1
|
Akhtar M, Peng P, Bernhardt A, Gelinsky M, Ur Rehman MA, Boccaccini AR, Basu B. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. ACS Biomater Sci Eng 2024; 10:5122-5135. [PMID: 39038164 DOI: 10.1021/acsbiomaterials.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
3D extrusion printing has been widely investigated for low-volume production of complex-shaped scaffolds for tissue regeneration. Gelatin methacryloyl (GelMA) is used as a baseline material for the synthesis of biomaterial inks, often with organic/inorganic fillers, to obtain a balance between good printability and biophysical properties. The present study demonstrates how 45S5 bioactive glass (BG) addition and GelMA concentrations can be tailored to develop GelMA composite scaffolds with good printability and buildability. The experimental results suggest that 45S5 BG addition consistently decreases the compression stiffness, irrespective of GelMA concentration, albeit within 20% of the baseline scaffold (without 45S5 BG). The optimal addition of 2 wt % 45S5 BG in 7.5 wt % GelMA was demonstrated to provide the best combination of printability and buildability in the 3D extrusion printing route. The degradation decreases and the swelling kinetics increases with 45S5 BG addition, irrespective of GelMA concentration. Importantly, the dissolution in simulated body fluid over 3 weeks clearly promoted the nucleation and growth of crystalline calcium phosphate particles, indicating the potential of GelMA-45S5 BG to promote biomineralization. The cytocompatibility assessment using human osteoblasts could demonstrate uncompromised cell proliferation or osteogenic marker expression over 21 days in culture for 3D printable 7.5 wt % GelMA -2 wt % 45S5 BG scaffolds when compared to 7.5 wt % GelMA. The results thus encourage further investigations of the GelMA/45S5 BG composite system for bone tissue engineering applications.
Collapse
Affiliation(s)
- Memoona Akhtar
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Peixi Peng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Bikramjit Basu
- Laboratory for Biomaterials Science and Translational Research, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Speck O, Taylor D, Speck T. Editorial: Damage control of plants-from the molecule to the entire plant. FRONTIERS IN PLANT SCIENCE 2023; 14:1181342. [PMID: 37035089 PMCID: PMC10081690 DOI: 10.3389/fpls.2023.1181342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Olga Speck
- Plant Biomechanics Group, Botanic Garden Freiburg, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| | - David Taylor
- Trinity Centre for Biomedical Engineering, Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden Freiburg, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany
| |
Collapse
|
3
|
Mylo MD, Ludwig F, Rahman MA, Shu Q, Fleckenstein C, Speck T, Speck O. Conjoining Trees for the Provision of Living Architecture in Future Cities: A Long-Term Inosculation Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1385. [PMID: 36987073 PMCID: PMC10058916 DOI: 10.3390/plants12061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Faced with the environmental challenges posed by climate change, architects are creating nature-based solutions for urban areas, such as transforming living trees into artificial architectural structures. In this study, we have analyzed stem pairs of five tree species conjoined for more than eight years by measuring the stem diameters below and above the resulting inosculation and by calculating the respective diameter ratio. Our statistical analyses reveal that Platanus × hispanica and Salix alba stems do not differ significantly in diameter below inosculation. However, in contrast to P. × hispanica, the diameters of the conjoined stems above inosculation differ significantly in S. alba. We provide a binary decision tree based on diameter comparisons above and below inosculation as a straightforward tool for identifying the likelihood of full inosculation with water exchange. Moreover, we have compared branch junctions and inosculations by means of anatomical analyses, micro-computed tomography, and 3D reconstructions showing similarities in the formation of common annual rings that increase the capacity for water exchange. Due to the highly irregular cell arrangement in the center of the inosculations, cells cannot be assigned clearly to either of the stems. In contrast, cells in the center of branch junctions can always be attributed to one of the branches.
Collapse
Affiliation(s)
- Max D. Mylo
- Plant Biomechanics Group @ Botanic Garden Freiburg, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, D-79110 Freiburg, Germany
- Department of Microsystems Engineering—IMTEK, University of Freiburg, D-79110 Freiburg, Germany
| | - Ferdinand Ludwig
- Green Technologies in Landscape Architecture, Research Group Baubotanik, School of Engineering and Design, Technical University of Munich, D-80333 Munich, Germany
| | - Mohammad A. Rahman
- Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technical University of Munich, D-85354 Freising, Germany
| | - Qiguan Shu
- Green Technologies in Landscape Architecture, Research Group Baubotanik, School of Engineering and Design, Technical University of Munich, D-80333 Munich, Germany
| | - Christoph Fleckenstein
- Green Technologies in Landscape Architecture, Research Group Baubotanik, School of Engineering and Design, Technical University of Munich, D-80333 Munich, Germany
| | - Thomas Speck
- Plant Biomechanics Group @ Botanic Garden Freiburg, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, D-79110 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group @ Botanic Garden Freiburg, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
4
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
5
|
Majumdar S, Ray PP, Sahu R, Dey A, Dey B. Strategic fabrication of efficient photo-responsive semiconductor electronic diode-devices by Bovine Serum Albumin protein-based Cu(II)-metallohydrogel scaffolds. Int J Biol Macromol 2022; 195:287-293. [PMID: 34896152 DOI: 10.1016/j.ijbiomac.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Bovine Serum Albumin protein-based two fascinating functional self-healing Cu(II) metallohydrogel scaffolds (MD1 and MD2) have been studied for the development of metal-semiconductor junction based Schottky diode device. Multiple metal-semiconductor (MS) junction devices, offering the sandwich-like configuration of Indium tin oxide (ITO)/ metallogel/Aluminium (Al), have been made-up to investigate the electrical properties of the synthesized metallohydrogel materials. Optical characterizations including optical band gap measurement have been carried out using Tauc's equation for both the metallohydrogels. The current-voltage (I-V) characteristics of just made-up devices are studied under irradiation and non- irradiation conditions to explore the electrical features through investigating the charge transport phenomenon. The electrical conductivity gets estimated as 3.13 × 10-5 S.m-1 and 2.69 × 10-5 S.m-1 for MD1 and MD2 under dark condition, and 11.06 × 10-5 S.m-1 and 5.99 × 10-5 S.m-1 for MD1 and MD2, respectively, in photo-irradiation. The measured optical and electrical properties of MD1 and MD2 metallohydrogels are thoroughly investigated and the data indicates that MD1 and MD2 metallohyrogels are semiconducting in nature with excellent photo-responsive behaviour. Moreover, the representative I - V characteristic of the MD1 and MD2 metallohydrogels at both irradiation and non-irradiation conditions represents the nonlinear rectifying behaviour, a typical signature for Schottky diode (SD).
Collapse
Affiliation(s)
- Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Rajib Sahu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Arka Dey
- Department of Physics, Jadavpur University, Kolkata 700032, India.
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
6
|
Meurer J, Hniopek J, Ahner J, Schmitt M, Popp J, Zechel S, Peneva K, Hager MD. In-depth characterization of self-healing polymers based on π-π interactions. Beilstein J Org Chem 2021; 17:2496-2504. [PMID: 34646398 PMCID: PMC8491711 DOI: 10.3762/bjoc.17.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
The self-healing behavior of two supramolecular polymers based on π–π-interactions featuring different polymer backbones is presented. For this purpose, these polymers were synthesized utilizing a polycondensation of a perylene tetracarboxylic dianhydride with polyether-based diamines and the resulting materials were investigated using various analytical techniques. Thus, the molecular structure of the polymers could be correlated with the ability for self-healing. Moreover, the mechanical behavior was studied using rheology. The activation of the supramolecular interactions results in a breaking of these noncovalent bonds, which was investigated using IR spectroscopy, leading to a sufficient increase in mobility and, finally, a healing of the mechanical damage. This scratch-healing behavior was also quantified in detail using an indenter.
Collapse
Affiliation(s)
- Josefine Meurer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Julian Hniopek
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), e. V. Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Johannes Ahner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Albert-Einstein-Straße 6, 07745 Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), e. V. Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kalina Peneva
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
7
|
|
8
|
van Ravensteijn BGP, Voets IK, Kegel WK, Eelkema R. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10639-10656. [PMID: 32787015 PMCID: PMC7497707 DOI: 10.1021/acs.langmuir.0c01763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/08/2020] [Indexed: 05/20/2023]
Abstract
Transient assembled structures play an indispensable role in a wide variety of processes fundamental to living organisms including cellular transport, cell motility, and proliferation. Typically, the formation of these transient structures is driven by the consumption of molecular fuels via dissipative reaction networks. In these networks, building blocks are converted from inactive precursor states to active (assembling) states by (a set of) irreversible chemical reactions. Since the activated state is intrinsically unstable and can be maintained only in the presence of sufficient fuel, fuel depletion results in the spontaneous disintegration of the formed superstructures. Consequently, the properties and behavior of these assembled structures are governed by the kinetics of fuel consumption rather than by their thermodynamic stability. This fuel dependency endows biological systems with unprecedented spatiotemporal adaptability and inherent self-healing capabilities. Fascinated by these unique material characteristics, coupling the assembly behavior to molecular fuel or light-driven reaction networks was recently implemented in synthetic (supra)molecular systems. In this invited feature article, we discuss recent studies demonstrating that dissipative assembly is not limited to the molecular world but can also be translated to building blocks of colloidal dimensions. We highlight crucial guiding principles for the successful design of dissipative colloidal systems and illustrate these with the current state of the art. Finally, we present our vision on the future of the field and how marrying nonequilibrium self-assembly with the functional properties associated with colloidal building blocks presents a promising route for the development of next-generation materials.
Collapse
Affiliation(s)
- Bas G. P. van Ravensteijn
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Willem K. Kegel
- Van
’t Hoff Laboratory for Physical and Colloid Chemistry, Debye
Institute for NanoMaterials Science, Utrecht
University, 3584 CH Utrecht, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
9
|
Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics. MATERIALS 2020; 13:ma13163587. [PMID: 32823736 PMCID: PMC7475884 DOI: 10.3390/ma13163587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Recent advances in nanomaterial preparation and printing technologies provide unique opportunities to develop flexible hybrid electronics (FHE) for various healthcare applications. Unlike the costly, multi-step, and error-prone cleanroom-based nano-microfabrication, the printing of nanomaterials offers advantages, including cost-effectiveness, high-throughput, reliability, and scalability. Here, this review summarizes the most up-to-date nanomaterials, methods of nanomaterial printing, and system integrations to fabricate advanced FHE in wearable and implantable applications. Detailed strategies to enhance the resolution, uniformity, flexibility, and durability of nanomaterial printing are summarized. We discuss the sensitivity, functionality, and performance of recently reported printed electronics with application areas in wearable sensors, prosthetics, and health monitoring implantable systems. Collectively, the main contribution of this paper is in the summary of the essential requirements of material properties, mechanisms for printed sensors, and electronics.
Collapse
|
10
|
Baer A, Horbelt N, Nijemeisland M, Garcia SJ, Fratzl P, Schmidt S, Mayer G, Harrington MJ. Shear-Induced β-Crystallite Unfolding in Condensed Phase Nanodroplets Promotes Fiber Formation in a Biological Adhesive. ACS NANO 2019; 13:4992-5001. [PMID: 30933471 DOI: 10.1021/acsnano.9b00857] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Natural materials provide an increasingly important role model for the development and processing of next-generation polymers. The velvet worm Euperipatoides rowelli hunts using a projectile, mechanoresponsive adhesive slime that rapidly and reversibly transitions into stiff glassy polymer fibers following shearing and drying. However, the molecular mechanism underlying this mechanoresponsive behavior is still unclear. Previous work showed the slime to be an emulsion of nanoscale charge-stabilized condensed droplets comprised primarily of large phosphorylated proteins, which under mechanical shear coalesce and self-organize into nano- and microfibrils that can be drawn into macroscopic fibers. Here, we utilize wide-angle X-ray diffraction and vibrational spectroscopy coupled with in situ shear deformation to explore the contribution of protein conformation and mechanical forces to the fiber formation process. Although previously believed to be unstructured, our findings indicate that the main phosphorylated protein component possesses a significant β-crystalline structure in the storage phase and that shear-induced partial unfolding of the protein is a key first step in the rapid self-organization of nanodroplets into fibers. The insights gained here have relevance for sustainable production of advanced polymeric materials.
Collapse
Affiliation(s)
- Alexander Baer
- Department of Zoology, Institute of Biology , University of Kassel , Heinrich-Plett-Str. 40 , D-34132 Kassel , Germany
| | - Nils Horbelt
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Research Campus Golm, D-14424 Potsdam , Germany
| | - Marlies Nijemeisland
- Novel Aerospace Materials group, Faculty of Aerospace Engineering , Delft University of Technology , Kluyverweg 1 , 2629 HS Delft , The Netherlands
| | - Santiago J Garcia
- Novel Aerospace Materials group, Faculty of Aerospace Engineering , Delft University of Technology , Kluyverweg 1 , 2629 HS Delft , The Netherlands
| | - Peter Fratzl
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Research Campus Golm, D-14424 Potsdam , Germany
| | - Stephan Schmidt
- Preparative Polymer Chemistry , Heinrich-Heine-Universität , Universitätsstraße 1 , D-40225 Düsseldorf , Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology , University of Kassel , Heinrich-Plett-Str. 40 , D-34132 Kassel , Germany
| | - Matthew J Harrington
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Research Campus Golm, D-14424 Potsdam , Germany
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| |
Collapse
|
11
|
Trapaidze A, D'Antuono M, Fratzl P, Harrington MJ. Exploring mussel byssus fabrication with peptide-polymer hybrids: Role of pH and metal coordination in self-assembly and mechanics of histidine-rich domains. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Enke M, Köps L, Zechel S, Brendel JC, Vitz J, Hager MD, Schubert US. Influence of Aspartate Moieties on the Self-Healing Behavior of Histidine-Rich Supramolecular Polymers. Macromol Rapid Commun 2018; 39:e1700742. [DOI: 10.1002/marc.201700742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/11/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel Enke
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Lukas Köps
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Jürgen Vitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
13
|
Speck O, Schlechtendahl M, Borm F, Kampowski T, Speck T. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi - An adaptation to seasonal drought stress. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:175-186. [PMID: 29441263 PMCID: PMC5789399 DOI: 10.3762/bjnano.9.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/19/2017] [Indexed: 05/24/2023]
Abstract
During evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma cooperi. After a transversal incision, the entire leaf bends until the wound is closed. Our results indicate that the underlying sealing principle is a combination of hydraulic shrinking and swelling as the main driving forces and growth-induced mechanical pre-stresses in the tissues. Hydraulic effects were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly significant differences of the single main effects such as "humidity conditions in the wound region" and "time after wounding" and their interaction effect. The centripetal arrangement of five tissue layers with various thicknesses and significantly different mechanical properties might play an additional role with regard to mechanically driven effects. Injury disturbs the mechanical equilibrium, with pre-stresses leading to internal deformation until a new equilibrium is reached. In the context of self-sealing by internal deformation, the highly flexible wide-band tracheids, which form a net of vascular bundles, are regarded as paedomorphic tracheids, which are specialised to prevent cell collapse under drought stress and allow for building growth-induced mechanical pre-stresses.
Collapse
Affiliation(s)
- Olga Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Competence Network Biomimetics, Baden-Württemberg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Mark Schlechtendahl
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Florian Borm
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Tim Kampowski
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Competence Network Biomimetics, Baden-Württemberg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| |
Collapse
|
14
|
Enke M, Bose RK, Zechel S, Vitz J, Deubler R, Garcia SJ, van der Zwaag S, Schacher FH, Hager MD, Schubert US. A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00663f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The self-healing capacities of mussel-inspired metallopolymers based on block copolymers containing histidine are briefly presented.
Collapse
|
15
|
Baer A, Schmidt S, Haensch S, Eder M, Mayer G, Harrington MJ. Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime. Nat Commun 2017; 8:974. [PMID: 29042549 PMCID: PMC5645397 DOI: 10.1038/s41467-017-01142-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Velvet worms eject a fluid capture slime that can be mechanically drawn into stiff biopolymeric fibres. Remarkably, these fibres can be dissolved by extended exposure to water, and new regenerated fibres can be drawn from the dissolved fibre solution-indicating a fully recyclable process. Here, we perform a multiscale structural and compositional investigation of this reversible fabrication process with the velvet worm Euperipatoides rowelli, revealing that biopolymeric fibre assembly is facilitated via mono-disperse lipid-protein nanoglobules. Shear forces cause nanoglobules to self-assemble into nano- and microfibrils, which can be drawn into macroscopic fibres with a protein-enriched core and lipid-rich coating. Fibre dissolution in water leads to re-formation of nanoglobules, suggesting that this dynamic supramolecular assembly of mechanoresponsive protein-building blocks is mediated by reversible non-covalent interactions. These findings offer important mechanistic insights into the role of mechanochemical processes in bio-fibre formation, providing potential avenues for sustainable material fabrication processes.Velvet worms expel a fluid slime that, under shear force, forms stiff fibres that can be dissolved and then regenerated. Here, the authors reveal that the recyclability of these biopolymers relies on mechanoresponsive lipid-protein nanoglobules in the slime that reversibly self-assemble into fibrils.
Collapse
Affiliation(s)
- Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sebastian Haensch
- Center for Advanced Imaging (CAi), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Michaela Eder
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Matthew J Harrington
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany. .,Dept. of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
16
|
Enke M, Jehle F, Bode S, Vitz J, Harrington MJ, Hager MD, Schubert US. Histidine-Zinc Interactions Investigated by Isothermal Titration Calorimetry (ITC) and their Application in Self-Healing Polymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel Enke
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Franziska Jehle
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14424 Potsdam Germany
| | - Stefan Bode
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Jürgen Vitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Matthew J. Harrington
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14424 Potsdam Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|