1
|
Raymond JS, Athanasoupoulis A, Badolato C, Doolan TJ, Scicluna R, Everett NA, Bowen MT, James MH. Emerging medications and pharmacological treatment approaches for substance use disorders. Pharmacol Biochem Behav 2024:173952. [PMID: 39719161 DOI: 10.1016/j.pbb.2024.173952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Medications to treat substance use disorders remain suboptimal or, in the case of stimulants and cannabis, non-existent. Many factors have contributed to this paucity, including the biological complexity of addiction, regulatory challenges, and a historical lack of enthusiasm among pharmaceutical companies to commit resources to this disease space. Despite these headwinds, the recent opioid crisis has highlighted the devastating consequences of SUDs for both individuals and society, stimulating urgent efforts to identify novel treatment approaches. In addition, several neurobiological systems have been recently implicated in unique aspects of drug reward, opening the door to candidate medications with novel mechanisms of action. Here, we provide an overview of efforts to target several of these new systems, with a focus on those that are the subject of ongoing clinical trials as well as being areas of interest among the authors' research groups (MHJ, MTB, NAE). Specifically, we discuss new classes of medications targeting the serotonin 2 A receptor (i.e., psychedelics), glucagon-like peptide 1 receptor, cannabidiol, dynorphin/kappa opioid receptor, orexin/hypocretin, and oxytocin receptor systems, as well as emergent approaches for modulating the more canonical dopaminergic system via agonist therapies for stimulant use disorders. Collectively, innovations in this space give reason for optimism for an improved therapeutic landscape for substance use disorders in the near future.
Collapse
Affiliation(s)
- Joel S Raymond
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA
| | - Alex Athanasoupoulis
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Connie Badolato
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tylah J Doolan
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Rhianne Scicluna
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas A Everett
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA; School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Cayir S, Zhornitsky S, Barzegary A, Sotomayor-Carreño E, Sarfo-Ansah W, Funaro MC, Matuskey D, Angarita G. A review of the kappa opioid receptor system in opioid use. Neurosci Biobehav Rev 2024; 162:105713. [PMID: 38733895 DOI: 10.1016/j.neubiorev.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The kappa opioid receptor (KOR) system is implicated in dysphoria and as an "anti-reward system" during withdrawal from opioids. However, no clear consensus has been made in the field, as mixed findings have been reported regarding the relationship between the KOR system and opioid use. This review summarizes the studies to date on the KOR system and opioids. A systematic scoping review was reported following PRISMA guidelines and conducted based on the published protocol. Comprehensive searches of several databases were done in the following databases: MEDLINE, Embase, PsycINFO, Web of Science, Scopus, and Cochrane. We included preclinical and clinical studies that tested the administration of KOR agonists/antagonists or dynorphin and/or measured dynorphin levels or KOR expression during opioid intoxication or withdrawal from opioids. One hundred studies were included in the final analysis. Preclinical administration of KOR agonists decreased drug-seeking/taking behaviors and opioid withdrawal symptoms. KOR antagonists showed mixed findings, depending on the agent and/or type of withdrawal symptom. Administration of dynorphins attenuated opioid withdrawal symptoms both in preclinical and clinical studies. In the limited number of available studies, dynorphin levels were found to increase in cerebrospinal fluid (CSF) and peripheral blood lymphocytes (PBL) of opioid use disorder subjects (OUD). In animals, dynorphin levels and/or KOR expression showed mixed findings during opioid use. The KOR/dynorphin system appears to have a multifaceted and complex nature rather than simply functioning as an anti-reward system. Future research in well-controlled study settings is necessary to better understand the clinical role of the KOR system in opioid use.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA
| | - Simon Zhornitsky
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, USA
| | - Alireza Barzegary
- Islamic Azad University Tehran Medical Sciences School of Medicine, Iran
| | | | | | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT 06510, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Gustavo Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA.
| |
Collapse
|
3
|
Shao J, Fei Y, Xiao J, Wang L, Zou S, Yang J. The role of miRNA-144-3p/Oprk1/KOR in nicotine dependence and nicotine withdrawal in male rats. Nicotine Tob Res 2023; 25:1856-1864. [PMID: 37455648 PMCID: PMC10664084 DOI: 10.1093/ntr/ntad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The kappa-opioid receptor (KOR) has been implicated in mediating the behavioral and biochemical effects associated with nicotine reward and withdrawal; however, its underlying mechanisms remain to be further explored. METHODS Adult male Sprague-Dawley rats were used to establish a nicotine dependence and withdrawal model by injecting nicotine (3 mg/kg/day, s.c.) or vehicle for 14 days, followed by the termination of nicotine for 7 days. Body weight gain, pain behaviors, and withdrawal scores were assessed in succession. MicroRNA (miRNA) sequencing was performed, and quantitative real-time PCR was used to detect the expression of candidate miRNAs and Oprk1. Western blotting was performed to examine KOR protein expression of KOR. Luciferase assay was conducted to validate the relationship of certain miRNAs/Oprk1. RESULTS The behavioral results showed that nicotine dependence and withdrawal induced behavioral changes. Biochemical analyses demonstrated that miR-144-3p expression decreased and Oprk1/KOR expression increased in the prefrontal cortex, nucleus accumben, and hippocampus. Further investigation suggested that miR-144-3p exerted an inhibitory effect on Oprk1 expression in PC12 cells. CONCLUSIONS This study revealed that miR-144-3p/Oprk1/KOR might be a potential pathway underlying the adverse effects induced by nicotine dependence and withdrawal, and might provide a novel therapeutic target for smoking cessation. IMPLICATIONS This study demonstrates an impact of nicotine dependence and nicotine withdrawal on behavioral outcomes and the expressions of miR-144-3p/Oprk1/KOR in male rats. These findings have important translational implications given the continued use of nicotine and the difficulty in smoking cessation worldwide, which can be applied to alleviated the adverse effects induced by nicotine dependence and withdrawal, thus assist smokers to quit smoking.
Collapse
Affiliation(s)
- Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Yanxia Fei
- Department of Anesthesiology, Women’s Hospital, School of Medicine Zhejiang University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Shuangfa Zou
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| |
Collapse
|
4
|
Cao DN, Li F, Wu N, Li J. Insights into the mechanisms underlying opioid use disorder and potential treatment strategies. Br J Pharmacol 2023; 180:862-878. [PMID: 34128238 DOI: 10.1111/bph.15592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Opioid use disorder is a worldwide societal problem and public health burden. Strategies for treating opioid use disorder can be divided into those that target the opioid receptor system and those that target non-opioid receptor systems, including the dopamine and glutamate receptor systems. Currently, the clinical drugs used to treat opioid use disorder include the opioid receptor agonists methadone and buprenorphine, which are limited by their abuse liability, and the opioid receptor antagonist naltrexone, which is limited by poor compliance. Therefore, the development of effective medications with lower abuse liability and better potential for compliance is urgently needed. Based on recent advances in the understanding of the neurobiological mechanisms underlying opioid use disorder, potential treatment strategies and targets have emerged. This review focuses on the progress made in identifying potential targets and developing medications to treat opioid use disorder, including progress made by our laboratory, and provides insights for future medication development. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
5
|
Johnson BN, Kumar A, Su Y, Singh S, Sai KKS, Nader SH, Li S, Reboussin BA, Huang Y, Deep G, Nader MA. PET imaging of kappa opioid receptors and receptor expression quantified in neuron-derived extracellular vesicles in socially housed female and male cynomolgus macaques. Neuropsychopharmacology 2023; 48:410-417. [PMID: 36100655 PMCID: PMC9751296 DOI: 10.1038/s41386-022-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 12/26/2022]
Abstract
Recent positron emission tomography (PET) studies of kappa opioid receptors (KOR) in humans reported significant relationships between KOR availability and social status, as well as cocaine choice. In monkey models, social status influences physiology, receptor pharmacology and behavior; these variables have been associated vulnerability to cocaine abuse. The present study utilized PET imaging to examine KOR availability in socially housed, cocaine-naïve female and male monkeys, and peripheral measures of KORs with neuron-derived extracellular vesicles (NDE). KOR availability was assessed in dominant and subordinate female and male cynomolgus macaques (N = 4/rank/sex), using PET imaging with the KOR selective agonist [11C]EKAP. In addition, NDE from the plasma of socially housed monkeys (N = 13/sex; N = 6-7/rank) were isolated by immunocapture method and analyzed for OPRK1 protein expression by ELISA. We found significant interactions between sex and social rank in KOR availability across 12 of 15 brain regions. This was driven by female data, in which KOR availability was significantly higher in subordinate monkeys compared with dominant monkeys; the opposite relationship was observed among males, but not statistically significant. No sex or rank differences were observed for NDE OPRK1 concentrations. In summary, the relationship between brain KOR availability and social rank was different in female and male monkeys. This was particularly true in female monkeys. We hypothesize that lower [11C]EKAP binding potentials were due to higher concentrations of circulating dynorphin, which is consistent with greater vulnerability in dominant compared with subordinate females. These findings suggest that the KOR is an important target for understanding the neurobiology associated with vulnerability to abused drugs and sex differences, and detectable in peripheral circulation.
Collapse
Affiliation(s)
- Bernard N Johnson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yixin Su
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kiran Kumar Solingapuram Sai
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Beth A Reboussin
- Department of Biostatistics and Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Gagan Deep
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Rysztak LG, Jutkiewicz EM. The role of enkephalinergic systems in substance use disorders. Front Syst Neurosci 2022; 16:932546. [PMID: 35993087 PMCID: PMC9391026 DOI: 10.3389/fnsys.2022.932546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Enkephalin, an endogenous opioid peptide, is highly expressed in the reward pathway and may modulate neurotransmission to regulate reward-related behaviors, such as drug-taking and drug-seeking behaviors. Drugs of abuse also directly increase enkephalin in this pathway, yet it is unknown whether or not changes in the enkephalinergic system after drug administration mediate any specific behaviors. The use of animal models of substance use disorders (SUDs) concurrently with pharmacological, genetic, and molecular tools has allowed researchers to directly investigate the role of enkephalin in promoting these behaviors. In this review, we explore neurochemical mechanisms by which enkephalin levels and enkephalin-mediated signaling are altered by drug administration and interrogate the contribution of enkephalin systems to SUDs. Studies manipulating the receptors that enkephalin targets (e.g., mu and delta opioid receptors mainly) implicate the endogenous opioid peptide in drug-induced neuroadaptations and reward-related behaviors; however, further studies will need to confirm the role of enkephalin directly. Overall, these findings suggest that the enkephalinergic system is involved in multiple aspects of SUDs, such as the primary reinforcing properties of drugs, conditioned reinforcing effects, and sensitization. The idea of dopaminergic-opioidergic interactions in these behaviors remains relatively novel and warrants further research. Continuing work to elucidate the role of enkephalin in mediating neurotransmission in reward circuitry driving behaviors related to SUDs remains crucial.
Collapse
Affiliation(s)
- Lauren G. Rysztak
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Emily M. Jutkiewicz,
| |
Collapse
|
7
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
8
|
Sex- and β-arrestin-dependent effects of kappa opioid receptor-mediated ethanol consumption. Pharmacol Biochem Behav 2022; 216:173377. [PMID: 35364122 PMCID: PMC9064988 DOI: 10.1016/j.pbb.2022.173377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 01/14/2023]
Abstract
The kappa opioid receptor is a known regulator of ethanol consumption, but the molecular mechanisms behind its actions have been underexplored. The scaffolding protein β-arrestin 2 has previously been implicated in driving ethanol consumption at the related delta opioid receptor and has also been suggested to be a driver behind other negative kappa opioid receptor mediated effects. Here, we used kappa opioid agonists with different efficacies for recruiting β-arrestin 2 and knockout animals to determine whether there is a role for β-arrestin 2 in the modulation of voluntary ethanol consumption by the kappa opioid receptor. We find that an agonist with low β-arrestin 2 efficacy more consistently lowers ethanol consumption than agonists with high efficacy for β-arrestin 2. However, knockdown of β-arrestin 2 amplifies the ethanol consumption-promoting effects of the arrestin-recruiting kappa agonists U50,488 and nalfurafine. We control for potentially confounding sedative effects at the kappa opioid receptor and find that β-arrestin 2 is not necessary for kappa opioid receptor-mediated sedation, and that sedation does not correlate with effects on ethanol consumption. Overall, the results suggest a complex relationship between agonist profile, sex, and kappa opioid receptor modulation of ethanol consumption, with little role for kappa opioid receptor-mediated sedation.
Collapse
|
9
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
10
|
Best KM, Mojena MM, Barr GA, Schmidt HD, Cohen AS. Endogenous Opioid Dynorphin Is a Potential Link between Traumatic Brain Injury, Chronic Pain, and Substance Use Disorder. J Neurotrauma 2022; 39:1-19. [PMID: 34751584 PMCID: PMC8978570 DOI: 10.1089/neu.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem associated with numerous physical and neuropsychiatric comorbidities. Chronic pain is prevalent and interferes with post-injury functioning and quality of life, whereas substance use disorder (SUD) is the third most common neuropsychiatric diagnosis after TBI. Neither of these conditions has a clear mechanistic explanation based on the known pathophysiology of TBI. Dynorphin is an endogenous opioid neuropeptide that is significantly dysregulated after TBI. Both dynorphin and its primary receptor, the ĸ-opioid receptor (KOR), are implicated in the neuropathology of chronic pain and SUD. Here, we review the known roles of dynorphin and KORs in chronic pain and SUDs. We synthesize this information with our current understanding of TBI and highlight potential mechanistic parallels between and across conditions that suggest a role for dynorphin in long-term sequelae after TBI. In pain studies, dynorphin/KOR activation has either antinociceptive or pro-nociceptive effects, and there are similarities between the signaling pathways influenced by dynorphin and those underlying development of chronic pain. Moreover, the dynorphin/KOR system is considered a key regulator of the negative affective state that characterizes drug withdrawal and protracted abstinence in SUD, and molecular and neurochemical changes observed during the development of SUD are mirrored by the pathophysiology of TBI. We conclude by proposing hypotheses and directions for future research aimed at elucidating the potential role of dynorphin/KOR in chronic pain and/or SUD after TBI.
Collapse
Affiliation(s)
- Kaitlin M. Best
- Department of Nursing and Clinical Care Services, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa M. Mojena
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Akiva S. Cohen, PhD, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Room 816-I, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Aldrich JV, McLaughlin JP. Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handb Exp Pharmacol 2022; 271:197-220. [PMID: 34463847 DOI: 10.1007/164_2021_519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Brenna IH, Marciuch A, Birkeland B, Veseth M, Røstad B, Løberg EM, Solli KK, Tanum L, Weimand B. 'Not at all what I had expected': Discontinuing treatment with extended-release naltrexone (XR-NTX): A qualitative study. J Subst Abuse Treat 2021; 136:108667. [PMID: 34865937 DOI: 10.1016/j.jsat.2021.108667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Extended-release naltrexone (XR-NTX), an opioid antagonist, has demonstrated equal treatment outcomes, in terms of safety, opioid use, and retention, to the recommended OMT medication buprenorphine. However, premature discontinuation of XR-NTX treatment is still common and poorly understood. Research on patient experiences of XR-NTX treatment is limited. We sought to explore participants' experiences with discontinuation of treatment with XR-NTX, particularly motivation for XR-NTX, experiences of initiation and treatment, and rationale for leaving treatment. METHODS We conducted qualitative, semi-structured interviews with participants from a clinical trial of XR-NTX. The study participants (N = 13) included seven women and six men with opioid dependence, who had received a minimum of one and maximum of four injections of XR-NTX. The study team analyzed transcribed interviews, employing thematic analysis with a critical realist approach. FINDINGS The research team identified three themes, and we present them as a chronological narrative: theme 1: Entering treatment - I thought I knew what I was going into; theme 2: Life with XR-NTX - I had something in me that I didn't want; and theme 3: Leaving treatment - I want to go somewhere in life. Patients' unfulfilled expectations of how XR-NTX would lead to a better life were central to decisions about discontinuation, including unexpected physical, emotional, or mental reactions as well as a lack of expected effects, notably some described an opioid effect from buprenorphine. A few participants ended treatment because they had reached their treatment goal, but most expressed disappointment about not achieving this goal. Some also expressed renewed acceptance of OMT. The participants' motivation for abstinence from illegal substances generally remained. CONCLUSION Our findings emphasize that a dynamic understanding of discontinuation of treatment is necessary to achieve a long-term approach to recovery: the field should understand discontinuation as a feature of typical treatment trajectories, and discontinuation can be followed by re-initiation of treatment.
Collapse
Affiliation(s)
- Ida Halvorsen Brenna
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Anne Marciuch
- Department of Research and Development in Mental Health, Akershus University Hospital, Lørenskog, Norway; Department of Medicine, University of Oslo, Oslo, Norway
| | - Bente Birkeland
- Department of Psychosocial Health, Faculty of Health and Sports Science, University of Agder, Kristiansand, Norway
| | - Marius Veseth
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Bente Røstad
- RIO-a Norwegian users' association in the field of alcohol and drugs, Oslo, Norway
| | - Else-Marie Løberg
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway; Department of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristin Klemmetsby Solli
- Department of Research and Development in Mental Health, Akershus University Hospital, Lørenskog, Norway; Norwegian Centre for Addiction Research, University of Oslo, Oslo, Norway; Vestfold Hospital Trust, Toensberg, Norway
| | - Lars Tanum
- Department of Research and Development in Mental Health, Akershus University Hospital, Lørenskog, Norway; Faculty for Health Science, Oslo Metropolitan University, Oslo, Norway
| | - Bente Weimand
- Department of Research and Development in Mental Health, Akershus University Hospital, Lørenskog, Norway; Department of Health, Social and Welfare Studies, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway
| |
Collapse
|
13
|
Effects of kappa opioid receptor agonists on fentanyl vs. food choice in male and female rats: contingent vs. non-contingent administration. Psychopharmacology (Berl) 2021; 238:1017-1028. [PMID: 33404739 DOI: 10.1007/s00213-020-05749-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Strategies are needed to decrease the abuse liability of mu opioid receptor (MOR) agonists. One strategy under consideration is to combine MOR agonists with kappa opioid receptor (KOR) agonists. OBJECTIVES The effects of KOR agonists (U50488, nalfurafine) on fentanyl-vs.-food choice were compared under conditions where the KOR agonists were added to the intravenously self-administered fentanyl (contingent delivery) or administered as subcutaneous pretreatments (non-contingent delivery) in male and female rats. METHODS Rats were trained to respond under a concurrent schedule of fentanyl (0, 0.32-10 μg/kg/infusion) and food reinforcement. In experiment 1, U50488 and nalfurafine were co-administered with fentanyl as fixed-proportion mixtures (contingent administration). In experiment 2, U50488 (1-10 mg/kg) and nalfurafine (3.2-32 μg/kg) were administered as acute pretreatments (non-contingent administration). The selective KOR antagonist, nor-BNI (32 mg/kg), was administered prior to contingent and non-contingent KOR-agonist treatment in experiment 3. RESULTS Both U50488 and nalfurafine decreased fentanyl choice when administered contingently, demonstrating that KOR agonists punish opioid choice. However, evidence for punishment corresponded with an elimination of operant responding in the majority of rats. Non-contingent U50488 and nalfurafine administration only decreased the number of choices made during the behavioral session without altering fentanyl choice. Contingent and non-contingent KOR-agonist effects on fentanyl choice were both attenuated by nor-BNI. CONCLUSIONS These results illustrate that the effects of KOR agonists on fentanyl reinforcement are dependent upon the contingencies under which they are administered.
Collapse
|
14
|
Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 2020; 21:625-643. [PMID: 33024318 DOI: 10.1038/s41583-020-0378-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated 'treatments' may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.
Collapse
|
15
|
Balyan R, Hahn D, Huang H, Chidambaran V. Pharmacokinetic and pharmacodynamic considerations in developing a response to the opioid epidemic. Expert Opin Drug Metab Toxicol 2020; 16:125-141. [PMID: 31976778 PMCID: PMC7199505 DOI: 10.1080/17425255.2020.1721458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Introduction: Opioids continue to be used widely for pain management. Widespread availability of prescription opioids has led to opioid abuse and addiction. Besides steps to reduce inappropriate prescribing, exploiting opioid pharmacology to make their use safer is important.Areas covered: This article discusses the pathology and factors underlying opioid abuse. Pharmacokinetic and pharmacodynamic properties affecting abuse liability of commonly abused opioids have been highlighted. These properties inform the development of ideal abuse deterrent products. Mechanisms and cost-effectiveness of available abuse deterrent products have been reviewed in addition to the pharmacology of medications used to treat addiction.Expert opinion: The opioid crisis presents unique challenges to managing pain effectively given the limited repertoire of strong analgesics. The 5-point strategy to combat the opioid crisis calls for better preventive, treatment, and recovery services, better data, better pain management, better availability of overdose-reversing drugs and better research. There is an urgent need to decrease the cost of abuse deterrent opioids which deters their cost-effectiveness. In addition, discovery of novel analgesics, further insight into central and peripheral pain mechanisms, understanding genomic risk profiles for efficient targeted efforts, and education will be key to winning this fight against the opioid crisis.
Collapse
Affiliation(s)
- Rajiv Balyan
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - David Hahn
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - Henry Huang
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, USA
| |
Collapse
|