1
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
2
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
3
|
Dittrich C, Hoelzl F, Smith S, Fouilloux CA, Parker DJ, O’Connell LA, Knowles LS, Hughes M, Fewings A, Morgan R, Rojas B, Comeault AA. Genome Assembly of the Dyeing Poison Frog Provides Insights into the Dynamics of Transposable Element and Genome-Size Evolution. Genome Biol Evol 2024; 16:evae109. [PMID: 38753031 PMCID: PMC11152451 DOI: 10.1093/gbe/evae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Genome size varies greatly across the tree of life and transposable elements are an important contributor to this variation. Among vertebrates, amphibians display the greatest variation in genome size, making them ideal models to explore the causes and consequences of genome size variation. However, high-quality genome assemblies for amphibians have, until recently, been rare. Here, we generate a high-quality genome assembly for the dyeing poison frog, Dendrobates tinctorius. We compare this assembly to publicly available frog genomes and find evidence for both large-scale conserved synteny and widespread rearrangements between frog lineages. Comparing conserved orthologs annotated in these genomes revealed a strong correlation between genome size and gene size. To explore the cause of gene-size variation, we quantified the location of transposable elements relative to gene features and find that the accumulation of transposable elements in introns has played an important role in the evolution of gene size in D. tinctorius, while estimates of insertion times suggest that many insertion events are recent and species-specific. Finally, we carry out population-scale mobile-element sequencing and show that the diversity and abundance of transposable elements in poison frog genomes can complicate genotyping from repetitive element sequence anchors. Our results show that transposable elements have clearly played an important role in the evolution of large genome size in D. tinctorius. Future studies are needed to fully understand the dynamics of transposable element evolution and to optimize primer or bait design for cost-effective population-level genotyping in species with large, repetitive genomes.
Collapse
Affiliation(s)
- Carolin Dittrich
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Franz Hoelzl
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Chloe A Fouilloux
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Darren J Parker
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Bangor University, Bangor, UK
| | | | - Lucy S Knowles
- NERC Environmental Omics Facility, University of Sheffield, Sheffield, UK
| | - Margaret Hughes
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Ade Fewings
- Supercomputing Wales, Digital Services, Bangor University, Bangor, UK
| | - Rhys Morgan
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Bangor University, Bangor, UK
| | - Bibiana Rojas
- Department of Biology and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Aaron A Comeault
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Toli EA, Kemppainen P, Bounas A, Sotiropoulos K. Genetic insight into a polygenic trait using a novel genome-wide association approach in a wild amphibian population. Mol Ecol 2024; 33:e17344. [PMID: 38597332 DOI: 10.1111/mec.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Body size variation is central in the evolution of life-history traits in amphibians, but the underlying genetic architecture of this complex trait is still largely unknown. Herein, we studied the genetic basis of body size and fecundity of the alternative morphotypes in a wild population of the Greek smooth newt (Lissotriton graecus). By combining a genome-wide association approach with linkage disequilibrium network analysis, we were able to identify clusters of highly correlated loci thus maximizing sequence data for downstream analysis. The putatively associated variants explained 12.8% to 44.5% of the total phenotypic variation in body size and were mapped to genes with functional roles in the regulation of gene expression and cell cycle processes. Our study is the first to provide insights into the genetic basis of complex traits in newts and provides a useful tool to identify loci potentially involved in fitness-related traits in small data sets from natural populations in non-model species.
Collapse
Affiliation(s)
- Elisavet-Aspasia Toli
- Molecular Ecology & Conservation Genetics Lab, Department of Biological Applications & Technology, University of Ioannina, Ioannina, Greece
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong City, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Anastasios Bounas
- Molecular Ecology & Conservation Genetics Lab, Department of Biological Applications & Technology, University of Ioannina, Ioannina, Greece
| | - Konstantinos Sotiropoulos
- Molecular Ecology & Conservation Genetics Lab, Department of Biological Applications & Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
5
|
Moran PA, Bosse M, Mariën J, Halfwerk W. Genomic footprints of (pre) colonialism: Population declines in urban and forest túngara frogs coincident with historical human activity. Mol Ecol 2024; 33:e17258. [PMID: 38153193 DOI: 10.1111/mec.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Urbanisation is rapidly altering ecosystems, leading to profound biodiversity loss. To mitigate these effects, we need a better understanding of how urbanisation impacts dispersal and reproduction. Two contrasting population demographic models have been proposed that predict that urbanisation either promotes (facilitation model) or constrains (fragmentation model) gene flow and genetic diversity. Which of these models prevails likely depends on the strength of selection on specific phenotypic traits that influence dispersal, survival, or reproduction. Here, we a priori examined the genomic impact of urbanisation on the Neotropical túngara frog (Engystomops pustulosus), a species known to adapt its reproductive traits to urban selective pressures. Using whole-genome resequencing for multiple urban and forest populations we examined genomic diversity, population connectivity and demographic history. Contrary to both the fragmentation and facilitation models, urban populations did not exhibit substantial changes in genomic diversity or differentiation compared with forest populations, and genomic variation was best explained by geographic distance rather than environmental factors. Adopting an a posteriori approach, we additionally found both urban and forest populations to have undergone population declines. The timing of these declines appears to coincide with extensive human activity around the Panama Canal during the last few centuries rather than recent urbanisation. Our study highlights the long-lasting legacy of past anthropogenic disturbances in the genome and the importance of considering the historical context in urban evolution studies as anthropogenic effects may be extensive and impact nonurban areas on both recent and older timescales.
Collapse
Affiliation(s)
- Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mirte Bosse
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Janine Mariën
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Liedtke HC, Cruz F, Gómez-Garrido J, Fuentes Palacios D, Marcet-Houben M, Gut M, Alioto T, Gabaldón T, Gomez-Mestre I. Chromosome-level assembly, annotation and phylome of Pelobates cultripes, the western spadefoot toad. DNA Res 2022; 29:6588074. [PMID: 35583263 PMCID: PMC9164646 DOI: 10.1093/dnares/dsac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Genomic resources for amphibians are still hugely under-represented in vertebrate genomic research, despite being a group of major interest for ecology, evolution and conservation. Amphibians constitute a highly threatened group of vertebrates, present a vast diversity in reproductive modes, are extremely diverse in morphology, occupy most ecoregions of the world, and present the widest range in genome sizes of any major group of vertebrates. We combined Illumina, Nanopore and Hi-C sequencing technologies to assemble a chromosome-level genome sequence for an anuran with a moderate genome size (assembly span 3.09 Gb); Pelobates cultripes, the western spadefoot toad. The genome has an N50 length of 330 Mb with 98.6% of the total sequence length assembled into 14 super scaffolds, and 87.7% complete BUSCO genes. We use published transcriptomic data to provide annotations, identifying 32,684 protein-coding genes. We also reconstruct the P. cultripes phylome and identify 2,527 gene expansions. We contribute the first draft of the genome of the western spadefoot toad, P. cultripes. This species represents a relatively basal lineage in the anuran tree with an interesting ecology and a high degree of developmental plasticity, and thus is an important resource for amphibian genomic research.
Collapse
Affiliation(s)
- Hans Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Diego Fuentes Palacios
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA) , Barcelona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| |
Collapse
|
7
|
Marques AJD, Hanson JO, Camacho-Sanchez M, Martínez-Solano I, Moritz C, Tarroso P, Velo-Antón G, Veríssimo A, Carvalho SB. Range-wide genomic scans and tests for selection identify non-neutral spatial patterns of genetic variation in a non-model amphibian species (Pelobates cultripes). CONSERV GENET 2022. [DOI: 10.1007/s10592-021-01425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Jin L, Liao WB, Merilä J. Genomic evidence for adaptive differentiation among
Microhyla fissipes
populations: Implications for conservation. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education) China West Normal University Nanchong China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education) China West Normal University Nanchong China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme Faculty of Biological and Environmental Sciences FI‐00014 University of Helsinki Helsinki Finland
- Research Division for Ecology and Biodiversity School Biological Sciences The University of Hong KongHong Kong SAR
| |
Collapse
|
9
|
Hardy BM, Pope KL, Latch EK. Genomic signatures of demographic declines in an imperiled amphibian inform conservation action. Anim Conserv 2021. [DOI: 10.1111/acv.12695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- B. M. Hardy
- Behavioral and Molecular Ecology Research Group Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - K. L. Pope
- United States Forest Service Pacific Southwest Research Station Arcata CA USA
| | - E. K. Latch
- Behavioral and Molecular Ecology Research Group Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee WI USA
| |
Collapse
|
10
|
Albecker MA, Stuckert AMM, Balakrishnan CN, McCoy MW. Molecular mechanisms of local adaptation for salt-tolerance in a treefrog. Mol Ecol 2021; 30:2065-2086. [PMID: 33655636 DOI: 10.1111/mec.15867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Salinization is a global phenomenon affecting ecosystems and forcing freshwater organisms to deal with increasing levels of ionic stress. However, our understanding of mechanisms that permit salt tolerance in amphibians is limited. This study investigates mechanisms of salt tolerance in locally adapted, coastal populations of a treefrog, Hyla cinerea. Using a common garden experiment, we (i) determine the extent that environment (i.e., embryonic and larval saltwater exposure) or genotype (i.e., coastal vs. inland) affects developmental benchmarks and transcriptome expression, and (ii) identify genes that may underpin differences in saltwater tolerance. Differences in gene expression, survival, and plasma osmolality were most strongly associated with genotype. Population genetic analyses on expressed genes also delineated coastal and inland groups based on genetic similarity. Coastal populations differentially expressed osmoregulatory genes including ion transporters (atp1b1, atp6V1g2, slc26a), cellular adhesion components (cdh26, cldn1, gjb3, ocln), and cytoskeletal components (odc1-a, tgm3). Several of these genes are the same genes expressed by euryhaline fish after exposure to freshwater, which is a novel finding for North American amphibians and suggests that these genes may be associated with local salinity adaptation. Coastal populations also highly expressed glycerol-3-phosphate dehydrogenase 1 (gpd1), which indicates they use glycerol as a compatible osmolyte to reduce water loss - another mechanism of saltwater tolerance previously unknown in frogs. These data signify that Hyla cinerea inhabiting coastal, brackish wetlands have evolved a salt-tolerant ecotype, and highlights novel candidate pathways that can lead to salt tolerance in freshwater organisms facing habitat salinization.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Adam M M Stuckert
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
11
|
Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol 2020; 3:480. [PMID: 32873878 PMCID: PMC7463020 DOI: 10.1038/s42003-020-1096-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/06/2020] [Indexed: 01/29/2023] Open
Abstract
Closely related muntjac deer show striking karyotype differences. Here we describe chromosome-scale genome assemblies for Chinese and Indian muntjacs, Muntiacus reevesi (2n = 46) and Muntiacus muntjak vaginalis (2n = 6/7), and analyze their evolution and architecture. The genomes show extensive collinearity with each other and with other deer and cattle. We identified numerous fusion events unique to and shared by muntjacs relative to the cervid ancestor, confirming many cytogenetic observations with genome sequence. One of these M. muntjak fusions reversed an earlier fission in the cervid lineage. Comparative Hi-C analysis showed that the chromosome fusions on the M. muntjak lineage altered long-range, three-dimensional chromosome organization relative to M. reevesi in interphase nuclei including A/B compartment structure. This reshaping of multi-megabase contacts occurred without notable change in local chromatin compaction, even near fusion sites. A few genes involved in chromosome maintenance show evidence for rapid evolution, possibly associated with the dramatic changes in karyotype.
Collapse
Affiliation(s)
- Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rachel Baum
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|