microbiota and Cancer Treatment Microbiome in Cancer Therapy. Curr Drug Targets 2022; 23:869-888. [PMID: 35264088 DOI: 10.2174/1389450123666220309101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The commensal microbiota is known to regulate host physiology. Dysbiosis or compromised Resilience in the microbial ecology is related to the impending risk of cancer. A potential link between cancer and microbiota is indicated by a lot of evidence. OBJECTIVE The current review explores in detail the various links leading to and /or facilitating oncogenesis, providing sound reasoning or a basis for its utilization as potential therapeutic targets. The present review emphasizes the existing knowledge of the microbiome in cancer and further elaborates on the factors like genetic modifications, effects of dietary components, and environmental agents that are considered to assess the direct and indirect effect of microbes in the process of oncogenesis and on the host's health. Strategies modulating the microbiome and novel biotherapeutics are also discussed. Pharmacomicrobiomics is one such niche accounting for the interplay between the microbiome, xenobiotic, and host responses is also looked upon. METHODS The literature search strategy for this review was conducted by following the methodology of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The method includes the collection of data from different search engines like PubMed, ScienceDirect, SciFinder etc. to get coverage of relevant literature for accumulating appropriate information regarding microbiome, cancer, and their linkages. RESULTS These considerations are made to expand the existing literature on the role of gut microbiota on the host's health, the interaction between host and microbiota, and the reciprocal relationship between the microbiome and modified neoplastic cells. CONCLUSION Potential therapeutic implications of cancer microbiomes that are yet unexplored and have rich therapeutic dividends improving human health are discussed in detail in this review.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akanksha Nadkarni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Shital Kohle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences- Jodhpur (AIIMS), 342005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| |
Collapse
|
15
|
Cuenca-Micó O, Delgado-González E, Anguiano B, Vaca-Paniagua F, Medina-Rivera A, Rodríguez-Dorantes M, Aceves C. Effects of Molecular Iodine/Chemotherapy in the Immune Component of Breast Cancer Tumoral Microenvironment. Biomolecules 2021; 11:biom11101501. [PMID: 34680134 PMCID: PMC8533888 DOI: 10.3390/biom11101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in breast cancer cells. Little is known about its effects on the tumor immune microenvironment. We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFβ; p = 0.049), whereas in Cht+I2 tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ gene promoter (by increasing its unmethylated form) and silences TGFβ in Cht+I2. In conclusion, our data showed that I2 supplements induce the activation of the immune response and that when combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in these responses are being analyzed, but preliminary data suggest that methylation/demethylation mechanisms could also participate.
Collapse
Affiliation(s)
- Olga Cuenca-Micó
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Evangelina Delgado-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14160, Mexico
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, UNAM-Juriquilla, Querétaro 76230, Mexico;
| | | | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
- Correspondence:
| |
Collapse
|
16
|
Association of p53 codon 72 polymorphism and hTERT polymorphism (rs2736098) with risk of hepatocellular carcinoma. A pilot study in Egyptian patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Ghasemi S, Xu S, Nabavi SM, Amirkhani MA, Sureda A, Tejada S, Lorigooini Z. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother Res 2021; 35:3649-3664. [PMID: 33619811 DOI: 10.1002/ptr.7059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations are one of the main factors that disrupt the expression of genes and consequently, they have an important role in the carcinogenicity and the progression of different cancers. Cancer stem cells (CSCs) are accountable for the recurrence, metastasis, and therapeutic failure of cancer. The noticeable and specific pathways in CSCs can be organized by epigenetic mechanisms such as DNA methylation, chromatin remodeling, regulatory RNAs, among others. Since epigenetics modifications can be changed and reversed, it is a possible tool for cancer control and treatment. Epigenetic therapies against CSCs are emerging as a very new strategy with a good future expectation to treat cancer patients. Phenolic compounds are a vast group of substances with anticarcinogenic functions, antiinflammatory, and antioxidative activities. It seems these characteristics are related to neutralizing CSCs development, their microenvironment, and metabolism through epigenetic mechanisms. In the current work, the types of epigenetic changes known in these cells are introduced. In addition, some studies about the use of polyphenols acting through a variety of epigenetic mechanisms to counteract these cells will be reviewed. The reported results seem to indicate that the use of these phenolic compounds may be useful for CSCs defeat.
Collapse
Affiliation(s)
- Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of neurophysiology. Biology Department, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
18
|
Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants (Basel) 2020; 9:antiox9090865. [PMID: 32938017 PMCID: PMC7555619 DOI: 10.3390/antiox9090865] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2–related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl “reader” proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3′-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.
Collapse
|
19
|
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173:113602. [DOI: 10.1016/j.bcp.2019.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
|
20
|
Neri-Numa IA, Pastore GM. Novel insights into prebiotic properties on human health: A review. Food Res Int 2020; 131:108973. [PMID: 32247494 DOI: 10.1016/j.foodres.2019.108973] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/05/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Dietary prebiotics can be metabolized by different colonic microorganisms and release several classes of metabolites, particularly SCFAs into the intestine lumen, influencing the host physiology. Thus, human microbiota has been the focus of one of the most dynamic research fields of our time and their efforts are directed to understand how prebiotics structures and the microbiota-derived metabolites acts on signaling cell pathways and epigenetic control. Therefore, the aim of this review is to provide an overview about the new concept of prebiotics and their mechanistic local and systemically insights related to the host health.
Collapse
Affiliation(s)
| | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
21
|
Gupta J, Sharma S, Sharma NR, Kabra D. Phytochemicals enriched in spices: a source of natural epigenetic therapy. Arch Pharm Res 2019; 43:171-186. [DOI: 10.1007/s12272-019-01203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
|
22
|
Georgia-Eirini D, Athina S, Wim VB, Christos K, Theodoros C. Natural Products from Mediterranean Diet: From Anti-hyperlipidemic Agents to Dietary Epigenetic Modulators. Curr Pharm Biotechnol 2019; 20:825-844. [DOI: 10.2174/1573407215666190628150921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/23/2018] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Background:
Cardiovascular Diseases (CVD) are, currently, the major contributor to global
mortality and will continue to dominate mortality rates in the future. Hyperlipidemia refers to the elevated
levels of lipids and cholesterol in the blood, and is also identified as dyslipidemia, manifesting in
the form of different disorders of lipoprotein metabolism. These abnormalities may lead to the development
of atherosclerosis, which can lead to coronary artery disease and stroke. In recent years, there
is a growing interest in the quest for alternative therapeutic treatments based on natural products, offering
better recovery and the avoidance of side effects. Recent technological advances have further improved
our understanding of the role of epigenetic mechanisms in hyperlipidemic disorders and dietary
prevention strategies.
Objective:
This is a comprehensive overview of the anti-hyperlipidemic effects of plant extracts, vegetables,
fruits and isolated compounds thereof, with a focus on natural products from the Mediterranean
region as well as the possible epigenetic changes in gene expression or cardiometabolic signaling
pathways.
Methods:
For the purpose of this study, we searched the PubMed, Scopus and Google Scholar databases
for eligible articles and publications over the last five years. The keywords included: “hyperlipidemia”,
“plant extract”, “herbs”, “natural products”, “vegetables”, “cholesterol” and others. We initially
included all relevant articles referring to in vitro studies, animal studies, Randomized Controlled
Trials (RCTs) and previous reviews.
Conclusion:
Many natural products found in the Mediterranean diet have been studied for the treatment
of hyperlipidemia. The antihyperlipidemic effect seems to be dose and/or consumption frequency
related, which highlights the fact that a healthy diet can only be effective in reversing disease markers
if it is consistent and within the framework of a healthy lifestyle. Finally, epigenetic biomarkers are increasingly
recognized as new lifestyle management tools to monitor a healthy dietary lifestyle for the
prevention of hyperlipidaemic disorders and comorbidities to promote a healthy life.
Collapse
Affiliation(s)
- Deligiannidou Georgia-Eirini
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Sygkouna Athina
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vanden Berghe Wim
- Lab of Protein Science, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical sciences, University Antwerp, 2610, Wilrijk, Belgium
| | - Kontogiorgis Christos
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Constantinides Theodoros
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
23
|
Factores de predisposición genéticos y epigenéticos de los trastornos de ansiedad. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2019. [DOI: 10.33881/2027-1786.rip.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Los trastornos de ansiedad constituyen un grupo de alteraciones psicológicas y neurológicas que representan varias formas de miedo y ansiedad anormales o patológicas (Orozco & Baldares, 2012). Aun cuando alrededor del 14% de la población del planeta ha sufrido algún trastorno de ansiedad, las causas que desencadenan el mismo no son del todo claras (Posada, 2013). La aproximación clásica de los estudios para la identificación de los factores de predisposición de estos trastornos neuropsiquiátricos se ha orientado a las teorías de la personalidad como la Teoría de Eysenck (Mitchell & Kumari, 2016) y la Teoría Bio-Psicológica de la personalidad (Knyazev, Pylkova, Slobodskoj-Plusnin, Bocharov, & Ushakov, 2015). Sin embargo, a partir de estos estudios, han surgido nuevas propuestas involucrando los aspectos neuroanatómicos y neurofuncionales. La transmisión eléctrica y química de la información y como esta se asocia a distintas conductas demuestran la relevación de la regulación de la producción y recaptación de neurotransmisores en sistema nervioso central (SNC). Aunque esta regulación se encuentra directamente relacionada con la expresión genética, em tanto se han identificado ciertos genes candidatos que aportan un porcentaje a esta predisposición, estos no son totalmente determinantes. Actualmente, dado a este vacío, se ha comenzado a investigar la influencia de factores epigenéticos que en conjunto con los factores genéticos permitirían ampliar la explicación de los factores de predisposición de ciertos trastornos neuropsiquiátricos que anteriormente eran considerados de etiología ambiental.
Collapse
|
24
|
Sánchez‐Siles M, Aliaga‐Sánchez A, Medina S, Adoamnei E, Fernández‐Ruiz JA, Pelegrín‐Hernández JP, Corno‐Caparrós A, Rosa‐Salazar V, Camacho‐Alonso F. Genotyping of the C>T allele of rs16906252, predictor of O16‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation status, in erosive atrophic lesions of oral lichen planus. Int J Dermatol 2019; 58:1078-1082. [DOI: 10.1111/ijd.14473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Alfonso Aliaga‐Sánchez
- Oral and Maxillofacial Surgery Reina Sofia Hospital Murcia Spain
- Department of Oral Surgery University of Murcia Murcia Spain
| | - Sonia Medina
- Department of Food Science and Technology CEBAS‐CSIC Murcia Spain
| | - Evdochia Adoamnei
- Department of Public Health Sciences University of Murcia Murcia Spain
| | | | | | | | - Vladimir Rosa‐Salazar
- Tromboembolic Disease Unit/Short Stay Unit Virgen de la Arrixaca University Hospital Murcia Spain
| | | |
Collapse
|
25
|
Sikander M, Malik S, Chauhan N, Khan P, Kumari S, Kashyap VK, Khan S, Ganju A, Halaweish FT, Yallapu MM, Jaggi M, Chauhan SC. Cucurbitacin D Reprograms Glucose Metabolic Network in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11030364. [PMID: 30875788 PMCID: PMC6469021 DOI: 10.3390/cancers11030364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PrCa) metastasis is the major cause of mortality and morbidity among men. Metastatic PrCa cells are typically adopted for aberrant glucose metabolism. Thus, chemophores that reprogram altered glucose metabolic machinery in cancer cells can be useful agent for the repression of PrCa metastasis. Herein, we report that cucurbitacin D (Cuc D) effectively inhibits glucose uptake and lactate production in metastatic PrCa cells via modulating glucose metabolism. This metabolic shift by Cuc D was correlated with decreased expression of GLUT1 by its direct binding as suggested by its proficient molecular docking (binding energy −8.5 kcal/mol). Cuc D treatment also altered the expression of key oncogenic proteins and miR-132 that are known to be involved in glucose metabolism. Cuc D (0.1 to 1 µM) treatment inhibited tumorigenic and metastatic potential of human PrCa cells via inducing apoptosis and cell cycle arrest in G2/M phase. Cuc D treatment also showed inhibition of tumor growth in PrCa xenograft mouse model with concomitant decrease in the expression of GLUT1, PCNA and restoration of miR-132. These results suggest that Cuc D is a novel modulator of glucose metabolism and could be a promising therapeutic modality for the attenuation of PrCa metastasis.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Vivek Kumar Kashyap
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Aditya Ganju
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | | | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, Biersack B, Ahmad A. Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol's Anticancer Activity. MEDICINES 2019; 6:medicines6010024. [PMID: 30781847 PMCID: PMC6473688 DOI: 10.3390/medicines6010024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
Abstract
Numerous studies support the potent anticancer activity of resveratrol and its regulation of key oncogenic signaling pathways. Additionally, the activation of sirtuin 1, a deacetylase, by resveratrol has been known for many years, making resveratrol perhaps one of the earliest nutraceuticals with associated epigenetic activity. Such epigenetic regulation by resveratrol, and the mechanism thereof, has attracted much attention in the past decade. Focusing on methylation and acetylation, the two classical epigenetic regulations, we showcase the potential of resveratrol as an effective anticancer agent by virtue of its ability to induce differential epigenetic changes. We discuss the de-repression of tumor suppressors such as BRCA-1, nuclear factor erythroid 2-related factor 2 (NRF2) and Ras Associated Domain family-1α (RASSF-1α) by methylation, PAX1 by acetylation and the phosphatase and tensin homologue (PTEN) by both methylation and acetylation, in addition to the epigenetic regulation of oncogenic NF-κB and STAT3 signaling by resveratrol. Further, we evaluate the literature supporting the potentiation of HDAC inhibitors and the inhibition of DNMTs by resveratrol in different human cancers. This discussion underlines a robust epigenetic activity of resveratrol that warrants further evaluation, particularly in clinical settings.
Collapse
Affiliation(s)
- Mohd Farhan
- College of Basic Sciences, King Faisal University, Hofuf 400-Al Ahsa-31982, Saudi Arabia.
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Mohd Faisal
- Department of Psychiatry, University Hospital Limerick, Limerick V94 T9PX, Ireland.
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Bernhard Biersack
- Organic Chemistry Laboratory, Department of Chemistry, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
27
|
Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170359. [PMID: 29685968 PMCID: PMC5915727 DOI: 10.1098/rstb.2017.0359] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/18/2022] Open
Abstract
Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet-epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(-)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018; 56:553-574. [DOI: 10.1007/s10528-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
29
|
Zhao Y, Zhang L, Yan A, Chen D, Xie R, Liu Y, Liang X, Zhao Y, Wei L, Yu J, Xu X, Su X. Grifolic acid induces GH3 adenoma cell death by inhibiting ATP production through a GPR120-independent mechanism. BMC Pharmacol Toxicol 2018; 19:26. [PMID: 29843779 PMCID: PMC5975534 DOI: 10.1186/s40360-018-0215-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Grifolic acid is a derivative of grifolin, an antitumor natural compound, and it was reported as an agonist of free fatty acid receptor GPR120. Little is known about its antitumor effects and the involvement of GPR120. METHODS GH3 cells, the rat anterior pituitary adenoma cells, were cultured and the cell death was measured by MTT assay and Annexin V/PI staining. The mitochondrial membrane potential (MMP) of GH3 cells was measured by JC-1 staining. Cellular ATP levels and the intracellular NAD/NADH ratio were measured. GPR120 expression in GH3 cells was observed by RT-PCR and Western Blot, and siRNA was used to inhibit GPR120 expression in GH3 cells. RESULTS Grifolic acid dose- and time-dependently induced the necrosis of GH3 cells. Grifolic acid significantly reduced the mitochondrial membrane potential (MMP) and decreased cellular ATP levels in GH3 cells. In contrast, the MMP of isolated mitochondria was not decreased by grifolic acid. The intracellular NAD/NADH ratio was significantly increased by grifolic acid. GPR120 is expressed in GH3 cells, but GPR120 agonists such as EPA, GW9508 and TUG891 did not affect the viability of GH3 cells. Moreover, GPR120 siRNA knockdown showed no significant influence on grifolic acid-induced GH3 cell death. CONCLUSION Grifolic acid induces GH3 cell death by decreasing MMP and inhibiting ATP production, which may be due to the inhibition of NADH production through a GPR120-independent mechanism.
Collapse
Affiliation(s)
- Yufeng Zhao
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Lei Zhang
- Department of Gerontological Surgery, The First Affiliated Hospital, Xi’an Medical University, Xi’an, 710061 China
| | - Aili Yan
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Di Chen
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Rong Xie
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Yingguang Liu
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Xiangyan Liang
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Yanyan Zhao
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Lanlan Wei
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Jun Yu
- Medical Research Center, The Second Affiliated Hospital, Xi’an Medical University, Xi’an, 710038 China
| | - Xi Xu
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Xingli Su
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| |
Collapse
|
30
|
Nag M, Wang Y, De Paris K, E Fogle J. Histone Modulation Blocks Treg-Induced Foxp3 Binding to the IL-2 Promoter of Virus-Specific CD8⁺ T Cells from Feline Immunodeficiency Virus-Infected Cats. Viruses 2018; 10:v10060287. [PMID: 29861472 PMCID: PMC6024775 DOI: 10.3390/v10060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/05/2022] Open
Abstract
CD8+ T cells are critical for controlling HIV infection. During the chronic phase of lentiviral infection, CD8+ T cells lose their proliferative capacity and exhibit impaired antiviral function. This loss of CD8+ T cell function is due, in part, to CD4+CD25+ T regulatory (Treg) cell-mediated suppression. Our research group has demonstrated that lentivirus-activated CD4+CD25+ Treg cells induce the repressive transcription factor forkhead box P3 (Foxp3) in autologous CD8+ T cells following co-culture. We have recently reported that Treg-induced Foxp3 binds the interleukin-2 (IL-2), interferon-γ (IFN- γ), and tumor necrosis factor-α (TNF-α) promoters in virus-specific CD8+ T cells. These data suggest an important role of Foxp3-mediated CD8+ T cell dysfunction in lentiviral infection. To elucidate the mechanism of this suppression, we previously reported that decreased methylation facilitates Foxp3 binding in mitogen-activated CD8+ T cells from feline immunodeficiency virus (FIV)-infected cats. We demonstrated the reduced binding of Foxp3 to the IL-2 promoter by increasing methylation of CD8+ T cells. In the studies presented here, we ask if another form of epigenetic modulation might alleviate Foxp3-mediated suppression in CD8+ T cells. We hypothesized that decreasing histone acetylation in virus-specific CD8+ T cells would decrease Treg-induced Foxp3 binding to the IL-2 promoter. Indeed, using anacardic acid (AA), a known histone acetyl transferase (HAT) inhibitor, we demonstrate a reduction in Foxp3 binding to the IL-2 promoter in virus-specific CD8+ T cells co-cultured with autologous Treg cells. These data identify a novel mechanism of Foxp3-mediated CD8+ T cell dysfunction during lentiviral infection.
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yan Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
31
|
DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:619. [PMID: 29795311 PMCID: PMC5966399 DOI: 10.1038/s41419-018-0662-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
Cancer cells frequently adapt fundamentally altered metabolism to support tumorigenicity and malignancy. Epigenetic and metabolic networks are closely interactive, in which DNA methyltransferases (DNMTs) play important roles. Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (EBV-LMP1) is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis because it can trigger multiple cell signaling pathways that promote cell transformation, proliferation, immune escape, invasiveness, epigenetic modification, and metabolic reprogramming. Our current findings reveal for the first time that LMP1 not only upregulates DNMT1 expression and activity, but also promotes its mitochondrial translocation. This induces epigenetic silencing of pten and activation of AKT signaling as well as hypermethylation of the mtDNA D-loop region and downregulation of oxidative phosphorylation (OXPHOS) complexes, consequently, leading to metabolic reprogramming in NPC. Furthermore, we demonstrate that grifolin, a natural farnesyl phenolic compound originated from higher fungi, is able to attenuate glycolytic flux and recover mitochondrial OXPHOS function by inhibiting DNMT1 expression and activity as well as its mitochondrial retention in NPC cells. Therefore, our work establishes a mechanistic connection between epigenetics and metabolism in EBV-positive NPC and provides further evidence for pathological classification based on CpG island methylator phenotype (CIMP) in EBV-associated malignancies. In addition, grifolin might be a promising lead compound in the intervention of high-CIMP tumor types. The availability of this natural product could hamper tumor cell metabolic reprogramming by targeting DNMT1.
Collapse
|
32
|
Antioxidative effects of aqueous extract of broccoli sprouts against Triazophos induced hepatic and renal toxicity in female Wistar rats. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
33
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Nakasone N, Higa N, Toma C, Ogura Y, Suzuki T, Yamashiro T. Epigallocatechin gallate inhibits the type III secretion system of Gram-negative enteropathogenic bacteria under model conditions. FEMS Microbiol Lett 2018. [PMID: 28651361 DOI: 10.1093/femsle/fnx111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigallocatechin gallate (EGCG), a major polyphenol in green tea, inhibits the type III secretion system (T3SS) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), Salmonella enterica serovar Typhimurium, and Yersinia pseudotuberculosis. The inhibitory effect causes the inhibition of hemolysis, cell invasion, cell adhesion and apoptosis, which are functions of the type III secretion device. In the case of EPEC, EspB accumulates in the cells. RT-PCR showed that the translation of EspB was not blocked. The transcription of escN, which supplies energy for the injection of the effector factor into the host cells, was also not inhibited. EGCG does not suppress the transcription and translation of T3SS constitutive protein in bacterial cells, but it seems to suppress the normal construction or secretion of T3SS. When Luria-Bertani (LB) medium was used to visualize the EGCG-induced inhibition of T3SS, the inhibitory effect disappeared. The inhibition of T3SS was partially canceled when the T3SS inhibitory potency of EGCG was examined by adding yeast extract, which is a component of LB medium, to DMEM. These results suggest that EGCG probably inhibits secretion by suppressing some metabolic mechanisms of T3SS.
Collapse
Affiliation(s)
- Noboru Nakasone
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Naomi Higa
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku 1130034, Tokyo, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
35
|
Wu YC, Liu X, Wang JL, Chen XL, Lei L, Han J, Jiang YS, Ling ZQ. Soft-shelled turtle peptide modulates microRNA profile in human gastric cancer AGS cells. Oncol Lett 2017; 15:3109-3120. [PMID: 29435044 DOI: 10.3892/ol.2017.7692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer prevention using natural micronutrition on epigenetic mechanisms primarily revolves around plant extracts. However, the role of macronutrition, including animal peptides, on epigenetic modification in cancer has been elusive. In traditional Chinese medicine, the soft-shelled turtle has a long-history of being a functional food that strengthens immunity through unknown mechanisms. The present study aimed to investigate the impact of soft-shelled turtle peptide on microRNA (miRNA) expression in gastric cancer (GC) cells and to analyze the potential anticancer mechanisms for GC. Affymetrix GeneChip miRNA 3.0 Array and quantitative polymerase chain reaction were used to detect the miRNA expression profile in human GC AGS cells treated with the soft-shelled turtle peptide. The results demonstrated that 101 miRNAs (49 upregulated miRNAs and 52 downregulated miRNAs) were significantly differentially expressed in the AGS cells following soft-shelled turtle peptide treatment. Several tumor suppressor miRNAs were upregulated markedly, including miRNA-375, let-7d, miRNA-429, miRNA-148a/148b and miRNA-34a. Pathway analysis indicated that soft-shelled turtle peptide may function with anticancer properties through the Hippo signaling pathway and the forkhead box O signaling pathway. Therefore, these results demonstrated that soft-shelled turtle peptide has the capacity to influence cancer-related pathways through the regulation of miRNA expression in GC cells.
Collapse
Affiliation(s)
- Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiu-Li Wang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang-Liu Chen
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Lan Lei
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - You-Shui Jiang
- Zhejiang Agricultural Group Co., Ltd., Hangzhou, Zhejiang 310021, P.R. China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
36
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
37
|
NDGA-P21, a novel derivative of nordihydroguaiaretic acid, inhibits glioma cell proliferation and stemness. J Transl Med 2017; 97:1180-1187. [PMID: 28504686 DOI: 10.1038/labinvest.2017.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/04/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
Nordihydroguaiaretic acid (NDGA) and its synthetic chiral analog dl-nordihydroguaiaretic acid (Nordy) show collective benefits in anti-tumor, and defending against viral and bacterial infections. Here, we synthetized a new derivative-NDGA-P21 based on NDGA structure. Regardless of the structural similarity, NDGA-P21 exhibited stronger capability in suppression of glioblastoma (GBM) cell growth as compared to Nordy. Mechanically, NDGA-P21 is able to arrest cell cycle of GBM cells in G0/G1 phase, and to block cell proliferation sequentially. It is important to note that NDGA-P21 is able to impair the stemness of glioma stem-like cells (GSLCs) via measurement of colony formation and sphere formation. Taken together, the novel NDGA-based compound NDGA-P21 exhibits potential therty -20 apeutic implications through inhibiting proliferation of glioma cells and self-renewal capability of GSLCs.
Collapse
|
38
|
3,6-Dihydroxyflavone regulates microRNA-34a through DNA methylation. BMC Cancer 2017; 17:619. [PMID: 28870206 PMCID: PMC5584326 DOI: 10.1186/s12885-017-3638-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is the common cancer in China. In previous study, we determined that 3,6-dihydroxyflavone (3,6-DHF) increases miR-34a significantly in breast carcinogenesis, but the mechanism remains unclear. METHODS We used qRT-PCR to analyze miR-34a and ten-eleven translocation (TET)1, TET2, TET3 levels in breast cancer cells. With a cellular breast carcinogenesis model and an experimental model of carcinogenesis in rats, TET1 levels were evaluated by western blot analysis and immunofluorescence. TET1 and 5hmC (5-hydroxymethylcytosine) levels were evaluated by immunofluorescence in nude mouse xenografts of MDA-MB-231 cells. Chromatin immunoprecipitation(ChIP) assayed for TET1 on the TET1 promoter, and dot blot analysis of DNA 5hmC was performed in MDA-MB-231 cells. We evaluated the mechanism of 3,6-DHF on the expression of tumor suppressor miR-34a by transfecting them with DNA methyltransferase (DNMT)1 plasmid and TET1 siRNA in breast cancer cells. Methylation-specific PCR detected methylation of the miR-34a promoter. RESULTS First, we found that 3,6-DHF promotes the expression of TET1 during carcinogen-induced breast carcinogenesis in MCF10A cells and in rats. 3,6-DHF also increased TET1 and 5hmC levels in MDA-MB-231 cells. Further study indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibited the 3,6-DHF reactivation effect on expression of miR-34a in breast cancer cells. Methylation-specific PCR assays indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibit the effect of 3,6-DHF on the demethylation of the miR-34a promoter. CONCLUSIONS Our study showed that 3,6-DHF effectively increases TET1 expression by inhibiting DNMT1 and DNA hypermethylation, and consequently up-regulates miR-34a in breast carcinogenesis.
Collapse
|
39
|
Sturm C, Wagner AE. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways. Int J Mol Sci 2017; 18:E1890. [PMID: 28862664 PMCID: PMC5618539 DOI: 10.3390/ijms18091890] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
A high consumption of vegetables belonging to the Brassicaceae family has been related to a lower incidence of chronic diseases including different kinds of cancer. These beneficial effects of, e.g., broccoli, cabbage or rocket (arugula) intake have been mainly dedicated to the sulfur-containing glucosinolates (GLSs)-secondary plant compounds nearly exclusively present in Brassicaceae-and in particular to their bioactive breakdown products including isothiocyanates (ITCs). Overall, the current literature indicate that selected Brassica-derived ITCs exhibit health-promoting effects in vitro, as well as in laboratory mice in vivo. Some studies suggest anti-carcinogenic and anti-inflammatory properties for ITCs which may be communicated through an activation of the redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) that controls the expression of antioxidant and phase II enzymes. Furthermore, it has been shown that ITCs are able to significantly ameliorate a severe inflammatory phenotype in colitic mice in vivo. As there are studies available suggesting an epigenetic mode of action for Brassica-derived phytochemicals, the conduction of further studies would be recommendable to investigate if the beneficial effects of these compounds also persist during an irregular consumption pattern.
Collapse
Affiliation(s)
- Christine Sturm
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
40
|
vel Szic KS, Declerck K, Crans RA, Diddens J, Scherf DB, Gerhäuser C, Berghe WV. Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget 2017; 8:40434-40453. [PMID: 28467815 PMCID: PMC5522326 DOI: 10.18632/oncotarget.17107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by poor prognosis and a DNA hypomethylation profile. Withaferin A (WA) is a plant derived steroidal lactone which holds promise as a therapeutic agent for treatment of breast cancer (BC). We determined genome-wide DNA methylation changes in weakly-metastatic and aggressive, metastatic BC cell lines, following 72h treatment to a sub-cytotoxic concentration of WA. In contrast to the DNA demethylating agent 5-aza-2'-deoxycytidine (DAC), WA treatment of MDA-MB-231 cells rather tackles an epigenetic cancer network through gene-specific DNA hypermethylation of tumor promoting genes including ADAM metallopeptidase domain 8 (ADAM8), urokinase-type plasminogen activator (PLAU), tumor necrosis factor (ligand) superfamily, member 12 (TNFSF12), and genes related to detoxification (glutathione S-transferase mu 1, GSTM1), or mitochondrial metabolism (malic enzyme 3, ME3). Gene expression and pathway enrichment analysis further reveals epigenetic suppression of multiple cancer hallmarks associated with cell cycle regulation, cell death, cancer cell metabolism, cell motility and metastasis. Remarkably, DNA hypermethylation of corresponding CpG sites in PLAU, ADAM8, TNSF12, GSTM1 and ME3 genes correlates with receptor tyrosine-protein kinase erbB-2 amplification (HER2)/estrogen receptor (ESR)/progesterone receptor (PR) status in primary BC tumors. Moreover, upon comparing differentially methylated WA responsive target genes with DNA methylation changes in different clinical subtypes of breast cancer patients in the cancer genome atlas (TCGA), we found that WA silences HER2/PR/ESR-dependent gene expression programs to suppress aggressive TNBC characteristics in favor of luminal BC hallmarks, with an improved therapeutic sensitivity. In this respect, WA may represent a novel and attractive phyto-pharmaceutical for TNBC treatment.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Division of Hematology, Oncology and Stem Cell Transplantation, Center for Translational Cell Research, The University Medical Center Freiburg, Freiburg, Germany
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - René A.J Crans
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Current address: Laboratory for GPCR Expression and Signal Transduction (L-GEST), Department of Biochemistry and Microbiology, University of Ghent, Ghent, Belgium
| | - Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David B. Scherf
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhäuser
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Todd DW, Philip RC, Niihori M, Ringle RA, Coyle KR, Zehri SF, Zabala L, Mudery JA, Francis RH, Rodriguez JJ, Jacob A. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay. Zebrafish 2017; 14:331-342. [PMID: 28520533 DOI: 10.1089/zeb.2016.1412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
Collapse
Affiliation(s)
- Douglas W Todd
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Rohit C Philip
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Maki Niihori
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona
| | - Ryan A Ringle
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Kelsey R Coyle
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Sobia F Zehri
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Leanne Zabala
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jordan A Mudery
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Ross H Francis
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jeffrey J Rodriguez
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Abraham Jacob
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona.,5 BIO5 Institute, The University of Arizona , Tucson, Arizona.,6 Ear & Hearing, Center for Neurosciences , Tucson, Arizona
| |
Collapse
|
42
|
EBV based cancer prevention and therapy in nasopharyngeal carcinoma. NPJ Precis Oncol 2017; 1:10. [PMID: 29872698 PMCID: PMC5871899 DOI: 10.1038/s41698-017-0018-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus is an important cancer causing virus. Nasopharyngeal carcinoma is an infection-related cancer strongly driven by Epstein-Barr virus. In this cancer model, we identified the major host targets of latent membrane protein 1 which is a driving oncogene encoded by Epstein-Barr virus in latency infection. latent membrane protein 1 activates several oncogenic signaling axes causing multiple malignant phenotypes and therapeutic resistance. Also, Epstein-Barr virus up-regulates DNA methyltransferase 1 and mediates onco-epigenetic effects in the carcinogenesis. The collaborating pathways activated by latent membrane protein 1 constructs an oncogenic signaling network, which makes latent membrane protein 1 an important potential target for effective treatment or preventive intervention. In Epstein-Barr virus lytic phase, the plasma level of Epstein-Barr virus DNA is considered as a distinguishing marker for nasopharyngeal carcinoma in subjects from healthy high-risk populations and is also a novel prognostic marker in Epstein-Barr virus-positive nasopharyngeal carcinoma. Now the early detection and screening of the lytic proteins and Epstein-Barr virus DNA have been applied to clinical and high-risk population. The knowledge generated regarding Epstein-Barr virus can be used in Epstein-Barr virus based precision cancer prevention and therapy in the near future.
Collapse
|
43
|
Abstract
The fields of biology, medicine, and embryology have described the developmental milestones of humans throughout gestation in great detail. It is less clear as to when humans are recognized as people, persons, or beings with rights that are protected by legislation. The practice of law is irrevocably intertwined with that of ethical conduct; and the time at which a human life is considered a person has implications that extend to health care, legislation on abortion, and autonomy of individuals. This article reviews the economical position that fertilization is the moment that personhood of the conceptus begins. Alternate positions proposing that personhood begins at other possible times after fertilization are presented and contrasted to the economical hypothesis. Summary: This article is an original work critically analyzing the various arguments for human personhood at fertilization and thereafter. The various positions on human personhood are compared and contrasted herein. The time of the human lifespan at which personhood is conferred has important implications for health care, legislation, and personal autonomy.
Collapse
Affiliation(s)
- John Janez Miklavcic
- Alberta Institute for Human Nutrition, University of Alberta, Edmonton, AB, Canada
| | - Paul Flaman
- St. Joseph's College, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Lawson AP, Bak DW, Shannon DA, Long MJC, Vijaykumar T, Yu R, Oualid FE, Weerapana E, Hedstrom L. Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry. Oncotarget 2017; 8:51296-51316. [PMID: 28881649 PMCID: PMC5584250 DOI: 10.18632/oncotarget.17261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/22/2017] [Indexed: 01/14/2023] Open
Abstract
Cruciferous vegetables such as broccoli and kale have well documented chemopreventative and anticancer effects that are attributed to the presence of isothiocyanates (ITCs). ITCs modulate the levels of many oncogenic proteins, but the molecular mechanisms of ITC action are not understood. We previously reported that phenethyl isothiocyanate (PEITC) inhibits two deubiquitinases (DUBs), USP9x and UCH37. DUBs regulate many cellular processes and DUB dysregulation is linked to the pathogenesis of human diseases including cancer, neurodegeneration, and inflammation. Using SILAC assisted quantitative mass spectrometry, here we identify 9 new PEITC-DUB targets: USP1, USP3, USP10, USP11, USP16, USP22, USP40, USP48 and VCPIP1. Seven of these PEITC-sensitive DUBs have well-recognized roles in DNA repair or chromatin remodeling. PEITC both inhibits USP1 and increases its ubiquitination and degradation, thus decreasing USP1 activity by two mechanisms. The loss of USP1 activity increases the level of mono-ubiquitinated DNA clamp PCNA, impairing DNA repair. Both the inhibition/degradation of USP1 and the increase in mono-ubiquitinated PCNA are new activities for PEITC that can explain the previously recognized ability of ITCs to enhance cancer cell sensitivity to cisplatin treatment. Our work also demonstrates that PEITC reduces the mono-ubiquityl histones H2A and H2B. Understanding the mechanism of action of ITCs should facilitate their use as therapeutic agents.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, Waltham, MA 02453-9110, USA
| | - Daniel W Bak
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - D Alexander Shannon
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, MA 02453-9110, USA.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tushara Vijaykumar
- Graduate Program in Molecular and Cellular Biology, Brandeis University, Waltham, MA 02453-9110, USA.,Current address: Sanofi Genzyme, Framingham, MA 01701, USA
| | - Runhan Yu
- Department of Chemistry, Brandeis University, Waltham, MA 02453-9110, USA
| | | | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, MA 02453-9110, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02453-9110, USA
| |
Collapse
|
45
|
Nachat A, Turoff-Ortmeyer S, Liu C, Mcculloch M. PEITC in End-Stage B-Cell Prolymphocytic Leukemia: Case Report of Possible Sensitization to Salvage R-CHOP. Perm J 2017; 20:74-80. [PMID: 27168399 DOI: 10.7812/tpp/15-153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION B-cell prolymphocytic leukemia (B-PLL) is a rare, aggressive leukemia distinct from chronic lymphocytic leukemia, with median survival of only 3 years. B-PLL is resistant to most chemotherapy and newer targeted therapies such as alemtuzumab and thalidomide. Phenylethyl isothiocyanate (PEITC) is a natural compound from horseradish with evidence for therapeutic potential in multiple leukemia types. CASE PRESENTATION Here we present a case report of a 53-year-old man whose chronic lymphocytic leukemia transformed to end-stage B-PLL, disqualifying him for allogenic stem cell transplantation. He was treated with PEITC followed by salvage R-CHOP (Rituximab, Cyclophosphamide, Hydroxydaunorubicin [doxorubicin hydrochloride], Oncovin [vincristine sulfate], Prednisone or Prednisolone) chemotherapy, which led to normalized white blood cell count and disease stabilization that requalified him for allogenic peripheral stem-cell transplant therapy. We conducted a systematic review to analyze and interpret the potential contribution of PEITC to his unexpectedly favorable R-CHOP response. Following sequential 8 weeks of PEITC/pentostatin and 6 cycles of R-CHOP, the patient received allogenic peripheral blood stem cell transplant on an outpatient basis and remains well at the time of this publication, with no evidence of CD20+ small B-cells. DISCUSSION Given the limited data for R-CHOP in B-PLL, this patient's recovery suggests presensitization of B-PLL cells toward R-CHOP, potentially justifying further investigation.
Collapse
Affiliation(s)
- Arian Nachat
- Physician Lead for Integrative Medicine at Walnut Creek Hospital in CA.
| | | | - Chunnan Liu
- Medical Oncologist at Walnut Creek Hospital in CA.
| | - Michael Mcculloch
- Chief of Research for Integrative Medicine at the Pine Street Foundation in San Anselmo and at Walnut Creek Hospital in CA.
| |
Collapse
|
46
|
van den Broek TJ, Kremer BHA, Marcondes Rezende M, Hoevenaars FPM, Weber P, Hoeller U, van Ommen B, Wopereis S. The impact of micronutrient status on health: correlation network analysis to understand the role of micronutrients in metabolic-inflammatory processes regulating homeostasis and phenotypic flexibility. GENES AND NUTRITION 2017; 12:5. [PMID: 28194237 PMCID: PMC5299688 DOI: 10.1186/s12263-017-0553-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/19/2017] [Indexed: 01/06/2023]
Abstract
Background Vitamins and carotenoids are key micronutrients facilitating the maintenance of health, as evidenced by the increased risk of disease with low intake. Optimal phenotypic flexibility, i.e., the ability to respond to a physiological challenge, is an essential indicator of health status. Therefore, health can be measured by applying a challenge test and monitoring the response of relevant phenotypic processes. In this study, we assessed the correlation of three fat-soluble vitamins, (i.e., vitamin A or retinol, vitamin D3, two homologues of vitamin E) and four carotenoids (i.e., α-carotene, β-carotene, β-cryptoxanthin, and lycopene), with characteristics of metabolic and inflammatory parameters at baseline and in response to a nutritional challenge test (NCT) in a group of 36 overweight and obese male subjects, using proteomics and metabolomics platforms. The phenotypic flexibility concept implies that health can be measured by the ability to adapt to a NCT, which may offer a more sensitive way to assess changes in health status of healthy subjects. Results Correlation analyses of results after overnight fasting revealed a rather evenly distributed network in a number of relatively strong correlations per micronutrient, with minor overlap between correlation profiles of each compound. Correlation analyses of challenge response profiles for metabolite and protein parameters with micronutrient status revealed a network that is more skewed towards α-carotene and γ-tocopherol suggesting a more prominent role for these micronutrients in the maintenance of phenotypic flexibility. Comparison of the networks revealed that there is merely overlap of two parameters (inositol and oleic acid (C18:1)) affirming that there is a specific biomarker response profile upon NCT. Conclusions Our study shows that applying the challenge test concept is able to reveal previously unidentified correlations between specific micronutrients and health-related processes, with potential relevance for maintenance of health that were not observed by correlating homeostatic measurements. This approach will contribute to insights on the influence of micronutrients on health and help to create efficient micronutrient intervention programs. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0553-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim J van den Broek
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Bas H A Kremer
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Marisa Marcondes Rezende
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Femke P M Hoevenaars
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Peter Weber
- DSM Nutritional Products, Analytical Research Centre and Human Nutrition and Health Department, Basel, Switzerland
| | - Ulrich Hoeller
- DSM Nutritional Products, Analytical Research Centre and Human Nutrition and Health Department, Basel, Switzerland
| | - Ben van Ommen
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| | - Suzan Wopereis
- Netherlands Institute for Applied Science (TNO), Research Group Microbiology & Systems Biology, Zeist, The Netherlands
| |
Collapse
|
47
|
Luo X, Li N, Zhong J, Tan Z, Liu Y, Dong X, Cheng C, Xu Z, Li H, Yang L, Tang M, Weng X, Yi W, Liu J, Cao Y. Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1 / LSF- MMP2 / CD44 axes. Oncotarget 2016; 7:68708-68720. [PMID: 27626695 PMCID: PMC5356584 DOI: 10.18632/oncotarget.11929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Grifolin, a farnesyl phenolic compound isolated from the fresh fruiting bodies of the mushroom Albatrellus confluens, exhibits effective antitumor bioactivity in previous study of our group and other lab. In this study, we observed that grifolin inhibited tumor cells adhesion and migration. Moreover, grifolin reduced reactive oxygen species (ROS) production and caused cellular ATP depletion in high-metastatic tumor cells. PGC1α (Peroxisome proliferator-activated receptor γ, coactivator 1α) encodes a transcriptional co-activator involved in mitochondrial biogenesis and respiration and play a critical role in the maintenance of energy homeostasis. Interestingly, grifolin suppressed the mRNA as well as protein level of PGC1α. We further identified that MMP2 and CD44 expressions were PGC1α inducible. PGC1α can bind with metastatic-associated transcription factors: Fra-1 and LSF and the protein-protein interaction was attenuated by grifolin treatment. Overall, these findings suggest that grifolin decreased ROS generation and intracellular ATP to suppress tumor cell adhesion/migration via impeding the interplay between PGC1α and Fra-1 /LSF-MMP2/CD44 axes. Grifolin may develop as a promising lead compound for antitumor therapies by targeting energy metabolism regulator PGC1α signaling.
Collapse
Affiliation(s)
- Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Juanfang Zhong
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Ying Liu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Xin Dong
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Zhijie Xu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Lifang Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xinxian Weng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Wei Yi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jikai Liu
- School of Pharmacy, South-Central University For Nationalities, Wuhan, Hubei 430074, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| |
Collapse
|
48
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural Compounds: Role in Reversal of Epigenetic Changes. BIOCHEMISTRY (MOSCOW) 2016; 80:972-89. [PMID: 26547065 DOI: 10.1134/s0006297915080027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hallmarks of carcinogenesis are characterized by alterations in the expression of multiple genes that occur via genetic and epigenetic alterations, leading to genome rearrangements and instability. The reversible process of epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression that alter phenotype without any change in the DNA sequence, is recognized as a key mechanism in cancer cell metabolism. Recent advancements in the rapidly evolving field of cancer epigenetics have shown the anticarcinogenic potential of natural compounds targeting epigenetic mechanism as a common molecular approach for cancer treatment. This review summarizes the potential of natural chemopreventive agents to reverse cancer-related epigenetic aberrations by regulating the activity of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. Furthermore, there is impetus for determining novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents that exhibit similar properties, for improving the therapeutic aspects of cancer.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Biotechnology, IMS Engineering College, U. P. 201009, India.
| | | | | | | |
Collapse
|
50
|
Griffiths K, Aggarwal BB, Singh RB, Buttar HS, Wilson D, De Meester F. Food Antioxidants and Their Anti-Inflammatory Properties: A Potential Role in Cardiovascular Diseases and Cancer Prevention. Diseases 2016; 4:E28. [PMID: 28933408 PMCID: PMC5456284 DOI: 10.3390/diseases4030028] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Mediterranean-style diets caused a significant decline in cardiovascular diseases (CVDs) in early landmark studies. The effect of a traditional Mediterranean diet on lipoprotein oxidation showed that there was a significant reduction in oxidative stress in the intervention group (Mediterranean diet + Virgin Olive Oil) compared to the low-fat diet group. Conversely, the increase in oxidative stress causing inflammation is a unifying hypothesis for predisposing people to atherosclerosis, carcinogenesis, and osteoporosis. The impact of antioxidants and anti-inflammatory agents on cancer and cardiovascular disease, and the interventive mechanisms for the inhibition of proliferation, inflammation, invasion, metastasis, and activation of apoptosis were explored. Following the Great Oxygen Event some 2.3 billion years ago, organisms have needed antioxidants to survive. Natural products in food preservatives are preferable to synthetic compounds due to their lower volatility and stability and generally higher antioxidant potential. Free radicals, reactive oxygen species, antioxidants, pro-oxidants and inflammation are described with examples of free radical damage based on the hydroxyl, nitric oxide and superoxide radicals. Flavonoid antioxidants with 2- or 3-phenylchroman structures such as quercetin, kaempferol, myricetin, apigenin, and luteolin, constituents of fruits, vegetables, tea, and wine, which may reduce coronary disease and cancer, are described. The protective effect of flavonoids on the DNA damage caused by hydroxyl radicals through chelation is an important mechanism, though the converse may be possible, e.g., quercetin. The antioxidant properties of carotenoids, which are dietary natural pigments, have been studied in relation to breast cancer risk and an inverse association was found with plasma concentrations: higher levels mean lower risk. The manipulation of primary and secondary human metabolomes derived especially from existing or transformed gut microbiota was explored as a possible alternative to single-agent dietary interventions for cancer and cardiovascular disease. Sustained oxidative stress leading to inflammation and thence to possibly to cancer and cardiovascular disease is described for spices and herbs, using curcumin as an example of an intervention, based on activation of transcription factors which suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Collapse
Affiliation(s)
- Keith Griffiths
- Emeritus Professor of Cancer Research, University of Wales College of Medicine, Laurel Cottage, Castleton, Cardiff CF3 2UR, UK.
| | | | - Ram B Singh
- Halberg Hospital and Research Institute, Civil Lines, Moradabad, UP 244001, India.
| | - Harpal S Buttar
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5 , Canada.
| | - Douglas Wilson
- School Medicine Pharmacy and Health, Durham University, Durham TS17 6BH, UK.
| | | |
Collapse
|