1
|
Xu Y, Lih TM, De Marzo AM, Li QK, Zhang H. SPOT: spatial proteomics through on-site tissue-protein-labeling. Clin Proteomics 2024; 21:60. [PMID: 39443867 PMCID: PMC11515502 DOI: 10.1186/s12014-024-09505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spatial proteomics seeks to understand the spatial organization of proteins in tissues or at different subcellular localization in their native environment. However, capturing the spatial organization of proteins is challenging. Here, we present an innovative approach termed Spatial Proteomics through On-site Tissue-protein-labeling (SPOT), which combines the direct labeling of tissue proteins in situ on a slide and quantitative mass spectrometry for the profiling of spatially-resolved proteomics. MATERIALS AND METHODS Efficacy of direct TMT labeling was investigated using seven types of sagittal mouse brain slides, including frozen tissues without staining, formalin-fixed paraffin-embedded (FFPE) tissues without staining, deparaffinized FFPE tissues, deparaffinized and decrosslinked FFPE tissues, and tissues with hematoxylin & eosin (H&E) staining, hematoxylin (H) staining, eosin (E) staining. The ability of SPOT to profile proteomes at a spatial resolution was further evaluated on a horizontal mouse brain slide with direct TMT labeling at eight different mouse brain regions. Finally, SPOT was applied to human prostate cancer tissues as well as a tissue microarray (TMA), where TMT tags were meticulously applied to confined regions based on the pathological annotations. After on-site direct tissue-protein-labeling, tissues were scraped off the slides and subject to standard TMT-based quantitative proteomics analysis. RESULTS Tissue proteins on different types of mouse brain slides could be directly labeled with TMT tags. Moreover, the versatility of our direct-labeling approach extended to discerning specific mouse brain regions based on quantitative outcomes. The SPOT was further applied on both frozen tissues on slides and FFPE tissues on TMAs from prostate cancer tissues, where a distinct proteomic profile was observed among the regions with different Gleason scores. CONCLUSIONS SPOT is a robust and versatile technique that allows comprehensive profiling of spatially-resolved proteomics across diverse types of tissue slides to advance our understanding of intricate molecular landscapes.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - T Mamie Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Liu X, Peng T, Xu M, Lin S, Hu B, Chu T, Liu B, Xu Y, Ding W, Li L, Cao C, Wu P. Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications. J Hematol Oncol 2024; 17:72. [PMID: 39182134 PMCID: PMC11344930 DOI: 10.1186/s13045-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
The emergence of spatial multi-omics has helped address the limitations of single-cell sequencing, which often leads to the loss of spatial context among cell populations. Integrated analysis of the genome, transcriptome, proteome, metabolome, and epigenome has enhanced our understanding of cell biology and the molecular basis of human diseases. Moreover, this approach offers profound insights into the interactions between intracellular and intercellular molecular mechanisms involved in the development, physiology, and pathogenesis of human diseases. In this comprehensive review, we examine current advancements in multi-omics technologies, focusing on their evolution and refinement over the past decade, including improvements in throughput and resolution, modality integration, and accuracy. We also discuss the pivotal contributions of spatial multi-omics in revealing spatial heterogeneity, constructing detailed spatial atlases, deciphering spatial crosstalk in tumor immunology, and advancing translational research and cancer therapy through precise spatial mapping.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bai Hu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Kim HM, Kim KJ, Lee K, Yoon MJ, Choih J, Hong TJ, Cho EJ, Jung HJ, Kim J, Park JS, Na HY, Heo YS, Park CG, Park H, Han S, Bae D. GNUV201, a novel human/mouse cross-reactive and low pH-selective anti-PD-1 monoclonal antibody for cancer immunotherapy. BMC Immunol 2024; 25:29. [PMID: 38730320 PMCID: PMC11088064 DOI: 10.1186/s12865-024-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.
Collapse
MESH Headings
- Animals
- Humans
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Mice
- Cross Reactions/immunology
- Immunotherapy/methods
- Hydrogen-Ion Concentration
- Neoplasms/immunology
- Neoplasms/therapy
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Cell Line, Tumor
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Epitopes/immunology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Hae-Mi Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kyoung-Jin Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kwanghyun Lee
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Myeong Jin Yoon
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jenny Choih
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Tae-Joon Hong
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Eun Ji Cho
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Hak-Jun Jung
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jayoung Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS/FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Chae Gyu Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heungrok Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Sungho Han
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Donggoo Bae
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Temur HO, Alkan A, Yozgat CY, Cakir E, Yazan H, Yabul FC, Cesme DH, Yozgat Y. MRI evaluation of right heart functions in children with mild cystic fibrosis. Cardiol Young 2023; 33:1828-1833. [PMID: 36226672 DOI: 10.1017/s1047951122003249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study aimed to assess the ventricular anatomy, function of the right ventricle, and the haemodynamic findings of pulmonary artery in children with cystic fibrosis using cardiac MRI. PATIENTS This prospective study consisted of 32 children with mild cystic fibrosis and 30 age-matched healthy control participants. METHODS Cardiac MRI was used to assess right ventricular volumes, anatomy, and function and to assessment of haemodynamic findings of pulmonary artery in the control and study groups. Haemodynamic findings of pulmonary arteries were determined using pulmonary arteries peak velocity (cm/s), and pulmonary arteries time-to-peak velocity (ms) and pulmonary artery systolic pressure. All data of children with mild cystic fibrosis were compared with those of 30 age-matched healthy control group participants. RESULTS Our patients and their age-matched controls were aged from 6 to 17 years and from 7 to 15 years, respectively. We found that ejection fraction (%), cardiac output (L/ml), cardiac output (L/ml/m2), and systolic volume (ml/m2) were significantly lower in children with cystic fibrosis (p < 0.01). Right ventricular anterior wall thickness (mm) was significantly higher in children with cystic fibrosis (p = 0.01). No significant difference was observed between the haemodynamic parameters of pulmonary artery in the patient group. CONCLUSION In our study, cardiac MRI was used to investigate whether the right ventricle was affected functionally and anatomically in children with mild cystic fibrosis. We detected a significant decrease in right ventricular systolic functions and notable alterations in the right ventricular geometry of children with mild cystic fibrosis. These alterations usually manifest themselves as hypertrophy of the right ventricle. Our study's results demonstrate no relationship between the development of pulmonary hypertension in mild cystic fibrosis children.
Collapse
Affiliation(s)
- Hafize Otcu Temur
- Department of Radiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Erkan Cakir
- Department of Pediatric Pulmonology, Bezmialem Vakif University, Istanbul, Turkey
| | - Hakan Yazan
- Department of Pediatric Pulmonology, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatma Celik Yabul
- Department of Radiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Dilek Hacer Cesme
- Department of Radiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Yilmaz Yozgat
- Department of Pediatric Cardiology, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
5
|
Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. J Biol Chem 2021; 296:100719. [PMID: 33933451 PMCID: PMC8191293 DOI: 10.1016/j.jbc.2021.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot–Marie–Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Katherine R Clowes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Nowakowski ACH. Brave New Lungs: Aging in the Shadow of COVID-19. J Gerontol B Psychol Sci Soc Sci 2021; 76:e230-e234. [PMID: 32766805 PMCID: PMC7529093 DOI: 10.1093/geronb/gbaa118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
As the COVID-19 pandemic continues to affect communities worldwide, this novel disease is leaving many survivors with severe lung damage. Among older patients, advanced lung damage is more likely. Survivors of all ages who have extensive lung impacts are likely to be new to managing those issues. Supporting healthy aging for these patients will require both gathering data about their unique experiences and using the existing evidence basis about adapting to managing obstructive lung disease. This article outlines key priorities for research with COVID-19 survivors aging with permanent lung damage and highlights unique considerations for people older at age of onset. It also outlines the relevance of findings from this research for clinical care supporting people newly aging with advanced lung disease from COVID-19. In the process, it summarizes lessons from established patient populations aging with progressive lung disease-using cystic fibrosis as a prominent example from the author's lived experience-that may enhance the experiences of older COVID-19 survivors.
Collapse
Affiliation(s)
- Alexandra C H Nowakowski
- Department of Geriatrics/Department of Behavioral Sciences and Social Medicine, College of Medicine, Florida State University, Orlando
| |
Collapse
|
7
|
Guliyeva A, Cakir E, Yazan H, AlShadfan L, Sharifov R, Temur HO, Karaarslan U, Yozgat CY, Erenberk U, Yakut K, Yozgat Y. Assessment of Right Heart Functions in Children with Mild Cystic Fibrosis. KLINISCHE PADIATRIE 2021; 233:231-236. [PMID: 33601431 DOI: 10.1055/a-1341-1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a multisystemic disease that prevalently involves the lungs. Hypoxemia occurs due to the existing of progressive damage to the pulmonary parenchyma and pulmonary vessels. The condition may cause systolic and diastolic dysfunction to the right ventricle due to the effects of high pulmonary artery systolic pressure (PASP). The study aimed to determine echocardiographic alterations in PASP, right ventricle (RV) anatomy, and functions in mild CF children. MATERIALS AND METHODS RV anatomy, systolic, and diastolic functions were evaluated with conventional echocardiographic measurements. Estimated PASP was used measured with new echocardiographic modalities, including pulmonary artery acceleration time (PAAT), right ventricular ejection time (RVET), and their ratio (PAAT/RVET). The obtained echocardiographic data were statistically compared between the patient group and the control group. RESULTS The study consisted of 30 pediatric patients with mild CF and 30 healthy children with similar demographics. In patient group, conventional parameters disclosed differences in RV anatomy, both systolic and diastolic functions of RV compared with the healthy group. We did not compare the patient group with published standard data because of the wide range variability. However, new echocardiographic parameters showed notable increase in pulmonary artery pressure compared with values of control group and published standard data (p<0.001). CONCLUSION Elevated PASP, RV failure, and Cor pulmonale usually begin early in children with mild CF. In addition to routine echocardiographic measurements to evaluate RV, we recommend the use of new echocardiographic modalities for routine examinations and in the follow up of children with mild CF.
Collapse
Affiliation(s)
- Aynur Guliyeva
- Pediatrics, Bezmialem Vakif University, Istanbul, Turkey
| | - Erkan Cakir
- Pediatric Pulmonology, Bezmialem Vakif University, Istanbul, Turkey
| | - Hakan Yazan
- Pediatric Pulmonology, Bezmialem Vakif University, Istanbul, Turkey
| | - Lina AlShadfan
- Pediatric Pulmonology, Bezmialem Vakif University, Istanbul, Turkey
| | | | | | - Utku Karaarslan
- Pediatric Intensive Care Unit, Dr Behcet Uz Child Disease and Surgery Training and Research Hospital, Izmir, Turkey
| | | | - Ufuk Erenberk
- Pediatrics, Bezmialem Vakif University, Istanbul, Turkey
| | - Kahraman Yakut
- Pediatric Cardiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Yilmaz Yozgat
- Pediatric Cardiology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
8
|
Bradbury NA. Cystic Fibrosis and Genotype-Dependent Therapy: Is There a Need for a Sex-Specific Therapy? GENDER AND THE GENOME 2020. [DOI: 10.1177/2470289720937025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulation (CFTR) anion channel. Loss of CFTR protein and/or function disrupts chloride, bicarbonate, and fluid transport and also impacts epithelial sodium transport. Such altered ion and fluid transport produces mucus obstruction, inflammation, pulmonary infection, and damage to multiple organs. Although an autosomal disease, it is apparent that gender differences in life expectancy and quality of life do exist. Conventionally established therapies have treated the downstream sequelae of CFTR dysfunction and have led to a steady increase in life expectancy. Physicians now have access to medications that treat the basic defect in CF, in the form of CFTR modulators. These drugs target the trafficking and/or function of CFTR to improve clinical outcomes for patients. This review summarizes the science behind CFTR modulators and shows how these drugs have dramatically changed how patients with CF are treated. Surprisingly, although the drug target(s) are identical in males and females, CF females seem to display a greater improvement than their male counterparts.
Collapse
Affiliation(s)
- Neil A. Bradbury
- Department of Physiology and Biophysics and Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
9
|
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology. Nat Rev Mol Cell Biol 2020; 20:285-302. [PMID: 30659282 DOI: 10.1038/s41580-018-0094-y] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein subcellular localization is tightly controlled and intimately linked to protein function in health and disease. Capturing the spatial proteome - that is, the localizations of proteins and their dynamics at the subcellular level - is therefore essential for a complete understanding of cell biology. Owing to substantial advances in microscopy, mass spectrometry and machine learning applications for data analysis, the field is now mature for proteome-wide investigations of spatial cellular regulation. Studies of the human proteome have begun to reveal a complex architecture, including single-cell variations, dynamic protein translocations, changing interaction networks and proteins localizing to multiple compartments. Furthermore, several studies have successfully harnessed the power of comparative spatial proteomics as a discovery tool to unravel disease mechanisms. We are at the beginning of an era in which spatial proteomics finally integrates with cell biology and medical research, thereby paving the way for unbiased systems-level insights into cellular processes. Here, we discuss current methods for spatial proteomics using imaging or mass spectrometry and specifically highlight global comparative applications. The aim of this Review is to survey the state of the field and also to encourage more cell biologists to apply spatial proteomics approaches.
Collapse
Affiliation(s)
- Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden. .,Department of Genetics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany.
| |
Collapse
|
10
|
Tan MJA, Chan KWK, Ng IHW, Kong SYZ, Gwee CP, Watanabe S, Vasudevan SG. The Potential Role of the ZIKV NS5 Nuclear Spherical-Shell Structures in Cell Type-Specific Host Immune Modulation during ZIKV Infection. Cells 2019; 8:cells8121519. [PMID: 31779251 PMCID: PMC6953166 DOI: 10.3390/cells8121519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
The Zika virus (ZIKV) non-structural protein 5 (NS5) plays multiple viral and cellular roles during infection, with its primary role in virus RNA replication taking place in the cytoplasm. However, immunofluorescence assay studies have detected the presence of ZIKV NS5 in unique spherical shell-like structures in the nuclei of infected cells, suggesting potentially important cellular roles of ZIKV NS5 in the nucleus. Hence ZIKV NS5′s subcellular distribution and localization must be tightly regulated during ZIKV infection. Both ZIKV NS5 expression or ZIKV infection antagonizes type I interferon signaling, and induces a pro-inflammatory transcriptional response in a cell type-specific manner, but the mechanisms involved and the role of nuclear ZIKV NS5 in these cellular functions has not been elucidated. Intriguingly, these cells originate from the brain and placenta, which are also organs that exhibit a pro-inflammatory signature and are known sites of pathogenesis during ZIKV infection in animal models and humans. Here, we discuss the regulation of the subcellular localization of the ZIKV NS5 protein, and its putative role in the induction of an inflammatory response and the occurrence of pathology in specific organs during ZIKV infection.
Collapse
Affiliation(s)
- Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sean Yao Zu Kong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4022, Australia
- Correspondence: ; Tel.: +65-6516-6718
| |
Collapse
|
11
|
Modulation of proteostasis and protein trafficking: a therapeutic avenue for misfolded G protein-coupled receptors causing disease in humans. Emerg Top Life Sci 2019; 3:39-52. [PMID: 33523195 DOI: 10.1042/etls20180055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Proteostasis refers to the process whereby the cell maintains in equilibrium the protein content of different compartments. This system consists of a highly interconnected network intended to efficiently regulate the synthesis, folding, trafficking, and degradation of newly synthesized proteins. Molecular chaperones are key players of the proteostasis network. These proteins assist in the assembly and folding processes of newly synthesized proteins in a concerted manner to achieve a three-dimensional structure compatible with export from the endoplasmic reticulum to other cell compartments. Pharmacologic interventions intended to modulate the proteostasis network and tackle the devastating effects of conformational diseases caused by protein misfolding are under development. These include small molecules called pharmacoperones, which are highly specific toward the target protein serving as a molecular framework to cause misfolded mutant proteins to fold and adopt a stable conformation suitable for passing the scrutiny of the quality control system and reach its correct location within the cell. Here, we review the main components of the proteostasis network and how pharmacoperones may be employed to correct misfolding of two G protein-coupled receptors, the vasopressin 2 receptor and the gonadotropin-releasing hormone receptor, whose mutations lead to X-linked nephrogenic diabetes insipidus and congenital hypogonadotropic hypogonadism in humans respectively.
Collapse
|
12
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|