1
|
Polanowski P, Sikorski A. The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism. Polymers (Basel) 2024; 16:2963. [PMID: 39518173 PMCID: PMC11548401 DOI: 10.3390/polym16212963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
We studied the properties of a reaction front that forms in irreversible reaction-diffusion systems with concentration-dependent diffusivities during the synthesis of polymer brushes. A coarse-grained model of the polymerization process during the formation of polymer brushes was designed and investigated for this purpose. In this model, a certain amount of initiator was placed on an impenetrable surface, and the "grafted from" procedure of polymerization was carried out. The system consisted of monomer molecules and growing chains. The obtained brush consisted of linear chains embedded in nodes of a face-centered cubic lattice with excluded volume interactions only. The simulations were carried out for high rafting densities of 0.1, 0.3, and 0.6 and for reaction probabilities of 0.02, 0.002, and 0.0002. Simulations were performed by means of the Monte Carlo method while employing the Dynamic Lattice Liquid model. Some universal behavior was found, i.e., irrespective of reaction rate and grafting density, the width of the reaction front as well as the height of the front show for long times the same scaling with respect to time. During the formation of the polymer layer despite the observed difference in dispersion of chain lengths for different grafting densities and reaction rates at a given layer height, the quality of the polymer layer does not seem to depend on these parameters.
Collapse
Affiliation(s)
- Piotr Polanowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Andrzej Sikorski
- Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
2
|
Leng Y, Britten CN, Tarannum F, Foley K, Billings C, Liu Y, Walters KB. Stimuli-Responsive Phosphate Hydrogel: A Study on Swelling Behavior, Mechanical Properties, and Application in Expansion Microscopy. ACS OMEGA 2024; 9:37687-37701. [PMID: 39281925 PMCID: PMC11391540 DOI: 10.1021/acsomega.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Phosphorus-based stimuli-responsive hydrogels have potential in a wide range of applications due to their ionizable phosphorus groups, biocompatibility, and tunable swelling capacity utilizing hydrogel design parameters and external stimuli. In this study, poly(2-methacryloyloxyethyl phosphate) (PMOEP) hydrogels were synthesized via aqueous activators regenerated by electron transfer atomic transfer radical polymerization using ascorbic acid as the reducing agent. Swelling and deswelling behaviors of PMOEP hydrogels were examined in different salt solutions, pH conditions, and temperatures. The degree of swelling in salt solutions followed CaCl2 < MgCl2 < KCl < NaCl with a decrease in swelling rate at higher concentrations until reaching a saturation point. In water, the degree of swelling increased significantly around neutral pH and remained constant at basic pH values. The effects of polymerization conditions, including pH, temperature (30, 40, 50 °C), and MOEP concentration (40, 50, 60% v/v MOEP/H2O), on the hydrogel swelling behavior in various salt solutions were also investigated. PMOEP hydrogels showed a decrease in the degree of swelling as the pH was increased above the native pH of the monomer solution. Scanning electron microscopy and energy-dispersive spectroscopy were utilized to examine the microstructure and chemical composition of the dried hydrogel after salt solution swelling. Cytotoxicity testing using rat bone marrow stem cells confirmed the biocompatibility of the PMOEP hydrogels. A unique feature of this effort was evaluation of these phosphate hydrogels for use in expansion microscopy where a significant twofold enhancement in cellular expansion capacity was showcased utilizing 4T1 mouse breast cancer cells. This comprehensive study provides valuable insights into the stimuli-responsive behavior and expansion characteristics of phosphate hydrogels, highlighting their potential in diverse biomedical applications.
Collapse
Affiliation(s)
- Yokly Leng
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Collin N Britten
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Fatema Tarannum
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kayla Foley
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Christopher Billings
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yingtao Liu
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Keisha B Walters
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Guo M, Hsieh YL. Tunable poly(lauryl methacrylate) surface grafting via SI-ATRP on a one-pot synthesized cellulose nanofibril macroinitiator core as a shear-thinning rheology modifier and drag reducer. RSC Adv 2023; 13:26089-26101. [PMID: 37664202 PMCID: PMC10472512 DOI: 10.1039/d3ra04610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
The optimally one-pot synthesized 2-bromoproponyl esterified cellulose nanofibril (Br-CNF) has been validated as a robust macroinitiator for self-surface-initiated atom transfer radical polymerization (SI-ATRP) of lauryl methacrylate (LMA) in tunable graft lengths and high conversions of up to 92.7%. SI-ATRP of LMA surface brushes on Br-CNF followed first order kinetics in lengths at up to 46 degree of polymerization (DP) based on mass balance or 31 DP by solution-state 1H NMR in DMSO-d6. With increasing PLMA graft lengths, Br-CNF-g-PLMA cast films exhibited increasing hydrophobicity with water contact angles from 80.9° to 110.6°. The novel Br-CNF-g-PLMA exhibited dual shear thinning behavior of the Br-CNF core as evident by n < 1 flow behavior index and drag reducing properties of PLMA grafts with increased viscosity at up to 21 071×. Br-CNF-g-PLMA with 46 DP could be fully dispersed in silicon pump oil to function as a drag reducer to enhance viscosity up to 5× at 25, 40, and 55 °C. The novel macroinitiator capability of Br-CNF in SI-ATRP of vinyl monomers and the bottlebrush-like LMA surface grafted Br-CNF as highly effective viscosity modifier and drag reducer further demonstrate the versatile functionality of Br-CNF beyond hydrophobic coatings and reactive polyols previously reported.
Collapse
Affiliation(s)
- Mengzhe Guo
- Chemical Engineering, University of California at Davis Davis California 95616-8722 USA +1 530 752 084
| | - You-Lo Hsieh
- Chemical Engineering, University of California at Davis Davis California 95616-8722 USA +1 530 752 084
- Biological and Agricultural Engineering, University of California at Davis Davis California 95616-8722 USA
| |
Collapse
|
4
|
Zorn E, Knaack JIH, Burmeister N, Scharnagl N, Rohnke M, Wicha SG, Maison W. Contact-Biocide TiO 2 Surfaces by Surface-Initiated Atom Transfer Radical Polymerization with Chemically Stable Phosphonate Initiators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37490748 DOI: 10.1021/acs.langmuir.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Surface-initiated atom transfer radical polymerization (SI-ATRP) is a powerful tool for grafting functional polymers from metal surfaces. It depends on the immobilization of suitable initiators on the surface before radical polymerization. Herein, we report a set of bifunctional initiators bearing a phosphonic acid group for surface binding and a bromoisobutyramide moiety for SI-ATRP. We have analyzed the impact of the connecting alkyl spacers on the grafting process of (vinylbenzyl)trimethylammonium chloride (VBTAC) from titanium as a base material. The thickness of the grafted polymer increased with the spacer length of the initiator. We obtained chemically stable polycationic surfaces with high charge densities of ∼1016 N+/cm2 leading to efficient contact activity of modified titanium coupons against S. aureus. Notably, SI-ATRP grafting was efficient with VBTAC as a styrene-derived ammonium compound. Thus, the reported protocol avoids post-grafting quaternization with toxic alkylating reagents.
Collapse
Affiliation(s)
- Eilika Zorn
- Department of Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - J Iven H Knaack
- Department of Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Nils Burmeister
- Department of Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Nico Scharnagl
- Institute of Surface Science, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Sebastian G Wicha
- Department of Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Department of Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Mouillard F, Ferté T, Voirin E, Méry S, Masson P, Carradò A. Use of a Photocleavable Initiator to Characterize Polymer Chains Grafted onto a Metal Plate with the Grafting-from Method. Polymers (Basel) 2023; 15:polym15051265. [PMID: 36904506 PMCID: PMC10007346 DOI: 10.3390/polym15051265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The thorough characterization of polymer chains grafted through a "grafting-from" process onto substrates based on the determination of number (Mn) and weight (Mw) average molar masses, as well as dispersity (Ɖ), is quite challenging. It requires the cleavage of grafted chains selectively at the polymer-substrate bond without polymer degradation to allow their analysis in solution with steric exclusion chromatography, in particular. The study herein describes a technique for the selective cleavage of PMMA grafted onto titanium substrate (Ti-PMMA) using an anchoring molecule that combines an atom transfer radical polymerization (ATRP) initiator and a UV-cleavable moiety. This technique allows the demonstration of the efficiency of the ATRP of PMMA on titanium substrates and verification that the chains were grown homogeneously.
Collapse
|
6
|
Purohit P, Bhatt A, Mittal RK, Abdellattif MH, Farghaly TA. Polymer Grafting and its chemical reactions. Front Bioeng Biotechnol 2023; 10:1044927. [PMID: 36714621 PMCID: PMC9874337 DOI: 10.3389/fbioe.2022.1044927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Polymer grafting is a technique to improve the morphology, chemical, and physical properties of the polymer. This technique has the potential to improve the existing conduction and properties of polymers other than charge transport; as a result, it enhances the solubility, nano-dimensional morphology, biocompatibility, bio-communication, and other property of parent polymer. A polymer's physicochemical properties can be modified even further by creating a copolymer with another polymer or by grafting. Here in the various chemical approaches for polymer grafting, like free radical, click reaction, amide formation, and alkylation have been discussed with their importance, moreover the process and its importance are covered comprehensively with their scientific explanation. The present review also covers the effectiveness of the graft-to approaches and its application in various fields, which will give reader a glimpse about polymer grafting and its uses.
Collapse
Affiliation(s)
- Priyank Purohit
- School of Pharmacy, Graphic Era Hill University, Dehradun, India,*Correspondence: Priyank Purohit, ,
| | - Akanksha Bhatt
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | | | | | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Yang B, Liu S, Ma J, Yang Y, Li J, Jiang BP, Ji S, Shen XC. Monte Carlo Simulation of Surface-Initiated Polymerization: Heterogeneous Reaction Environment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bingbing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Siwen Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiashu Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiahao Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medical Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
8
|
Polymerization and Structure of Opposing Polymer Brushes Studied by Computer Simulations. Polymers (Basel) 2021; 13:polym13244294. [PMID: 34960846 PMCID: PMC8706839 DOI: 10.3390/polym13244294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
A model of the polymerization process during the formation of a pair of polymer brushes was designed and investigated. The obtained system consisted of two impenetrable parallel surfaces with the same number of chains grafted on both surfaces. Coarse-grained chains embedded in nodes of a face-centered cubic lattice with excluded volume interactions were obtained by a ‘grafted from’ procedure. The structure of synthesized macromolecular systems was also studied. Monte Carlo simulations using the dynamic lattice liquid model were employed using dedicated parallel machine ARUZ in a large size and time scale. The parameters of the polymerization process were found to be crucial for the proper structure of the brush. It was found that for high grafting densities, chains were increasingly compressed, and there is surprisingly little interpenetration of chains from opposite surfaces. It was predicted and confirmed that in a polydisperse sample, the longer chains have unique configurations consisting of a stretched stem and a coiled crown.
Collapse
|
9
|
Song GX, Miao TF, Cheng XX, Ma HT, He ZX, Zhang W, Zhang ZB, Zhu XL. Construction of Chiroptical Switch on Silica Nanoparticle Surface via Chiral Self-assembly of Side-chain Azobenzene-containing Polymer. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Fu L, Jafari H, Gießl M, Yerneni SS, Sun M, Wang Z, Liu T, Kapil K, Cheng BC, Yu A, Averick SE, Matyjaszewski K. Grafting Polymer Brushes by ATRP from Functionalized Poly(ether ether ketone) Microparticles. POLYM ADVAN TECHNOL 2021; 32:3948-3954. [PMID: 34924736 PMCID: PMC8680496 DOI: 10.1002/pat.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Poly(ether ether ketone) (PEEK) is a semi-crystalline thermoplastic with excellent mechanical and chemical properties. PEEK exhibits a high degree of resistance to thermal, chemical, and bio-degradation. PEEK is used as biomaterial in the field of orthopaedic and dental implants; however, due to its intrinsic hydrophobicity and inert surface, PEEK does not effectively support bone growth. Therefore, new methods to modify PEEK's surface to improve osseointegration are key to next generation polymer implant materials. Unfortunately, PEEK is a challenging material to both modify and subsequently characterize thus stymieing efforts to improve PEEK osseointegration. In this manuscript, we demonstrate how surface-initiated atom transfer radical polymerization (SI-ATRP) can be used to modify novel PEEK microparticles (PMP). The hard core-soft shell microparticles were synthesized and characterized by DLS, ATR-IR, XPS and TEM, indicating the grafted materials increased solubility and stability in a range of solvents. The discovered surface grafted PMP can be used as compatibilizers for the polymer-tissue interface.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Michael Gießl
- Department of Chemistry, University of Konstanz, Universitatsstraße 10, D-78457 Konstanz, Germany
| | | | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Boyle C. Cheng
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Alexander Yu
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Saadyah E. Averick
- Allegheny Health Network - Neuroscience Institute, 320 E. North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | | |
Collapse
|
11
|
Hałagan K, Banaszak M, Jung J, Polanowski P, Sikorski A. Dynamics of Opposing Polymer Brushes: A Computer Simulation Study. Polymers (Basel) 2021; 13:2758. [PMID: 34451296 PMCID: PMC8398710 DOI: 10.3390/polym13162758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 01/16/2023] Open
Abstract
Opposing polymer brush systems were synthesized and investigated by molecular modeling. Chains were restricted to a face-centered cubic lattice with the excluded volume interactions only. The system was confined between two parallel impenetrable walls, with the same number of chains grafted to each surface. The dynamic properties of such systems were studied by Monte Carlo simulations based on the dynamic lattice liquid model and using a highly efficient parallel machine ARUZ, which enabled the study of large systems and long timescales. The influence of the surface density and mean polymer length on the system dynamic was discussed. The self-diffusion coefficient of the solvent depended strongly on the degree of polymerization and on the polymer concentration. It was also shown that it is possible to capture changes in solvent mobility that can be attributed to the regions of different polymer densities.
Collapse
Affiliation(s)
- Krzysztof Hałagan
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland; (J.J.); (P.P.)
| | - Michał Banaszak
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61614 Poznan, Poland;
- NanoBiomedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61614 Poznan, Poland
| | - Jarosław Jung
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland; (J.J.); (P.P.)
| | - Piotr Polanowski
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90924 Lodz, Poland; (J.J.); (P.P.)
| | - Andrzej Sikorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland;
| |
Collapse
|
12
|
Andersen C, Zverina L, Ehtiati K, Thormann E, Mordhorst H, Pamp SJ, Madsen NJ, Daugaard AE. Antimicrobial PDMS Surfaces Prepared through Fast and Oxygen-Tolerant SI-SARA-ATRP, Using Na 2SO 3 as a Reducing Agent. ACS OMEGA 2021; 6:14551-14558. [PMID: 34124478 PMCID: PMC8190881 DOI: 10.1021/acsomega.1c01611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 05/08/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) is an attractive, versatile, and convenient material for use in biomedical devices that are in direct contact with the user. A crucial component in such a device is its surface in terms of antimicrobial properties preventing infection. Moreover, due to its inherent hydrophobicity, PDMS is rather prone to microbial colonization. Thus, developing an antimicrobial PDMS surface in a simple, large-scale, and applicable manner is an essential step in fully exploiting PDMS in the biomedical device industry. Current chemical modification methods for PDMS surfaces are limited; therefore, we present herein a new method for introducing an atom transfer radical polymerization (ATRP) initiator onto the PDMS surface via the base-catalyzed grafting of [(chloromethyl)phenylethyl]trimethoxysilane to the PDMS. The initiator surface was grafted with poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) brushes via a surface-initiated supplemental activator and reducing agent ATRP (SI-SARA-ATRP). The use of sodium sulfite as a novel reducing agent in SI-SARA-ATRP allowed for polymerization during complete exposure to air. Moreover, a fast and linear growth was observed for the polymer over time, leading to a 400 nm thick polymer layer in a 120 min reaction time. Furthermore, the grafted PDMAEMA was quaternized, using various alkylhalides, in order to study the effect on surface antimicrobial properties. It was shown that antimicrobial activity not only depended highly on the charge density but also on the amphiphilicity of the surface. The fast reaction rate, high oxygen tolerance, increased antimicrobial activity, and the overall robustness and simplicity of the presented method collectively move PDMS closer to its full-scale exploitation in biomedical devices.
Collapse
Affiliation(s)
- Christian Andersen
- Danish
Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark
| | - Libor Zverina
- Danish
Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark
| | - Koosha Ehtiati
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department
of Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
| | - Hanne Mordhorst
- National
Food Institute, Technical University of
Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Sünje J. Pamp
- National
Food Institute, Technical University of
Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Anders E. Daugaard
- Danish
Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Thiele S, Andersson J, Dahlin A, Hailes RLN. Tuning the Thermoresponsive Behavior of Surface-Attached PNIPAM Networks: Varying the Crosslinker Content in SI-ATRP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3391-3398. [PMID: 33719454 PMCID: PMC8041372 DOI: 10.1021/acs.langmuir.0c03545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The synthesis and thermoresponsive properties of surface-attached poly(N-isopropylacrylamide)-co-N,N'-methylene bisacrylamide (PNIPAM-co-MBAM) networks are investigated. The networks are formed via SI-ARGET-ATRP ("grafting-from") on thiol-based initiator-functionalized gold films. This method is reliable, well controlled, fast, and applicable to patterned surfaces (e.g., nanopores) for networks with dry thicknesses >20 nm. Surface-attached PNIPAM-co-MBAM gels are swollen below their volume phase transition temperature but above collapse without complete expulsion of water (retain ∼50 vol %). The swelling/collapse transition is studied using complementary SPR and QCMD techniques. The ratio between swollen and collapsed heights characterizes the thermoresponsive behavior and is shown to not depend on network height but to vary with MBAM content. The higher the proportion of the crosslinker, the lower the magnitude of the phase transition, until all responsiveness is lost at 5 mol % MBAM. The temperature range of the transition is broadened for more crosslinked PNIPAM-co-MBAM gels but remains centered around 32 °C. Upon reswelling, less crosslinked networks display sharp transitions, while for those containing ≥3 mol % MBAM, transitions remain broad. This tunable behavior persists for gels on nanostructured gold surfaces. Investigating PNIPAM-co-MBAM networks on gold plasmonic nanowell arrays is a starting point for expanding their scope as thermo-controlled nanoactuators.
Collapse
|
14
|
|
15
|
Jin T, Zha H, Randazzo K, Zuo B, Priestley RD, Wang X. Local Disorder Facilitates Chain Stretching in Crowded Polymer Brushes. J Phys Chem Lett 2020; 11:7814-7818. [PMID: 32864965 DOI: 10.1021/acs.jpclett.0c02374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intermolecular crowding of densely tethered polymers promotes chain extension and anisotropy that induces many unique properties. In this study, we used conformation-sensitive infrared spectroscopy to determine that chain extension in a polymer brush is associated with local conformation rearrangements, i.e., contraction of side groups and increased proportion of gauche twists in the backbone, which served to increase molecular disorder at or below the segmental scale. This conformational transition points to a particular molecular mechanism for chain extension in densely tethered polymers, wherein increased local disorder facilitates global chain ordering (i.e., chain extension) and therefore supplements our current understanding of chain orientation at a molecular level.
Collapse
Affiliation(s)
- Tiancheng Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Zha
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
16
|
Antifouling silicone hydrogel contact lenses via densely grafted phosphorylcholine polymers. Biointerphases 2020; 15:041013. [PMID: 32867505 DOI: 10.1116/6.0000366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Silicone hydrogel contact lenses (CLs) permit increased oxygen permeability through their incorporation of siloxane functional groups. However, contact lens biofouling can be problematic with these materials; surface modification to increase lens compatibility is necessary for acceptable properties. This work focuses on the creation of an antifouling CL surface through a novel grafting method. A polymer incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), well known for its antifouling and biomimetic properties, was grafted to the model lens surfaces using surface-initiated atom transfer radical polymerization (SI-ATRP). The SI-ATRP modification generated a unique double-grafted polymeric architecture designed to resist protein adsorption through the presence of a surrounding hydration layer due to the PC groups and steric repulsion due to the density of the grafted chains. The polymer was grafted from model silicone hydrogel CL using a four-step SI-ATRP process. Attenuated total reflectance-Fourier transform infrared spectroscopy and XPS were used to confirm the surface chemical composition at each step of the synthesis. Both the surface wettability and equilibrium water content of the materials increased significantly upon polyMPC modification. The surface water contact angle was as low as 16.04 ± 2.37° for polyMPC-50 surfaces; complete wetting (∼0°) was observed for polyMPC-100 surfaces. A decrease in the protein adsorption by as much as 83% (p < 0.000 36) for lysozyme and 73% (p < 0.0076) for bovine serum albumin was observed, with no significant difference between different polyMPC chain lengths. The data demonstrate the potential of this novel modification process for the creation of extremely wettable and superior antifouling surfaces, useful for silicone hydrogel CL surfaces.
Collapse
|
17
|
Brió
Pérez M, Cirelli M, de Beer S. Degrafting of Polymer Brushes by Exposure to Humid Air. ACS APPLIED POLYMER MATERIALS 2020; 2:3039-3043. [PMID: 34124685 PMCID: PMC8192051 DOI: 10.1021/acsapm.0c00474] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 05/22/2023]
Abstract
It is well-known that polymer brushes can degraft in aqueous liquids. Here we show that brushes can deteriorate in humid air too. We observe that the detachment rate of the brushes increases with increasing relative humidity and hydrophilicity of the brushes. We relate this to the increase in water absorption as these parameters are increased. Our results imply that protective measures that are at present being developed for applications of brushes in liquids will also be key in enabling the long-term storage and utilization of hydrophilic brushes in air.
Collapse
Affiliation(s)
- Maria Brió
Pérez
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marco Cirelli
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
18
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
19
|
Polanowski P, Jeszka JK, Matyjaszewski K. Polymer brush relaxation during and after polymerization – Monte Carlo simulation study. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Ohno K, Masuda S, Ogawa H. Polymer-brush-decorated colloidal platelets: precision synthesis and self-assembly. Polym Chem 2019. [DOI: 10.1039/c9py00436j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polymer-brush-decorated platelets produced through surface-initiated polymerization formed unique self-assembled structures in solution and in the bulk.
Collapse
Affiliation(s)
- Kohji Ohno
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Shota Masuda
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Hiroki Ogawa
- Institute for Chemical Research
- Kyoto University
- Kyoto 611-0011
- Japan
| |
Collapse
|
21
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Tran H, Zhang Y, Ober CK. Synthesis, Processing, and Characterization of Helical Polypeptide Rod-Coil Mixed Brushes. ACS Macro Lett 2018; 7:1186-1191. [PMID: 35651270 DOI: 10.1021/acsmacrolett.8b00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mixed polymer brushes of rod-type polypeptide and coil-type vinyl polymer brushes were synthesized via two sequential steps of vapor deposition surface-initiated ring-opening polymerization (SI-ROP) and surface-initiated atom transfer radical polymerization (SI-ATRP), respectively. The effect on polypeptide brushes by coil-type brushes of their surface morphology, film thickness, and orientation were investigated before and after solvent quenching processes using chloroform and acetone. Before solvent quenching, the as-grown coil-type brushes forced the polypeptide brushes to stand up from the surface, resulting in higher film thickness, but the polypeptide brushes remained randomly oriented. After solvent quenching, polypeptide brushes tended to aggregate into conical bundles with an orientation perpendicular to the substrate, but coil-type brushes restricted the free arrangement of the polypeptide brushes and lessen their upward movement. Changes in film thickness, rod orientation, morphology, and wettability were observed with increased molecular weight of the coil-type polymer in the mixed brushes.
Collapse
|
23
|
Wang F, Xu W, Ouyang Y, Zhang L, Liu H. Reversible crosslinking terpolymer shell-based mesoporous silica nanoparticles as on-off nanocarriers for pyrene-releasing application. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ohno K, Sakaue M, Mori C. Magnetically Responsive Assemblies of Polymer-Brush-Decorated Nanoparticle Clusters That Exhibit Structural Color. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9532-9539. [PMID: 30036070 DOI: 10.1021/acs.langmuir.8b02073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of new magnetic materials for applications such as magnetic-driven drug delivery, next-generation display materials, and magnetic resonance imaging is an important objective. To that end, we synthesized monodispersed, magnetically responsive particles grafted with well-defined polymer brushes and investigated the formation of their ordered arrays in organic solvents in response to a magnetic field. To achieve this, we prepared monodispersed magnetic nanoparticle clusters (MNCs) composed of large numbers of superparamagnetic ferrite ZnFe2O4 nanoparticles. The MNCs were subsequently coated with thin silica layers through the hydrolysis of tetraethoxysilane. The colloidal particles were surface-modified with initiating groups for atom transfer radical polymerization (ATRP) using a triethoxysilane derivative with an ATRP initiation site. To demonstrate the ability of the synthesized particles to produce well-defined polymer brushes on their surfaces, the ATRP-initiator-functionalized silica-coated MNCs were subjected to surface-initiated ATRP with methyl methacrylate. This polymerization proceeded in a living fashion to produce graft polymers with targeted molar masses and narrow molar mass distributions. The average graft density was determined to be 0.65 chains/nm2, which confirms the formation of concentrated polymer brushes on the MNCs. The hybrid particles were analyzed by dynamic light scattering and transmission electron microscopy techniques, which revealed excellent uniformity and solvent dispersibility. A suspension of the polymer-brush-decorated MNCs in acetone quickly developed intense structural color in response to approaching a magnet that depended on the strength of the magnetic field.
Collapse
Affiliation(s)
- Kohji Ohno
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Motokazu Sakaue
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Chizuru Mori
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
25
|
Micciulla S, Gerelli Y, Campbell RA, Schneck E. A Versatile Method for the Distance-Dependent Structural Characterization of Interacting Soft Interfaces by Neutron Reflectometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:789-800. [PMID: 29039954 DOI: 10.1021/acs.langmuir.7b02971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interactions between soft interfaces govern the behavior of emulsions and foams and crucially influence the functions of biological entities like membranes. To understand the character of these interactions, detailed insight into the interfaces' structural response in terms of molecular arrangements and conformations is often essential. This requires the realization of controlled interaction conditions and surface-sensitive techniques capable of resolving the structure of buried interfaces. Here, we present a new approach to determine the distance-dependent structure of interacting soft interfaces by neutron reflectometry. A solid/water interface and a water/oil interface are functionalized independently and initially macroscopically separated. They are then brought into contact and structurally characterized under interacting conditions. The nanometric distance between the two interfaces can be varied via the exertion of osmotic pressures. Our first experiments on lipid-anchored polymer brushes interacting across water with solid-grafted polyelectrolyte brushes and with bare silicon surfaces reveal qualitatively different interaction scenarios depending on the chemical composition of the two involved interfaces.
Collapse
Affiliation(s)
- Samantha Micciulla
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institut Laue-Langevin , 38000 Grenoble, France
| | | | | | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| |
Collapse
|
26
|
Shanmugam S, Matyjaszewski K. Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1284.ch001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sivaprakash Shanmugam
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
27
|
|
28
|
Rajender N, Suresh KI, Sreedhar B. Comb-like polymer-graphene nanocomposites with improved adhesion properties via surface-initiated atom transfer radical polymerization (SI-ATRP). J Appl Polym Sci 2017. [DOI: 10.1002/app.45885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nutenki Rajender
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007 India
| | - Kattimuttathu I. Suresh
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007 India
| | - Bojja Sreedhar
- Inorganic and Physical Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500 007 India
| |
Collapse
|
29
|
Shi Y, Liu L, Zhang F, Niu M, Zhao Y, Fan Y, Liang Y, Liu M, Zhang Z, Wang J. Catalyst System for Hydrogenation Catalysis Based on Multiarm Hyperbranched Polymer Templated Metal (Au, Pt, Pd, Cu) Nanoparticles. Polymers (Basel) 2017; 9:E459. [PMID: 30965762 PMCID: PMC6418630 DOI: 10.3390/polym9090459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/20/2023] Open
Abstract
With a hyperbranched poly(amidoamine) core and many water-soluble poly(ethylene glycol) monomethyl ether arms connected by pH-sensitive acylhydrazone bonds, multiarm hyperbranched polymer was used as nanoreactor and reductant to prepare metal nanoparticles endowed with intelligence and biocompatibility. The multiarm hyperbranched polymer encapsulated nanoparticles (NPs) showed excellent catalytic activity for hydrogenation, thus an excellent catalyst system for hydrogenation was established. The rate constants could reach as high as 3.48 L·s-1·m-2, which can be attributed to the lack of surface passivation afforded by the multiarm hyperbranched polymer.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Lixin Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Fengyue Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Mengyuan Niu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yanzhu Zhao
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yifan Fan
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yanping Liang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Zhenzhu Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Junjie Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
30
|
Benetti EM, Kang C, Mandal J, Divandari M, Spencer ND. Modulation of Surface-Initiated ATRP by Confinement: Mechanism and Applications. Macromolecules 2017; 50:5711-5718. [PMID: 29755138 PMCID: PMC5940320 DOI: 10.1021/acs.macromol.7b00919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Indexed: 01/26/2023]
Abstract
The mechanism of surface-initiated atom transfer polymerization (SI-ATRP) of methacrylates in confined volumes is systematically investigated by finely tuning the distance between a grafting surface and an inert plane by means of nanosized patterns and micrometer thick foils. The polymers were synthesized from monolayers of photocleavable initiators, which allow the analysis of detached brushes by size-exclusion chromatography (SEC). Compared to brushes synthesized under "open" polymerization mixtures, nearly a 4-fold increase in brush molar mass was recorded when SI-ATRP was performed within highly confined reaction volumes. Correlating the SI-ATRP of methyl methacrylate (MMA), with and without "sacrificial" initiator, to that of lauryl methacrylate (LMA) and analyzing the brush growth rates within differently confined volumes, we demonstrate faster grafting kinetics with increasing confinement due to the progressive hindering of CuII-based deactivators from the brush propagating front. This effect is especially noticeable when viscous polymerization mixtures are generated and enables the synthesis of several hundred nanometer thick brushes within relatively short polymerization times. The faster rates of confined SI-ATRP can be additionally used to fabricate, in one pot, precisely structured brush gradients, when volume confinement is continuously varied across a single substrate by spatially tuning the vertical distance between the grafting and the confining surfaces.
Collapse
Affiliation(s)
- Edmondo M. Benetti
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Chengjun Kang
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Joydeb Mandal
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Mohammad Divandari
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| | - Nicholas D. Spencer
- Laboratory of Surface Science
and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg
5, CH-8093 Zürich, Switzerland
| |
Collapse
|
31
|
Hackett AJ, Malmström J, Travas-Sejdic J. Functionalization of conducting polymers for biointerface applications. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.03.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Chmielarz P, Yan J, Krys P, Wang Y, Wang Z, Bockstaller MR, Matyjaszewski K. Synthesis of Nanoparticle Copolymer Brushes via Surface-Initiated seATRP. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00280] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paweł Chmielarz
- Department
of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
| | | | | | | | | | | | | |
Collapse
|
33
|
Toughening PMMA with fillers containing polymer brushes synthesized via atom transfer radical polymerization (ATRP). POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Lamson M, Chen L, Zhong M, Wu D, Matyjaszewski K. Nitrogen-Doped Nanocarbons Derived from Tetrazine Cross-Linked Poly(4-cyanostyrene)-Silica Hybrids. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Melissa Lamson
- Department of Chemistry; Center for Macromolecular Engineering; Carnegie Mellon University; Pittsburgh PA 15213 USA
| | - Luyi Chen
- Materials Science Institute; PCFM Lab and DSAPM Lab; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering; Yale University; New Haven CT 06520 USA
| | - Dingcai Wu
- Materials Science Institute; PCFM Lab and DSAPM Lab; School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou 510275 China
| | - Krzysztof Matyjaszewski
- Department of Chemistry; Center for Macromolecular Engineering; Carnegie Mellon University; Pittsburgh PA 15213 USA
| |
Collapse
|
35
|
|
36
|
Yan J, Pan X, Wang Z, Zhang J, Matyjaszewski K. Influence of Spacers in Tetherable Initiators on Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajun Yan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangcheng Pan
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jianan Zhang
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- School
of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
37
|
Choueiri RM, Galati E, Thérien-Aubin H, Klinkova A, Larin EM, Querejeta-Fernández A, Han L, Xin HL, Gang O, Zhulina EB, Rubinstein M, Kumacheva E. Surface patterning of nanoparticles with polymer patches. Nature 2016; 538:79-83. [PMID: 27556943 PMCID: PMC5161688 DOI: 10.1038/nature19089] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.
Collapse
Affiliation(s)
- Rachelle M Choueiri
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Elizabeth Galati
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Héloïse Thérien-Aubin
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anna Klinkova
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Egor M Larin
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ana Querejeta-Fernández
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Lili Han
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, 199004, Russia
- Saint Petersburg National University of Informational Technologies, Mechanics and Optics, Saint Petersburg, 197101, Russia
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
38
|
Yan J, Pan X, Schmitt M, Wang Z, Bockstaller MR, Matyjaszewski K. Enhancing Initiation Efficiency in Metal-Free Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). ACS Macro Lett 2016; 5:661-665. [PMID: 35614657 DOI: 10.1021/acsmacrolett.6b00295] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Well-defined polymer-inorganic hybrid materials were prepared via metal-free surface-initiated atom transfer radical polymerization (SI-ATRP) with 10-phenylphenothiazine (PhPTZ) as the photocatalyst and 2-bromo-2-phenylacetate initiator tethered to silica surfaces. Initiation efficiency and, hence, graft density were significantly enhanced by this very reactive initiator. The polymerization kinetics, effect of initiator structures, particle sizes, and catalyst concentrations were investigated. Well-defined hybrid particles were prepared at a low catalyst concentration (0.02 mol % or 0.1 mol % to monomer). Poly(methyl methacrylate) (PMMA) with number-average molecular weight of 3.65 × 104, dispersity of 1.43, and graft density of 0.60 chain/nm2 was grafted from the surface of silica nanoparticles. The hybrid materials were characterized with size exclusion chromatography (SEC), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Jiajun Yan
- Department of Chemistry and ‡Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangcheng Pan
- Department of Chemistry and ‡Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Schmitt
- Department of Chemistry and ‡Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry and ‡Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department of Chemistry and ‡Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry and ‡Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
39
|
Khabibullin A, Bhangaonkar K, Mahoney C, Lu Z, Schmitt M, Sekizkardes AK, Bockstaller MR, Matyjaszewski K. Grafting PMMA Brushes from α-Alumina Nanoparticles via SI-ATRP. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5458-5465. [PMID: 26901494 DOI: 10.1021/acsami.5b12311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alumina nanoparticles are widely used as nanofillers for polymer nanocomposites. Among several different polymorphs of alumina, α-alumina has the most desirable combination of physical properties. Hence, the attachment of polymer chains to α-alumina to enhance compatibility in polymeric matrixes is an important goal. However, the chemical inertness and low concentration of surface hydroxyl groups have rendered polymer modification of α-alumina a long-standing challenge. Herein, we report that activation of α-alumina in concentrated or molten NaOH as well as in molten K2S2O7 increased polymer graft density up to 50%, thereby facilitating the synthesis of α-alumina brush particles with uniform grafting density of 0.05 nm(-2) that are readily miscible or dispersible in organic solvents or in chemically compatible polymeric hosts.
Collapse
Affiliation(s)
- Amir Khabibullin
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Karan Bhangaonkar
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Clare Mahoney
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Zhao Lu
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Michael Schmitt
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Ali Kemal Sekizkardes
- National Energy and Technology Lab (NETL), U.S. Department of Energy , 626 Cochrans Mill Rd, Pittsburgh, Pennsylvania 15129, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Ave, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Yu Q, Ista LK, Gu R, Zauscher S, López GP. Nanopatterned polymer brushes: conformation, fabrication and applications. NANOSCALE 2016; 8:680-700. [PMID: 26648412 DOI: 10.1039/c5nr07107k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Linnea K Ista
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Renpeng Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA and NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA and NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, USA
| | - Gabriel P López
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|