1
|
Camiruaga A, Gouasmat A, Beau JM, Bourdreux Y, Causse M, Chapelle N, Doisneau G, Goldsztejn G, Urban D, Çarçabal P. Mixing water, sugar, and lipid: Conformations of isolated and micro-hydrated glycolipids in the gas phase. J Chem Phys 2024; 160:214313. [PMID: 38842492 DOI: 10.1063/5.0211435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Both sugars and lipids are important biomolecular building blocks with exceptional conformational flexibility and adaptability to their environment. Glycolipids bring together these two molecular components in the same assembly and combine the complexity of their conformational landscapes. In the present study, we have used selective double resonance vibrational spectroscopy, in combination with a computational approach, to explore the conformational preferences of two glycolipid models (3-0-acyl catechol and guaiacol α-D-glucopyranosides), either fully isolated in the gas phase or controlled interaction with a single water molecule. We could identify the preferred conformation and structures of the isolated and micro-hydrated species and evidence of the presence of a strong water pocket, which may influence the conformational flexibility of such systems, even in less controlled environments.
Collapse
Affiliation(s)
- Ander Camiruaga
- Institute des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Alexandra Gouasmat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay, France
| | - Jean-Marie Beau
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay, France
| | - Yann Bourdreux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay, France
| | - Maélie Causse
- Institute des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Nathan Chapelle
- Institute des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Gilles Doisneau
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay, France
| | - Gildas Goldsztejn
- Institute des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Dominique Urban
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, UMR 8182, 91405 Orsay, France
| | - Pierre Çarçabal
- Institute des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
2
|
Fries DV, Klein MP, Straßner A, Huber ME, Luczak M, Wiehn C, Niedner-Schatteburg G. Cryo IR spectroscopy and cryo kinetics of dinitrogen activation and cleavage by small tantalum cluster cations. J Chem Phys 2023; 159:164303. [PMID: 37873960 DOI: 10.1063/5.0157217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
We investigate small tantalum clusters Tan+, n = 2-4, for their capability to cleave N2 adsorption spontaneously. We utilize infrared photon dissociation (IR-PD) spectroscopy of isolated and size selected clusters under cryogenic conditions within a buffer gas filled ion trap, and we augment our experiments by quantum chemical simulations (at DFT level). All Tan+ clusters, n = 2-4, seem to cleave N2 efficiently. We confirm and extend a previous study under ambient conditions on Ta2+ cluster [Geng et al., Proc. Natl. Acad. Sci. U. S. A. 115, 11680-11687 (2018)]. Our cryo studies and the concomitant DFT simulations of the tantalum trimer Ta3+ suggest cleavage of the first and activation of the second and third N2 molecule across surmountable barriers and along much-involved multidimensional reaction paths. We unravel the underlying reaction processes and the intermediates involved. The study of the N2 adsorbate complexes of Ta4+ presented here extends our earlier study and previously published spectra from (4,m), m = 1-5 [Fries et al., Phys. Chem. Chem. Phys. 23(19), 11345-11354 (2021)], up to m = 12. We confirm the priory published double activation and nitride formation, succeeded by single side-on N2 coordination. Significant red shifts of IR-PD bands from these side-on coordinated μ2-κN:κN,N N2 ligands correlate with the degree of tilting towards the second coordinating Ta center. All subsequently attaching N2 adsorbates onto Ta4+ coordinate in an end-on fashion, and we find clear evidence for co-existence of end-on coordination isomers. The study of stepwise N2 adsorption revealed adsorption limits m(max) of [Tan(N2)m]+ which increase with n, and kinetic fits revealed significant N2 desorption rates upon higher N2 loads. The enhanced absolute rate constants of the very first adsorbate steps kabs(n,0) of the small Ta3+ and Ta4+ clusters independently suggest dissociative N2 adsorption and likely N2 cleavage into Ta nitrides.
Collapse
Affiliation(s)
- Daniela V Fries
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Matthias P Klein
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Annika Straßner
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Maximilian E Huber
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Maximilian Luczak
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Christopher Wiehn
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Paul M, Thomulka T, Harnying W, Neudörfl JM, Adams CR, Martens J, Berden G, Oomens J, Meijer AJHM, Berkessel A, Schäfer M. Hydrogen Bonding Shuts Down Tunneling in Hydroxycarbenes: A Gas-Phase Study by Tandem-Mass Spectrometry, Infrared Ion Spectroscopy, and Theory. J Am Chem Soc 2023. [PMID: 37235775 DOI: 10.1021/jacs.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.
Collapse
Affiliation(s)
- Mathias Paul
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Thomas Thomulka
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Wacharee Harnying
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Charlie R Adams
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Mathias Schäfer
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| |
Collapse
|
4
|
Schultz M, Parker SL, Fernando MT, Wellalage MM, Thomas DA. Diserinol Isophthalamide: A Novel Reagent for Complexation with Biomolecular Anions in Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:745-753. [PMID: 36975839 DOI: 10.1021/jasms.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transferring biomolecules from solution to vacuum facilitates a detailed analysis of molecular structure and dynamics by isolating molecules of interest from a complex environment. However, inherent in the ion desolvation process is the loss of solvent hydrogen bonding partners, which are critical for the stability of a condensed-phase structure. Thus, transfer of ions to vacuum can favor structural rearrangement, especially near solvent-accessible charge sites, which tend to adopt intramolecular hydrogen bonding motifs in the absence of solvent. Complexation of monoalkylammonium moieties (e.g., lysine side chains) with crown ethers such as 18-crown-6 can disfavor structural rearrangement of protonated sites, but no equivalent ligand has been investigated for deprotonated groups. Herein we describe diserinol isophthalamide (DIP), a novel reagent for the gas-phase complexation of anionic moieties within biomolecules. Complexation is observed to the C-terminus or side chains of the small model peptides GD, GE, GG, DF-OMe, VYV, YGGFL, and EYMPME in electrospray ionization mass spectrometry (ESI-MS) studies. In addition, complexation is observed with the phosphate and carboxylate moieities of phosphoserine and phosphotyrosine. DIP performs favorably in comparison to an existing anion recognition reagent, 1,1'-(1,2-phenylene)bis(3-phenylurea), that exhibits moderate carboxylate binding in organic solvent. This improved performance in ESI-MS experiments is attributed to reduced steric constraints to complexation with carboxylate groups of larger molecules. Overall, diserinol isophthalamide is an effective complexation reagent that can be applied in future work to study retention of solution-phase structure, investigate intrinsic molecular properties, and examine solvation effects.
Collapse
Affiliation(s)
- Madeline Schultz
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah L Parker
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Maleesha T Fernando
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Miyuru M Wellalage
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel A Thomas
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
5
|
Preitschopf T, Sturm F, Stroganova I, Lemmens AK, Rijs AM, Fischer I. IR/UV Double Resonance Study of the 2-Phenylallyl Radical and its Pyrolysis Products. Chemistry 2023; 29:e202202943. [PMID: 36479856 DOI: 10.1002/chem.202202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Isolated 2-phenylallyl radicals (2-PA), generated by pyrolysis from a nitrite precursor, have been investigated by IR/UV ion dip spectroscopy using free electron laser radiation. 2-PA is a resonance-stabilized radical that is considered to be involved in the formation of polycyclic aromatic hydrocarbons (PAH) in combustion, but also in interstellar space. The radical is identified based on its gas-phase IR spectrum. Furthermore, a number of bimolecular reaction products are identified, showing that the self-reaction as well as reactions with unimolecular decomposition products of 2-PA form several PAH efficiently. Possible mechanisms are discussed and the chemistry of 2-PA is compared with the one of the related 2-methylallyl and phenylpropargyl radicals.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Iuliia Stroganova
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Alexander K Lemmens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Andersson Å, Yatsyna V, Linares M, Rijs A, Zhaunerchyk V. Indication of 3 10-Helix Structure in Gas-Phase Neutral Pentaalanine. J Phys Chem A 2023; 127:938-945. [PMID: 36669091 PMCID: PMC9900583 DOI: 10.1021/acs.jpca.2c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We investigate the gas-phase structure of the neutral pentaalanine peptide. The IR spectrum in the 340-1820 cm-1 frequency range is obtained by employing supersonic jet cooling, infrared multiphoton dissociation, and vacuum-ultraviolet action spectroscopy. Comparison with quantum chemical spectral calculations suggests that the molecule assumes multiple stable conformations, mainly of two structure types. In the most stable conformation theoretically found, the N-terminus forms a C5 ring and the backbone resembles that of an 310-helix with two β-turns. Additionally, the conformational preferences of pentaalanine have been evaluated using Born-Oppenheimer molecular dynamics, showing that a nonzero simulation time step causes a systematic frequency shift.
Collapse
Affiliation(s)
- Åke Andersson
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Vasyl Yatsyna
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden,FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Mathieu Linares
- Laboratory
of Organic Electronics and Group of Scientific Visualization Department
of Science and Technology (ITN), Linköping
University, 601 74 Norrköping, Sweden
| | - Anouk Rijs
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands,Division
of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular
and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands,
| | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden,
| |
Collapse
|
7
|
Miao X, Preitschopf T, Sturm F, Fischer I, Lemmens AK, Limbacher M, Mitric R. Stacking Is Favored over Hydrogen Bonding in Azaphenanthrene Dimers. J Phys Chem Lett 2022; 13:8939-8944. [PMID: 36135713 DOI: 10.1021/acs.jpclett.2c02280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N-Doped polycyclic aromatic hydrocarbons have recently emerged as potential organic electronic materials. The function of such materials is determined not only by the intrinsic electronic properties of individual molecules but also by their supramolecular interactions in the solid state. Therefore, a proper characterization of the interactions between the individual units is of interest to materials science since they ultimately govern properties such as excitons and charge transfer. Here, we report a joint experimental and computational study of two azaphenanthrene dimers to determine the structure and the nature of supramolecular interactions in the aggregates. IR/UV double-resonance experiments were carried out using far- and mid-infrared free-electron laser radiation. The experimental spectra are compared with quantum chemical calculations for the lowest-energy π-stacked and hydrogen-bonded structures. The data reveal a preference of the π-stacked structure for the benzo[f]quinoline and the phenanthridine dimer.
Collapse
Affiliation(s)
- Xincheng Miao
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander K Lemmens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Moritz Limbacher
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Roland Mitric
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
8
|
Foreman MM, Weber JM. Ion Binding Site Structure and the Role of Water in Alkaline Earth EDTA Complexes. J Phys Chem Lett 2022; 13:8558-8563. [PMID: 36067512 DOI: 10.1021/acs.jpclett.2c02391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interactions between molecular hosts and ionic guests and their dependence on the chemical environment are challenging to disentangle from solution data alone. The vibrational spectra of cold complexes of ethylenediaminetetraacetic acid (EDTA) chelating alkaline earth dications in vacuo encode structural characteristics of these complexes and their dependence on the size of the bound ion. The correlation between metal binding geometry and the relative intensities of vibrational bands of the carboxylate groups forming the binding pocket allows us to characterize water-induced changes in molecular geometry. The evolution of these structural markers from bare ions to water adducts to aqueous solution illustrates the role of water for the structure of ion binding sites in chelators. The binding pocket of EDTA opens up in aqueous solution, bringing the bound ion closer to the mouth of the binding site and leading to an increased exposure of the ion to the chemical environment.
Collapse
Affiliation(s)
- Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
9
|
Roithová J, Bakker JM. Ion spectroscopy in methane activation. MASS SPECTROMETRY REVIEWS 2022; 41:513-528. [PMID: 34008884 PMCID: PMC9292810 DOI: 10.1002/mas.21698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
This review is devoted to ion spectroscopy studies of complexes relevant for the understanding of methane activation with metal ions and clusters. Methane activation starts with the formation of a complex with a metal ion. The degree of the interaction between an intact methane molecule and the ion can be monitored by the perturbations of C-H stretch vibrations in the methane molecule. Binding mediated by the electrostatic interaction results in a η3 type coordination of methane. In contrast, binding governed by orbital interactions results in a η2 type coordination of methane. We further review the spectroscopic characterization of activation products of metal-methane reactions, such as the metal-carbene and carbyne products resulting from the interaction of selected 5d metals with methane. The focus of recent research in the field has shifted towards the investigation of interactions between methane and metal clusters. We show examples highlighting that metal clusters can be more reactive in methane activation reactions.
Collapse
Affiliation(s)
- Jana Roithová
- Department of Spectroscopy and CatalysisRadboud University NijmegenNijmegenThe Netherlands
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and MaterialsFELIX LaboratoryNijmegenThe Netherlands
| |
Collapse
|
10
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
11
|
Preitschopf T, Hirsch F, Lemmens AK, Rijs AM, Fischer I. The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Phys Chem Chem Phys 2022; 24:7682-7690. [PMID: 35302151 DOI: 10.1039/d2cp00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resonance-stabilized 2-methylallyl radical, 2-MA, is considered as a possible intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs) in combustion processes. In this work, we report on its contribution to molecular growth in a high-temperature microreactor and provide mass-selective IR/UV ion dip spectra of the radical, as well as the various jet-cooled reaction products, employing free electron laser radiation in the mid-infrared region. Small (aromatic) hydrocarbons such as fulvene, benzene, styrene, or para-xylene, as well as polycyclic molecules, like (methylated) naphthalene, were identified with the aid of ab initio DFT computations. Several reaction products differ by one or more methyl groups, suggesting that molecular growth is dominated by (de)methylation in the reactor.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander K Lemmens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
12
|
Yeni O, Schindler B, Moge B, Compagnon I. Rapid IRMPD (InfraRed multiple photon dissociation) analysis for glycomics. Analyst 2021; 147:312-317. [PMID: 34913933 DOI: 10.1039/d1an01870a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared vibrational spectroscopy in the gas phase has emerged as a powerful tool to determine complex molecular structures with high precision. Among the different approaches IRMPD (InfraRed multiple photon dissociation), which requires the use of an intense pulsed tuneable laser in the InfraRed (IR) domain, has been broadly applied to the study of complex (bio)molecules. Recently, it also emerged as a highly relevant approach for analytical purposes especially in the field of glycomics in which structural analysis is still a tremendous challenge. This opens the perspective to develop new analytical tools allowing for the determination of molecular structures with atomic precision, and to address advanced questions in the field. However, IRMPD experiments require non commercial equipment or/and long acquisition time which limits the data output. Here we show that it is possible to improve the IRMPD performances by optimizing the combination between a linear ion trap mass spectrometer and a high repetition tuneable laser. Two orders of magnitude are gained with this approach compared to the usual experiments ultimately leading to a completely resolved spectrum acquired in less than one minute. These results open the way to many new applications in glycomics with the possibility to include IRMPD in complex analytical workflows.
Collapse
Affiliation(s)
- Oznur Yeni
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Baptiste Schindler
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Baptiste Moge
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| | - Isabelle Compagnon
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.
| |
Collapse
|
13
|
Shachar A, Kallos I, de Vries MS, Bar I. Revealing the Structure and Noncovalent Interactions of Isolated Molecules by Laser-Desorption/Ionization-Loss Stimulated Raman Spectroscopy and Quantum Calculations. J Phys Chem Lett 2021; 12:11273-11279. [PMID: 34767362 DOI: 10.1021/acs.jpclett.1c03336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structural and dynamical characteristics of isolated molecules are essential, yet obtaining this information is difficult. We demonstrate laser-desorption jet-cooling/ionization-loss stimulated Raman spectroscopy to obtain Raman spectral signatures of nonvolatile molecules in the gas phase. The vibrational features of a test substance, the most abundant conformer of tryptamine, are compared and found to match those resulting from the scaled harmonic Raman spectrum obtained by density functional theory calculations. The vibrational signatures serve to identify the most prominent gauche conformer and evaluate its predicted electronic structure. These findings, together with noncovalent interaction (NCI) analysis, provide new insights into electron densities and reduced density gradients, assessing the hydrogen bonds (N-H···π and C-H···H-C) and interplay between attractive and repulsive NCIs affecting the structure. This approach accesses vibrational signatures of isolated nonvolatile molecules by tabletop lasers at uniform resolution and in a broad frequency range, promising great benefit to future studies.
Collapse
Affiliation(s)
- Afik Shachar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itai Kallos
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mattanjah S de Vries
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
14
|
Andersson Å, Poline M, Houthuijs KJ, van Outersterp RE, Berden G, Oomens J, Zhaunerchyk V. IRMPD Spectroscopy of Homo- and Heterochiral Asparagine Proton-Bound Dimers in the Gas Phase. J Phys Chem A 2021; 125:7449-7456. [PMID: 34428065 PMCID: PMC8419839 DOI: 10.1021/acs.jpca.1c05667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Indexed: 12/16/2022]
Abstract
We investigate gas-phase structures of homo- and heterochiral asparagine proton-bound dimers with infrared multiphoton dissociation (IRMPD) spectroscopy and quantum-chemical calculations. Their IRMPD spectra are recorded at room temperature in the range of 500-1875 and 3000-3600 cm-1. Both varieties of asparagine dimers are found to be charge-solvated based on their IRMPD spectra. The location of the principal intramolecular H-bond is discussed in light of harmonic frequency analyses using the B3LYP functional with GD3BJ empirical dispersion. Contrary to theoretical analyses, the two spectra are very similar.
Collapse
Affiliation(s)
- Åke Andersson
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Mathias Poline
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Kas J. Houthuijs
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Rianne E. van Outersterp
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
15
|
Edington SC, Perez EH, Charboneau DJ, Menges FS, Hazari N, Johnson MA. Chemical Reduction of Ni II Cyclam and Characterization of Isolated Ni I Cyclam with Cryogenic Vibrational Spectroscopy and Inert-Gas-Mediated High-Resolution Mass Spectrometry. J Phys Chem A 2021; 125:6715-6721. [PMID: 34324319 DOI: 10.1021/acs.jpca.1c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NiII cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) is an efficient catalyst for the selective reduction of CO2 to CO. A crucial elementary step in the proposed catalytic cycle is the coordination of CO2 to a NiI cyclam intermediate. Isolation and spectroscopic characterization of this labile NiI species without solvent has proven to be challenging, however, and only partial IR spectra have previously been reported using multiple photon fragmentation of ions generated by gas-phase electron transfer to the NiII cyclam dication at 300 K. Here, we report a chemical reduction method that efficiently prepares NiI cyclam in solution. This enables the NiI complex to be transferred into a cryogenic photofragmentation mass spectrometer using inert-gas-mediated electrospray ionization. The vibrational spectra of the 30 K ion using both H2 and N2 messenger tagging over the range 800-4000 cm-1 were then measured. The resulting spectra were analyzed with the aid of electronic structure calculations, which show strong method dependence in predicted band positions and small molecule activation. The conformational changes of the cyclam ligand induced by binding of the open shell NiI cation were compared with those caused by the spherical, closed-shell LiI cation, which has a similar ionic radius. We also report the vibrational spectrum of a NiI cyclam complex with a strongly bound O2 ligand. The cyclam ligand supporting this species exhibits a large conformational change compared to the complexes with weakly bound N2 and H2, which is likely due to significant charge transfer from Ni to the coordinated O2.
Collapse
Affiliation(s)
- Sean C Edington
- Sterling Chemistry Laboratory, Chemistry Department, Yale University, New Haven, Connecticut 06520, United States
| | - Evan H Perez
- Sterling Chemistry Laboratory, Chemistry Department, Yale University, New Haven, Connecticut 06520, United States
| | - David J Charboneau
- Sterling Chemistry Laboratory, Chemistry Department, Yale University, New Haven, Connecticut 06520, United States
| | - Fabian S Menges
- Sterling Chemistry Laboratory, Chemistry Department, Yale University, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Sterling Chemistry Laboratory, Chemistry Department, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Chemistry Department, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Seep L, Bonin A, Meier K, Diedam H, Göller AH. Ensemble completeness in conformer sampling: the case of small macrocycles. J Cheminform 2021; 13:55. [PMID: 34325738 PMCID: PMC8320181 DOI: 10.1186/s13321-021-00524-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
In this study we compare the three algorithms for the generation of conformer ensembles Biovia BEST, Schrödinger Prime macrocycle sampling (PMM) and Conformator (CONF) form the University of Hamburg, with ensembles derived for exhaustive molecular dynamics simulations applied to a dataset of 7 small macrocycles in two charge states and three solvents. Ensemble completeness is a prerequisite to allow for the selection of relevant diverse conformers for many applications in computational chemistry. We apply conformation maps using principal component analysis based on ring torsions. Our major finding critical for all applications of conformer ensembles in any computational study is that maps derived from MD with explicit solvent are significantly distinct between macrocycles, charge states and solvents, whereas the maps for post-optimized conformers using implicit solvent models from all generator algorithms are very similar independent of the solvent. We apply three metrics for the quantification of the relative covered ensemble space, namely cluster overlap, variance statistics, and a novel metric, Mahalanobis distance, showing that post-optimized MD ensembles cover a significantly larger conformational space than the generator ensembles, with the ranking PMM > BEST >> CONF. Furthermore, we find that the distributions of 3D polar surface areas are very similar for all macrocycles independent of charge state and solvent, except for the smaller and more strained compound 7, and that there is also no obvious correlation between 3D PSA and intramolecular hydrogen bond count distributions.
Collapse
Affiliation(s)
- Lea Seep
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany
| | - Anne Bonin
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany
| | - Katharina Meier
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany
| | - Holger Diedam
- Engineering & Technology, Applied Mathematics, Bayer AG, 51368, Leverkusen, Germany
| | - Andreas H Göller
- Pharmaceuticals R&D, Digital Technologies, Bayer AG, 42096, Wuppertal, Germany.
| |
Collapse
|
17
|
Paul M, Peckelsen K, Thomulka T, Martens J, Berden G, Oomens J, Neudörfl JM, Breugst M, Meijer AJHM, Schäfer M, Berkessel A. Breslow Intermediates (Amino Enols) and Their Keto Tautomers: First Gas-Phase Characterization by IR Ion Spectroscopy. Chemistry 2021; 27:2662-2669. [PMID: 32893891 PMCID: PMC7898712 DOI: 10.1002/chem.202003454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Breslow intermediates (BIs) are the crucial nucleophilic amino enol intermediates formed from electrophilic aldehydes in the course of N-heterocyclic carbene (NHC)-catalyzed umpolung reactions. Both in organocatalytic and enzymatic umpolung, the question whether the Breslow intermediate exists as the nucleophilic enol or in the form of its electrophilic keto tautomer is of utmost importance for its reactivity and function. Herein, the preparation of charge-tagged Breslow intermediates/keto tautomers derived from three different types of NHCs (imidazolidin-2-ylidenes, 1,2,4-triazolin-5-ylidenes, thiazolin-2-ylidenes) and aldehydes is reported. An ammonium charge tag is introduced through the aldehyde unit or the NHC. ESI-MS IR ion spectroscopy allowed the unambiguous conclusion that in the gas phase, the imidazolidin-2-ylidene-derived BI indeed exists as a diamino enol, while both 1,2,4-triazolin-5-ylidenes and thiazolin-2-ylidenes give the keto tautomer. This result coincides with the tautomeric states observed for the BIs in solution (NMR) and in the crystalline state (XRD), and is in line with our earlier calculations on the energetics of BI keto-enol equilibria.
Collapse
Affiliation(s)
- Mathias Paul
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| | - Katrin Peckelsen
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| | - Thomas Thomulka
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands.,Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jörg-M Neudörfl
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| | - Martin Breugst
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| | | | - Mathias Schäfer
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| | - Albrecht Berkessel
- Department of Chemistry, Cologne University, Greinstrasse 4, 50939, Cologne, Germany
| |
Collapse
|
18
|
Donon J, Habka S, Mons M, Brenner V, Gloaguen E. Conformational analysis by UV spectroscopy: the decisive contribution of environment-induced electronic Stark effects. Chem Sci 2021; 12:2803-2815. [PMID: 34164044 PMCID: PMC8179363 DOI: 10.1039/d0sc06074g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
UV chromophores are frequently used as probes of the molecular structure. In particular, they are sensitive to the electric field generated by the molecular environment, resulting in the observation of Stark effects on UV spectra. While these environment-induced electronic Stark effects (EI-ESE) are already used for conformational analysis in the condensed phase, this work explores the potential of such an approach when performed at much higher conformational resolution in the gas phase. By investigating model alkali benzylacetate and 4-phenylbutyrate ion pairs, where the electric field applied to the phenyl ring is chemically tuned by changing the nature of the alkali cation, this work demonstrates that precise conformational assignments can be proposed based on the correlation between the conformation-dependent calculated electric fields and the frequency of the electronic transitions observed in the experimental UV spectra. Remarkably, the sole analysis of Stark effects and fragmentation patterns in mass-selected UV spectra provided an accurate and complete conformational analysis, where spectral differences as small as a few cm-1 between electronic transitions were rationalized. This case study illustrates that the identification of EI-ESE together with their interpretation at the modest cost of a ground state electric field calculation qualify UV spectroscopy as a powerful tool for conformational analysis.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Sana Habka
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Michel Mons
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Valérie Brenner
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Eric Gloaguen
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| |
Collapse
|
19
|
Gloaguen E, Mons M, Schwing K, Gerhards M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem Rev 2020; 120:12490-12562. [PMID: 33152238 DOI: 10.1021/acs.chemrev.0c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on β- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.
Collapse
Affiliation(s)
- Eric Gloaguen
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Michel Mons
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Kirsten Schwing
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
20
|
Thomas DA, Chang R, Mucha E, Lettow M, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G. Probing the conformational landscape and thermochemistry of DNA dinucleotide anions via helium nanodroplet infrared action spectroscopy. Phys Chem Chem Phys 2020; 22:18400-18413. [PMID: 32797142 DOI: 10.1039/d0cp02482a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature of ca. 0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibria via infrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- E. K. Campbell
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Hirsch F, Pachner K, Fischer I, Issler K, Petersen J, Mitric R, Bakels S, Rijs AM. Do Xylylenes Isomerize in Pyrolysis? Chemphyschem 2020; 21:1515-1518. [PMID: 32501625 PMCID: PMC7496364 DOI: 10.1002/cphc.202000317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Indexed: 01/06/2023]
Abstract
We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength for all molecules were carried out and provde an explanation for the observation of the isomerization products.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kai Pachner
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ingo Fischer
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kevin Issler
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jens Petersen
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Roland Mitric
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, The, Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, The, Netherlands
| |
Collapse
|
23
|
Berenbeim JA, Wong NGK, Cockett MCR, Berden G, Oomens J, Rijs AM, Dessent CEH. Unravelling the Keto-Enol Tautomer Dependent Photochemistry and Degradation Pathways of the Protonated UVA Filter Avobenzone. J Phys Chem A 2020; 124:2919-2930. [PMID: 32208697 PMCID: PMC7168606 DOI: 10.1021/acs.jpca.0c01295] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Avobenzone (AB) is
a widely used UVA filter known to undergo irreversible
photodegradation. Here, we investigate the detailed pathways by which
AB photodegrades by applying UV laser-interfaced mass spectrometry
to protonated AB ions. Gas-phase infrared multiple-photon dissociation
(IRMPD) spectra obtained with the free electron laser for infrared
experiments, FELIX, (600–1800 cm–1) are also
presented to confirm the geometric structures. The UV gas-phase absorption
spectrum (2.5–5 eV) of protonated AB contains bands that correspond
to selective excitation of either the enol or diketo forms, allowing
us to probe the resulting, tautomer-dependent photochemistry. Numerous
photofragments (i.e., photodegradants) are directly identified for
the first time, with m/z 135 and
161 dominating, and m/z 146 and
177 also appearing prominently. Analysis of the production spectra
of these photofragments reveals that that strong enol to keto photoisomerism
is occurring, and that protonation significantly disrupts the stability
of the enol (UVA active) tautomer. Close comparison of fragment ion
yields with the TD-DFT-calculated absorption spectra give detailed
information on the location and identity of the dissociative excited
state surfaces, and thus provide new insight into the photodegradation
pathways of avobenzone, and photoisomerization of the wider class
of β-diketone containing molecules.
Collapse
Affiliation(s)
- Jacob A Berenbeim
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Natalie G K Wong
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Martin C R Cockett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | - Anouk M Rijs
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | | |
Collapse
|
24
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
25
|
Lemmens AK, Rap DB, Thunnissen JMM, Willemsen B, Rijs AM. Polycyclic aromatic hydrocarbon formation chemistry in a plasma jet revealed by IR-UV action spectroscopy. Nat Commun 2020; 11:269. [PMID: 31937755 PMCID: PMC6959308 DOI: 10.1038/s41467-019-14092-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Large polycyclic aromatic hydrocarbons (PAHs) are the most abundant complex molecules in the interstellar medium; however, their possible formation pathways from small molecular species are still elusive. In the present work, we follow and characterize the formation of PAHs in an electrical discharge, specifically the PAH naphthalene in a molecular beam of argon. The fragments, products and reaction intermediates are unambiguously structurally identified by mass-selective IR-UV spectroscopy combined with quantum chemical calculations. This experiment provides evidence of the formation of larger PAHs containing up to four cyclic rings in the gas phase originating from a non-radical PAH molecule as a precursor. In addition to PAH formation, key resonance stabilized radical intermediates and intermediates containing di-acetylenic side groups are unambiguously identified in our experiment. We thereby not only reveal competing formation pathways to larger PAHs, but also identify intermediate species to PAH formation that are candidates for detection in radio-astronomy. Polycyclic aromatic hydrocarbons (PAHs) are present in the interstellar medium but their origin is unclear. Here the authors investigate large PAH formation from smaller PAHs in a plasma jet by mass-selective IR and UV laser spectroscopy, uncovering diacetylene radical addition as formation mechanism.
Collapse
Affiliation(s)
- Alexander K Lemmens
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Daniël B Rap
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Johannes M M Thunnissen
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Bryan Willemsen
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Hirsch F, Flock M, Fischer I, Bakels S, Rijs AM. The Gas-Phase Infrared Spectra of Xylyl Radicals. J Phys Chem A 2019; 123:9573-9578. [PMID: 31593463 DOI: 10.1021/acs.jpca.9b09153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three isomers of the xylyl radical, C8H9, are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). Their infrared spectra have been recorded by IR/UV ion dip spectroscopy using free electron laser radiation. The radicals were generated by flash pyrolysis from the corresponding nitrites and resonantly ionized via the D3 ← D0 transition around 310 nm. Mid-infrared spectra of the three xylyl isomers were recorded between 550 and 1700 cm-1 and are in excellent agreement with computations, provided that overtones and combination bands are included in the simulation. The results show that the three xylyl isomers can be distinguished by their infrared spectra and that no isomerization occurs in the pyrolysis reactor. The IR spectra obtained at m/z = 208 indicate that dimerization of xylyl radicals leads to substituted stilbenes, which has not been observed for benzyl.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry , University of Wuerzburg , Am Hubland Süd, 97074 Würzburg , Germany
| | - Marco Flock
- Institute of Physical and Theoretical Chemistry , University of Wuerzburg , Am Hubland Süd, 97074 Würzburg , Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry , University of Wuerzburg , Am Hubland Süd, 97074 Würzburg , Germany
| | - Sjors Bakels
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7-c , 6525 Nijmegen , the Netherlands
| | - Anouk M Rijs
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7-c , 6525 Nijmegen , the Netherlands
| |
Collapse
|
27
|
Munshi MU, Martens J, Berden G, Oomens J. Protoisomerization of Indigo and Isoindigo Dyes Confirmed by Gas-Phase Infrared Ion Spectroscopy. J Phys Chem A 2019; 123:8226-8233. [PMID: 31490692 PMCID: PMC6767361 DOI: 10.1021/acs.jpca.9b06858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Gas-phase
infrared multiple-photon dissociation (IRMPD) spectra
are recorded for the protonated dye molecules indigo and isoindigo
by using a quadrupole ion trap (QIT) mass spectrometer coupled to
the free electron laser for infrared experiments (FELIX). From their
fingerprint IR spectra (600—1800 cm–1) and
comparison with quantum-chemical calculations at the density functional
level of theory (B3LYP/6-31++G(d,p)), we derive their structures.
We focus particularly on the question of whether trans-to-cis isomerization occurs upon protonation and
transfer to the gas phase. The trans-configuration
is energetically favored in the neutral forms of the dyes in solution
and in the gas phase. Instead, the cis-isomer is
lower in energy for the protonated forms of both species, but indigo
is also notorious for not undergoing double-bond trans-to-cis isomerization, in contrast to many other
conjugated systems. The IR spectra suggest that protoisomerization
from trans to cis indeed occurs
for both dyes. To estimate the extent of isomerization, on-resonance
kinetics are measured on diagnostic and common vibrational frequencies
to determine the ratio of cis-to-trans isomers. We find ratios of 65–70% cis and
30–35% trans for indigo versus 75–80% cis and 20–25% trans for isoindigo.
Transition-state calculations for the isomerization reactions have
been carried out, which indeed suggest a lower barrier for protonated
isoindigo, qualitatively explaining the more efficient isomerization.
Collapse
Affiliation(s)
- Musleh Uddin Munshi
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory , Radboud University , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands.,University of Amsterdam , Science Park 904 , 1098XH Amsterdam , The Netherlands
| |
Collapse
|
28
|
Avilés-Moreno JR, Berden G, Oomens J, Martínez-Haya B. Insights into the Recognition of Phosphate Groups by Peptidic Arginine from Action Spectroscopy and Quantum Chemical Computations. J Phys Chem B 2019; 123:7528-7535. [PMID: 31449420 DOI: 10.1021/acs.jpcb.9b06201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The side group of the amino acid arginine is typically in its guanidinium protonated form under physiological conditions and participates in a broad range of ligand binding and charge transfer processes of proteins. The recognition of phosphate moieties by guanidinium plays a particularly key role in the interactions of proteins with ATP and nucleic acids. Moreover, it has been recently identified as the driving force for the inhibition of kinase phosphorilation activity by guanidinium derivatives devised as potential anticancer agents. We report on a fundamental investigation of the interactions and coordination arrangements formed by guanidinium with phosphoric, phosphate, and pyrophosphate groups. Action vibrational spectroscopy and ab initio quantum chemical computations are employed to characterize the conformations of benchmark positively charged complexes isolated in an ion trap. The multidentate structure of guanidinium and of the phosphate groups gives rise to a rich conformational landscape with a particular relevance of tweezer-like configurations, where phosphate is effectively trapped by two guanidinium cations. The pyrophosphate complex incorporates a Na+ cation, which serves to compare the interactions associated with the localized versus diffuse charge distributions of the alkali cation and guanidinium, respectively, within a common supramolecular framework.
Collapse
Affiliation(s)
- Juan Ramón Avilés-Moreno
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Bruno Martínez-Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
29
|
Bakels S, Porskamp SBA, Rijs AM. Formation of Neutral Peptide Aggregates as Studied by Mass-Selective IR Action Spectroscopy. Angew Chem Int Ed Engl 2019; 58:10537-10541. [PMID: 31125499 PMCID: PMC6772166 DOI: 10.1002/anie.201902644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 01/28/2023]
Abstract
The spontaneous aggregation of proteins and peptides is widely studied owing to its relation to neurodegenerative diseases. To understand the underlying principles of peptide aggregation, elucidation of structure and structural changes upon their formation is key. This level of detail can be obtained by studying the peptide self-assembly in the gas phase. Structural characterization of aggregates is mainly done on charged species, as adding charges is an intrinsic part of the technique to bring molecules into the gas phase. Studying neutral peptide aggregates will complement the existing picture. These studies are restricted to dimers due to experimental limitations. Herein, we present advances in laser desorption molecular beam spectroscopy to form neutral peptide aggregates consisting of up to 14 monomeric peptides in the gas phase. The combination of this technique with IR-UV spectroscopy allowed us to select each aggregate by size and subsequently characterize its structure.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud UniversityInstitute for Molecules and MaterialsFELIX LaboratoryToernooiveld 7c6525EDNijmegenThe Netherlands
| | - Sebastiaan B. A. Porskamp
- Radboud UniversityInstitute for Molecules and MaterialsFELIX LaboratoryToernooiveld 7c6525EDNijmegenThe Netherlands
| | - Anouk M. Rijs
- Radboud UniversityInstitute for Molecules and MaterialsFELIX LaboratoryToernooiveld 7c6525EDNijmegenThe Netherlands
| |
Collapse
|
30
|
Choi CM, Kulesza A, Daly S, MacAleese L, Antoine R, Dugourd P, Chirot F. Ion mobility resolved photo-fragmentation to discriminate protomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:28-34. [PMID: 29885203 DOI: 10.1002/rcm.8202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Among the sources of structural diversity in biomolecular ions, the co-existence of protomers is particularly difficult to take into account, which in turn complicates structural interpretation of gas-phase data. METHODS We investigated the sensitivity of gas-phase photo-fragmentation measurements and ion mobility spectrometry (IMS) to the protonation state of a model peptide derivatized with chromophores. Accessible interconversion pathways between the different identified conformers were probed by tandem ion mobility measurement. Furthermore, the excitation coupling between the chromophores has been probed through photo-fragmentation measurements on mobility-selected ions. All results were interpreted based on molecular dynamics simulations. RESULTS We show that protonation can significantly affect the photo-fragmentation yields. Especially, conformers with very close collision cross sections (CCSs) may display dramatically different photo-fragmentation yields in relation with different protonation patterns. CONCLUSIONS We show that, even if precise structure assignment based on molecular modeling is in principle difficult for large biomolecular assemblies, the combination of photo-fragmentation and IMS can help to identify the signature of protomer co-existence for a population of biomolecular ions in the gas phase. Such spectroscopic data are particularly suitable to follow conformational changes.
Collapse
Affiliation(s)
- Chang Min Choi
- Mass Spectrometry and Advanced Instrumentation Research Group, Div. of Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Alexander Kulesza
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Steven Daly
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Luke MacAleese
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Rodolphe Antoine
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Philippe Dugourd
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Fabien Chirot
- CNRS, Ens de Lyon, UMR5280 Institut Sciences Analytiques, Univ Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
31
|
Avilés–Moreno JR, Berden G, Oomens J, Martínez–Haya B. A Cl - Hinge for Cyclen Macrocycles: Ionic Interactions and Tweezer-Like Complexes. Front Chem 2019; 7:143. [PMID: 30968013 PMCID: PMC6438891 DOI: 10.3389/fchem.2019.00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 11/25/2022] Open
Abstract
The supramolecular networks derived from the complexation of polyazamacrocycles with halide anions constitute fundamental building blocks of a broad range of modern materials. This study provides insights into the conformational framework that supports the binding of protonated cyclen macrocyles (1,4,7,10-Tetraazacyclododecane) by chloride anions through NHδ+···Cl- interactions. The isolated complex comprised of two cyclen hosts linked by one Cl- anion is characterized by means of infrared action spectroscopy and ion mobility mass spectrometry, in combination with quantum chemical computations. The Cl- anion is found to act as a hinge that bridges the protonatedNH 2 + moieties of the two macrocycles leading to a molecular tweezer configuration. Different types of conformations emerge, depending on whether the trimer adopts an open arrangement, with significant freedom for internal rotation of the cyclen moieties, or it locks in a folded conformation with intermolecular H-bonds between the two cyclen backbones. The ion mobility collision cross section supports that folded configurations of the complex are dominant under isolated conditions in the gas phase. The IRMPD spectroscopy experiments suggest that two qualitatively different families of folded conformations coexist at room temperature, featuring either peripheral or inner positions of the anion with respect to the macrocycle cavities, These findings should have implications in the growth of extended networks in the nanoscale and in sensing applications.
Collapse
Affiliation(s)
- Juan Ramón Avilés–Moreno
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, Spain
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Bruno Martínez–Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
32
|
Yatsyna V, Mallat R, Gorn T, Schmitt M, Feifel R, Rijs AM, Zhaunerchyk V. Conformational Preferences of Isolated Glycylglycine (Gly-Gly) Investigated with IRMPD-VUV Action Spectroscopy and Advanced Computational Approaches. J Phys Chem A 2019; 123:862-872. [DOI: 10.1021/acs.jpca.8b10881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vasyl Yatsyna
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Ranim Mallat
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Tim Gorn
- Institut für Physikalische Chemie I, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Michael Schmitt
- Institut für Physikalische Chemie I, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Anouk M. Rijs
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
33
|
Hirsch F, Reusch E, Constantinidis P, Fischer I, Bakels S, Rijs AM, Hemberger P. Self-Reaction of ortho-Benzyne at High Temperatures Investigated by Infrared and Photoelectron Spectroscopy. J Phys Chem A 2018; 122:9563-9571. [PMID: 30444617 DOI: 10.1021/acs.jpca.8b09640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ortho-Benzyne, a Kekulé-type biradical is considered to be a key intermediate in the formation of polycyclic aromatic hydrocarbons (PAH) and soot. In the present work we study the ortho-benzyne self-reactions in a hot microreactor and identify the high-temperature products by IR/UV spectroscopy and by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) in a free jet. Ms-TPES confirms formation of ortho-benzyne as generated from benzocyclobutenedione, as well as benzene, biphenylene, diacetylene, and acetylene, originating from the reaction o-C6H4 → HCC-CCH + C2H2, and CH3. PAH molecules like naphthalene, 2-ethynylnaphthalene, fluorene, phenanthrene, and triphenylene are identified based on their IR/UV spectra. By comparison with recent computations their formation starting from o-benzyne can be readily understood and supports the importance of the biradical addition (1,4-cycloaddition followed by fragmentation) pathway to PAH molecules, recently proposed by Comandini et al.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Engelbert Reusch
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Philipp Constantinidis
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Sjors Bakels
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525 ED Nijmegen , The Netherlands
| | - Anouk M Rijs
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525 ED Nijmegen , The Netherlands
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation , Paul Scherrer Institut (PSI) , CH-5232 Villigen , Switzerland
| |
Collapse
|
34
|
van Outersterp RE, Martens J, Berden G, Steill JD, Oomens J, Rijs AM. Structural characterization of nucleotide 5'-triphosphates by infrared ion spectroscopy and theoretical studies. Phys Chem Chem Phys 2018; 20:28319-28330. [PMID: 30398499 DOI: 10.1039/c8cp03314e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular family of nucleotide triphosphates (NTPs), with adenosine 5'-triphosphate (ATP) as its best-known member, is of high biochemical importance as their phosphodiester bonds form Nature's main means to store and transport energy. Here, gas-phase IR spectroscopic studies and supporting theoretical studies have been performed on adenosine 5'-triphosphate, cytosine 5'-triphosphate and guanosine 5'-triphosphate to elucidate the intrinsic structural properties of NTPs, focusing on the influence of the nucleobase and the extent of deprotonation. Mass spectrometric studies involving collision induced dissociation showed similar fragmentation channels for the three studied NTPs within a selected charge state. The doubly charged anions exhibit fragmentation similar to the energy-releasing hydrolysis reaction in nature, while the singly charged anions show different dominant fragmentation channels, suggesting that the charge state plays a significant role in the favorability of the hydrolysis reaction. A combination of infrared ion spectroscopy and quantum-chemical computations indicates that the singly charged anions of all NTPs are preferentially deprotonated at their β-phosphates, while the doubly-charged anions are dominantly αβ-deprotonated. The assigned three-dimensional structure differs for ATP and CTP on the one hand and GTP on the other, in the sense that ATP and CTP show no interaction between nucleobase and phosphate tail, while in GTP they are hydrogen bonded. This can be rationalized by considering the structure and geometry of the NTPs where the final three dimensional structure depends on a subtle balance between hydrogen bond strength, flexibility and steric hindrance.
Collapse
Affiliation(s)
- Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Teschmit N, Horke DA, Küpper J. Räumliche Trennung der Konformere eines Dipeptids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nicole Teschmit
- Center for Free-Electron Laser ScienceDeutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Deutschland
- The Hamburg Center for Ultrafast ImagingUniversität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
- Fachbereich ChemieUniversität Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Deutschland
| | - Daniel A. Horke
- Center for Free-Electron Laser ScienceDeutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Deutschland
- The Hamburg Center for Ultrafast ImagingUniversität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
| | - Jochen Küpper
- Center for Free-Electron Laser ScienceDeutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Deutschland
- The Hamburg Center for Ultrafast ImagingUniversität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
- Fachbereich ChemieUniversität Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Deutschland
- Fachbereich PhysikUniversität Hamburg Luruper Chaussee 149 22761 Hamburg Deutschland
| |
Collapse
|
36
|
Schindler B, Laloy-Borgna G, Barnes L, Allouche AR, Bouju E, Dugas V, Demesmay C, Compagnon I. Online Separation and Identification of Isomers Using Infrared Multiple Photon Dissociation Ion Spectroscopy Coupled to Liquid Chromatography: Application to the Analysis of Disaccharides Regio-Isomers and Monosaccharide Anomers. Anal Chem 2018; 90:11741-11745. [DOI: 10.1021/acs.analchem.8b02801] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Baptiste Schindler
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Gabrielle Laloy-Borgna
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Loïc Barnes
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Abdul-Rahman Allouche
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Elodie Bouju
- Univ Lyon, CNRS,
Université Claude Bernard Lyon 1, Ens de Lyon, Institut des
Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Vincent Dugas
- Univ Lyon, CNRS,
Université Claude Bernard Lyon 1, Ens de Lyon, Institut des
Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Claire Demesmay
- Univ Lyon, CNRS,
Université Claude Bernard Lyon 1, Ens de Lyon, Institut des
Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Isabelle Compagnon
- Univ Lyon, Université
Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- Institut Universitaire de France IUF, 103 Boulevard St. Michel, Paris F-75005, France
| |
Collapse
|
37
|
Yang B, Liu S, Lin Z. Computational study on single molecular spectroscopy of tyrosin-glycine, tryptophane-glycine and glycine-tryptophane. Sci Rep 2017; 7:15869. [PMID: 29158576 PMCID: PMC5696477 DOI: 10.1038/s41598-017-16234-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/09/2017] [Indexed: 12/29/2022] Open
Abstract
Quantum chemistry calculations play a fundamental role in revealing the molecular structures observed in gas-phase spectroscopic measurements. The supersonic jet cooling widely used in single molecular spectroscopy experiment is a non-equilibrium process and often causes confusion on the theoretical and experimental comparison. A computational approach is proposed here to account for the effect of the non-equilibrium cooling on the experimental spectra and applied to the cases of tyrosin-glycine (YG), tryptophane-glycine (WG) and glycine-tryptophane (GW). The low energy conformers of YG, WG and GW are obtained through thorough conformational searches. The structural features and equilibrium distributions of conformations and the energy barriers for conformer conversions are then determined. Three classes of transition energy barriers, high, medium and low, are found for the conversions among conformers with distinctly different, similar and the same structural types, respectively. The final conformation populations are determined by assuming an initial temperature of about 450 K and allowing for only the conformation conversion with a low energy barrier to occur during the rapid cooling process. The results provide a natural explanation for the numbers of YG, WG and GW conformations observed experimentally. The theoretical conformation assignments are also in good agreement with the experimental IR data.
Collapse
Affiliation(s)
- Bing Yang
- Hefei National Laboratory for Physical Sciences at Microscale & CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Shixue Liu
- Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo, 669-1337, Japan
| | - Zijing Lin
- Hefei National Laboratory for Physical Sciences at Microscale & CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
38
|
Munshi M, Craig SM, Berden G, Martens J, DeBlase AF, Foreman DJ, McLuckey SA, Oomens J, Johnson MA. Preparation of Labile Ni +(cyclam) Cations in the Gas Phase Using Electron-Transfer Reduction through Ion-Ion Recombination in an Ion Trap and Structural Characterization with Vibrational Spectroscopy. J Phys Chem Lett 2017; 8:5047-5052. [PMID: 28961009 PMCID: PMC5677246 DOI: 10.1021/acs.jpclett.7b02223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 05/31/2023]
Abstract
Gas-phase ion chemistry methods that capture and characterize the degree of activation of small molecules in the active sites of homogeneous catalysts form a powerful new tool to unravel how ligand environments affect reactivity. A key roadblock in this development, however, is the ability to generate the fragile metal oxidation states that are essential for catalytic activity. Here we demonstrate the preparation of the key Ni(I) center in the widely used cyclam scaffold using ion-ion recombination as a gas-phase alternative to electrochemical reduction. The singly charged Ni+(cyclam) coordination complex is generated by electron transfer from fluoranthene and azobenzene anions to doubly charged Ni2+(cyclam), using the electron-transfer dissociation protocol in a commercial quadrupole ion trap instrument and in a custom-built octopole RF ion trap. The successful preparation of the Ni+(cyclam) cation is verified through analysis of its vibrational spectrum obtained using the infrared free electron laser FELIX.
Collapse
Affiliation(s)
- Musleh
U. Munshi
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
| | - Stephanie M. Craig
- Sterling
Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Giel Berden
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
| | - Andrew F. DeBlase
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Spectral
Energies,
LLC, Beavercreek, Ohio 45430, United States
| | - David J. Foreman
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott A. McLuckey
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jos Oomens
- Radboud
University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld
7c, 6525ED Nijmegen, The Netherlands
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, 1098XH Amsterdam, Science Park 908, The Netherlands
| | - Mark A. Johnson
- Sterling
Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
39
|
Galimberti DR, Milani A, Tommasini M, Castiglioni C, Gaigeot MP. Combining Static and Dynamical Approaches for Infrared Spectra Calculations of Gas Phase Molecules and Clusters. J Chem Theory Comput 2017; 13:3802-3813. [DOI: 10.1021/acs.jctc.7b00471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Daria R. Galimberti
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
- LAMBE
CNRS UMR8587, Université d’Evry val d’Essonne, 91025 Evry, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alberto Milani
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Tommasini
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Chiara Castiglioni
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Marie-Pierre Gaigeot
- LAMBE
CNRS UMR8587, Université d’Evry val d’Essonne, 91025 Evry, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| |
Collapse
|
40
|
Zhan H, Hu Y, Wang P, Chen J. Dominant conformer of tetrahydropyran-2-methanol and its clusters in the gas phase explored by the use of VUV photoionization and vibrational spectroscopy. J Chem Phys 2017; 146:134303. [DOI: 10.1063/1.4979298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Huaqi Zhan
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Yongjun Hu
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Pengchao Wang
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| | - Jiaxin Chen
- MOE Key laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People’s Republic of China
| |
Collapse
|
41
|
Constantinidis P, Hirsch F, Fischer I, Dey A, Rijs AM. Products of the Propargyl Self-Reaction at High Temperatures Investigated by IR/UV Ion Dip Spectroscopy. J Phys Chem A 2016; 121:181-191. [DOI: 10.1021/acs.jpca.6b08750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P. Constantinidis
- Institute
of Physical and Theoretical Chemistry, University of Würzburg, Am
Hubland, D-97074 Würzburg, Germany
| | - F. Hirsch
- Institute
of Physical and Theoretical Chemistry, University of Würzburg, Am
Hubland, D-97074 Würzburg, Germany
| | - I. Fischer
- Institute
of Physical and Theoretical Chemistry, University of Würzburg, Am
Hubland, D-97074 Würzburg, Germany
| | - A. Dey
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - A. M. Rijs
- Radboud University, Institute for Molecules and
Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
42
|
Martens J, Berden G, Gebhardt CR, Oomens J. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:103108. [PMID: 27802712 DOI: 10.1063/1.4964703] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | | | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| |
Collapse
|
43
|
Bakker DJ, Peters A, Yatsyna V, Zhaunerchyk V, Rijs AM. Far-Infrared Signatures of Hydrogen Bonding in Phenol Derivatives. J Phys Chem Lett 2016; 7:1238-43. [PMID: 26982390 DOI: 10.1021/acs.jpclett.6b00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One of the most direct ways to study the intrinsic properties of the hydrogen-bond interaction is by gas-phase far-infrared (far-IR) spectroscopy because the modes involving hydrogen-bond deformation are excited in this spectral region; however, the far-IR regime is often ignored in molecular structure identification due to the absence of strong far-IR light sources and difficulty in assigning the observed modes by quantum chemical calculations. Far-IR/UV ion-dip spectroscopy using the free electron laser FELIX was applied to directly probe the intramolecular hydrogen-bond interaction in a family of phenol derivatives. Three vibrational modes have been identified, which are expected to be diagnostic for the hydrogen-bond strength: hydrogen-bond stretching and hydrogen-bond-donating and -accepting OH torsion vibrations. Their position is evaluated with respect to the hydrogen bond strength, that is, the length of the hydrogen-bonded OH length. This shows that the hydrogen bond stretching frequency is diagnostic for the size of the ring that is closed by the hydrogen bond, while the strength of the hydrogen bond can be determined from the hydrogen-bond-donating OH torsion frequency. The combination of these two normal modes allows the direct probing of intramolecular hydrogen-bond characteristics using conformation-selective far-IR vibrational spectroscopy.
Collapse
Affiliation(s)
- Daniël J Bakker
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Atze Peters
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Vasyl Yatsyna
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
- University of Gothenburg , Department of Physics, 412 96 Gothenburg, Sweden
| | - Vitali Zhaunerchyk
- University of Gothenburg , Department of Physics, 412 96 Gothenburg, Sweden
| | - Anouk M Rijs
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
44
|
Zabuga AV, Kamrath MZ, Rizzo TR. Franck–Condon-like Progressions in Infrared Spectra of Biological Molecules. J Phys Chem A 2015; 119:10494-501. [DOI: 10.1021/acs.jpca.5b08801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aleksandra V. Zabuga
- Laboratoire de Chimie
Physique Moléculaire,
Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Z. Kamrath
- Laboratoire de Chimie
Physique Moléculaire,
Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie
Physique Moléculaire,
Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Abstract
This chapter examines the structural characterisation of isolated neutral amino-acids and peptides. After a presentation of the experimental and theoretical state-of-the-art in the field, a review of the major structures and shaping interactions is presented. Special focus is made on conformationally-resolved studies which enable one to go beyond simple structural characterisation; probing flexibility and excited-state photophysics are given as examples of promising future directions.
Collapse
|
46
|
Dunbar RC. Spectroscopy of Metal-Ion Complexes with Peptide-Related Ligands. Top Curr Chem (Cham) 2014; 364:183-223. [DOI: 10.1007/128_2014_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|