1
|
Rüttiger C, Gemmer L, Schöttner S, Kuttich B, Stühn B, Gallei M. Preparation and self-assembly of polyferrocenyldimethylsilane-containing tri- and pentablock terpolymers. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
|
3
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Schneider S, Janssen C, Klindtworth E, Mergel O, Möller M, Plamper F. Influence of Polycation Composition on Electrochemical Film Formation. Polymers (Basel) 2018; 10:E429. [PMID: 30966464 PMCID: PMC6415213 DOI: 10.3390/polym10040429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
The effect of polyelectrolyte composition on the electrodeposition onto platinum is investigated using a counterion switching approach. Film formation of preformed polyelectrolytes is triggered by oxidation of hexacyanoferrates(II) (ferrocyanide), leading to polyelectrolyte complexes, which are physically crosslinked by hexacyanoferrate(III) (ferricyanide) ions due to preferential ferricyanide/polycation interactions. In this study, the electrodeposition of three different linear polyelectrolytes, namely quaternized poly[2-(dimethylamino)ethyl methacrylate] (i.e., poly{[2-(methacryloyloxy)ethyl]trimethylammonium chloride}; PMOTAC), quaternized poly[2-(dimethylamino)ethyl acrylate] (i.e., poly{[2-(acryloyloxy)ethyl]trimethylammonium chloride}; POTAC), quaternized poly[N-(3-dimethylaminopropyl)methacrylamide] (i.e., poly{[3-(methacrylamido)propyl]trimethylammonium chloride}; PMAPTAC) and different statistical copolymers of these polyelectrolytes with N-(3-aminopropyl)methacrylamide (APMA), are studied. Hydrodynamic voltammetry utilizing a rotating ring disk electrode (RRDE) shows the highest deposition efficiency DE for PMOTAC over PMAPTAC and over POTAC. Increasing incorporation of APMA weakens the preferred interaction of the quaternized units with the hexacyanoferrate(III) ions. At a sufficient APMA content, electrodeposition can thus be prevented. Additional electrochemical quartz crystal microbalance measurements reveal the formation of rigid polyelectrolyte films being highly crosslinked by the hexacyanoferrate(III) ions. Results indicate a different degree of water incorporation into these polyelectrolyte films. Hence, by adjusting the polycation composition, film properties can be tuned, while different chemistries can be incorporated into these electrodeposited thin hydrogel films.
Collapse
Affiliation(s)
- Sabine Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Corinna Janssen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Elisabeth Klindtworth
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Olga Mergel
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Martin Möller
- DWI Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany.
| | - Felix Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| |
Collapse
|
5
|
Abstract
Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.
Collapse
Affiliation(s)
- Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Walter Richtering
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
| |
Collapse
|
6
|
Aralekallu S, Thimmappa R, Gaikwad P, Devendrachari MC, Kottaichamy AR, Shafi SP, Lokesh KS, Sánchez J, Thotiyl MO. Tuning the Interfacial Chemistry of Redox-Active Polymer for Bifunctional Probing. ChemElectroChem 2017. [DOI: 10.1002/celc.201600775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shambhulinga Aralekallu
- Department of Chemistry; Dr. Homibaba Road IISER Pune 411008 India
- Department of Chemistry; VSK University; Bellary, Karnataka- 583104 India
| | | | - Pramod Gaikwad
- Department of Chemistry; Dr. Homibaba Road IISER Pune 411008 India
| | | | | | | | | | - Julio Sánchez
- Departamento de Ciencias del Ambient Universidad de Santiago de Chile; USACH, Casilla 40, Correo 33 Santiago Chile
| | | |
Collapse
|
7
|
Ghimire G, Coceancigh H, Yi Y, Ito T. Electrochemical Characterization and Catalytic Application of Gold-Supported Ferrocene-Containing Diblock Copolymer Thin Films in Ethanol Solution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2906-2913. [PMID: 28019098 DOI: 10.1021/acsami.6b11181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports the electrochemical behavior and catalytic property of electrode-supported thin films of polystyrene-block-poly(2-(acryloyloxy)ethyl ferrocenecarboxylate) (PS-b-PAEFc) in an ethanol (EtOH) solution. The electrochemical properties of PS-b-PAEFc films with different PAEFc volume fractions (fPAEFc = 0.47, 0.30, and 0.17) in 0.1 M ethanolic sodium hexafluorophosphate (NaPF6) were compared with those in an acetonitrile (MeCN) solution of 0.1 M tetrabutylammonium hexafluorophosphate. Pristine PS-b-PAEFc films did not afford significant faradaic currents in the EtOH solution because EtOH is a nonsolvent for both PS and PAEFc. However, the films could be rendered redox-active in the EtOH solution by applying potentials in the MeCN solution to induce the redox-associated incorporation of the supporting electrolytes into the films. Atomic force microscopy images verified the stability of PAEFc microdomains upon electrochemical measurements in these solutions. Cyclic voltammograms measured in the EtOH solution for PS-b-PAEFc with the larger fPAEFc were diffusion-controlled regardless of ellipsometric film thickness (23-152 nm) at relatively slow scan rates, in contrast to those in the MeCN solution that were controlled by surface-confined redox species. The electron propagation efficiency in the EtOH solution was significantly lower than that in the MeCN solution because of the poorer swelling of the films, which limited the migration of counterions and the collisional motions of the ferrocene moieties. PS-b-PAEFc films were applied as electrochemically responsive heterogeneous catalysts based on the ferrocenium moieties for Michael addition reaction between methyl vinyl ketone and ethyl 2-oxocyclopentanecarboxylate (E2OC) in 0.1 M NaPF6/EtOH. The catalytic activities of thin films were similar regardless of fPAEFc, suggesting that the catalytic reaction took place for the reactants that could penetrate through the film and reach PAEFc microdomains communicable with the underlying electrode. Interestingly, the permeability of PS-b-PAEFc films provided a means to control the reaction selectivity, as suggested by negligible reaction of E2OC with trans-4-phenyl-3-buten-2-one.
Collapse
Affiliation(s)
- Govinda Ghimire
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Herman Coceancigh
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Yi Yi
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University , 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
8
|
Rüttiger C, Appold M, Didzoleit H, Eils A, Dietz C, Stark RW, Stühn B, Gallei M. Structure Formation of Metallopolymer-Grafted Block Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christian Rüttiger
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Michael Appold
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Haiko Didzoleit
- Institute
of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Adjana Eils
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Christian Dietz
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Robert W. Stark
- Center
of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str.
16, D-64287 Darmstadt, Germany
- Physics
of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
| | - Bernd Stühn
- Institute
of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Markus Gallei
- Ernst-Berl-Institute
for Chemical Engineering and Macromolecular Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
9
|
Star amphiphilic supramolecular copolymer based on host–guest interaction for electrochemical controlled drug delivery. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Maccarrone S, Mergel O, Plamper FA, Holderer O, Richter D. Electrostatic Effects on the Internal Dynamics of Redox-Sensitive Microgel Systems. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Simona Maccarrone
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| | - Olga Mergel
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Felix A. Plamper
- Institute
of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Olaf Holderer
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| | - Dieter Richter
- Outstation
at MLZ, Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747, Garching, Germany
| |
Collapse
|
11
|
Strover LT, Malmström J, Travas-Sejdic J. Graft Copolymers with Conducting Polymer Backbones: A Versatile Route to Functional Materials. CHEM REC 2016; 16:393-418. [DOI: 10.1002/tcr.201500216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Lisa T. Strover
- School of Chemical Sciences; The University of Auckland; Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology; Wellington New Zealand
| | - Jenny Malmström
- School of Chemical Sciences; The University of Auckland; Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology; Wellington New Zealand
| | - Jadranka Travas-Sejdic
- School of Chemical Sciences; The University of Auckland; Auckland 1010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology; Wellington New Zealand
| |
Collapse
|
12
|
Sigolaeva LV, Mergel O, Evtushenko EG, Gladyr SY, Gelissen APH, Pergushov DV, Kurochkin IN, Plamper FA, Richtering W. Engineering Systems with Spatially Separated Enzymes via Dual-Stimuli-Sensitive Properties of Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13029-13039. [PMID: 26539639 DOI: 10.1021/acs.langmuir.5b03497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work examines the adsorption regime and the properties of microgel/enzyme thin films deposited onto conductive graphite-based substrates. The films were formed via two-step sequential adsorption. A temperature- and pH-sensitive poly(N-isopropylacrylamide)-co-(3-(N,N-dimethylamino)propylmethacrylamide) microgel (poly(NIPAM-co-DMAPMA microgel) was adsorbed first, followed by its interaction with the enzymes, choline oxidase (ChO), butyrylcholinesterase (BChE), or mixtures thereof. By temperature-induced stimulating both (i) poly(NIPAM-co-DMAPMA) microgel adsorption at T > VPTT followed by short washing and drying and then (ii) enzyme loading at T < VPTT, we can effectively control the amount of the microgel adsorbed on a hydrophobic interface as well as the amount and the spatial localization of the enzyme interacted with the microgel film. Depending on the biomolecule size, enzyme molecules can (in the case for ChO) or cannot (in the case for BChE) penetrate into the microgel interior and be localized inside/outside the microgel particles. Different spatial localization, however, does not affect the specific enzymatic responses of ChO or BChE and does not prevent cascade enzymatic reaction involving both BChE and ChO as well. This was shown by the methods of electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and amperometric analysis of enzymatic responses of immobilized enzymes. Thus, a novel simple and fast strategy for physical entrapment of biomolecules by the polymeric matrix was proposed, which can be used for engineering systems with spatially separated enzymes of different types.
Collapse
Affiliation(s)
- Larisa V Sigolaeva
- Department of Chemistry, M.V. Lomonosov Moscow State University , 119991 Moscow, Russia
| | - Olga Mergel
- Institute of Physical Chemistry II, RWTH Aachen University , 52056 Aachen, Germany
| | - Evgeniy G Evtushenko
- Department of Chemistry, M.V. Lomonosov Moscow State University , 119991 Moscow, Russia
| | - Snezhana Yu Gladyr
- Department of Chemistry, M.V. Lomonosov Moscow State University , 119991 Moscow, Russia
| | - Arjan P H Gelissen
- Institute of Physical Chemistry II, RWTH Aachen University , 52056 Aachen, Germany
| | - Dmitry V Pergushov
- Department of Chemistry, M.V. Lomonosov Moscow State University , 119991 Moscow, Russia
| | - Ilya N Kurochkin
- Department of Chemistry, M.V. Lomonosov Moscow State University , 119991 Moscow, Russia
| | - Felix A Plamper
- Institute of Physical Chemistry II, RWTH Aachen University , 52056 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry II, RWTH Aachen University , 52056 Aachen, Germany
| |
Collapse
|
13
|
Saikia AK, Aggarwal S, Mandal UK. Electrically induced swelling and methylene blue release behaviour of poly (N-isopropylacrylamide-co-acrylamido-2-methylpropyl sulphonic acid) hydrogels. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|