1
|
Yue WWS, Touhara KK, Toma K, Duan X, Julius D. Endogenous opioid signalling regulates spinal ependymal cell proliferation. Nature 2024; 634:407-414. [PMID: 39294372 DOI: 10.1038/s41586-024-07889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
After injury, mammalian spinal cords develop scars to confine the lesion and prevent further damage. However, excessive scarring can hinder neural regeneration and functional recovery1,2. These competing actions underscore the importance of developing therapeutic strategies to dynamically modulate scar progression. Previous research on scarring has primarily focused on astrocytes, but recent evidence has suggested that ependymal cells also participate. Ependymal cells normally form the epithelial layer encasing the central canal, but they undergo massive proliferation and differentiation into astroglia following certain injuries, becoming a core scar component3-7. However, the mechanisms regulating ependymal proliferation in vivo remain unclear. Here we uncover an endogenous κ-opioid signalling pathway that controls ependymal proliferation. Specifically, we detect expression of the κ-opioid receptor, OPRK1, in a functionally under-characterized cell type known as cerebrospinal fluid-contacting neuron (CSF-cN). We also discover a neighbouring cell population that expresses the cognate ligand prodynorphin (PDYN). Whereas κ-opioids are typically considered inhibitory, they excite CSF-cNs to inhibit ependymal proliferation. Systemic administration of a κ-antagonist enhances ependymal proliferation in uninjured spinal cords in a CSF-cN-dependent manner. Moreover, a κ-agonist impairs ependymal proliferation, scar formation and motor function following injury. Together, our data suggest a paracrine signalling pathway in which PDYN+ cells tonically release κ-opioids to stimulate CSF-cNs and suppress ependymal proliferation, revealing an endogenous mechanism and potential pharmacological strategy for modulating scarring after spinal cord injury.
Collapse
Affiliation(s)
- Wendy W S Yue
- Department of Physiology, University of California, San Francisco, CA, USA.
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Li Z, Huang R, Xia M, Chang N, Guo W, Liu J, Dong F, Liu B, Varghese A, Aslam A, Patterson TA, Hong H. Decoding the κ Opioid Receptor (KOR): Advancements in Structural Understanding and Implications for Opioid Analgesic Development. Molecules 2024; 29:2635. [PMID: 38893511 PMCID: PMC11173883 DOI: 10.3390/molecules29112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The opioid crisis in the United States is a significant public health issue, with a nearly threefold increase in opioid-related fatalities between 1999 and 2014. In response to this crisis, society has made numerous efforts to mitigate its impact. Recent advancements in understanding the structural intricacies of the κ opioid receptor (KOR) have improved our knowledge of how opioids interact with their receptors, triggering downstream signaling pathways that lead to pain relief. This review concentrates on the KOR, offering crucial structural insights into the binding mechanisms of both agonists and antagonists to the receptor. Through comparative analysis of the atomic details of the binding site, distinct interactions specific to agonists and antagonists have been identified. These insights not only enhance our understanding of ligand binding mechanisms but also shed light on potential pathways for developing new opioid analgesics with an improved risk-benefit profile.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (R.H.); (M.X.)
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (R.H.); (M.X.)
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Wenjing Guo
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Bailang Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Ann Varghese
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Aasma Aslam
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Tucker A. Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (Z.L.); (W.G.); (J.L.); (F.D.); (B.L.); (A.V.); (A.A.)
| | - Huixiao Hong
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA; (R.H.); (M.X.)
| |
Collapse
|
3
|
Huang P, Ho CK, Cao D, Inan S, Rawls SM, Li M, Huang B, Pagare PP, Townsend EA, Poklis JL, Halquist MS, Banks M, Zhang Y, Liu-Chen LY. NCP, a dual kappa and mu opioid receptor agonist, is a potent analgesic against inflammatory pain without reinforcing or aversive properties. J Pharmacol Exp Ther 2024; 389:JPET-AR-2023-001870. [PMID: 38409113 PMCID: PMC10949162 DOI: 10.1124/jpet.123.001870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
While agonists of mu (MOR) and kappa (KOR) opioid receptors have analgesic effects, they produce euphoria and dysphoria, respectively. Other side effects include respiratory depression and addiction for MOR agonists and sedation for KOR agonists. We reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-{[4'-(2'-cyanopyridyl)]carboxamido}cmorphinan (NCP) displayed potent KOR full agonist and MOR partial agonist activities (58%) with 6.5x KOR-over-MOR selectivity in vitro Herein, we characterized pharmacological effects of NCP in rodents. In mice, NCP exerted analgesic effects against inflammatory pain in both the formalin test and the acetic acid writhing test, with A50 values of 47.6 and 14.4 microg/kg (s.c.), respectively. The analgesic effects in the acetic acid writhing test were mediated by the KOR. NCP at doses much higher than those effective in reducing inflammatory pain did not produce antinociception in the hot plate and tail flick tests, inhibit compound 48/80-induced scratching, cause conditioned place aversion (CPA) or preference, impair rotarod performance, inhibit locomotor activity, cause respiratory depression, or precipitate morphine withdrawal. However, NCP (10~100 microg/kg) inhibited gastrointestinal transit with a maximum of ~40% inhibition. In MOR knockout mice, NCP caused CPA, demonstrating that its lack of CPA is due to combined actions on the MOR and KOR. Following s.c. injection, NCP penetrated into the mouse brain. In rats trained to self-administer heroin, NCP (1~320 microg/kg/infusion) did not function as a reinforcer. Thus, NCP produces potent analgesic effects via KOR without side effects except constipation. Therefore, dual full KOR/partial MOR agonists with moderate KOR-over-MOR selectivity may be promising as non-addictive analgesics for inflammatory pain. Significance Statement Developing non-addictive analgesics is crucial for reducing opioid overdose deaths, minimizing drug misuse, and promoting safer pain management practices. Herein, pharmacology of a potential non-addictive analgesic, NCP, is reported. NCP has full KOR agonist / partial MOR agonist activities with a 6.5 x selectivity for KOR over MOR. Unlike MOR agonists, analgesic doses of NCP do not lead to self-administration or respiratory depression. Furthermore, NCP does not produce aversion, hypolocomotion, or motor incoordination, side effects typically associated with KOR activation.
Collapse
Affiliation(s)
- Peng Huang
- Temple University Lewis Katz School of Medicine, United States
| | - Conrad K Ho
- Temple University Lewis Katz School of Medicine, United States
| | - Danni Cao
- Temple University Lewis Katz School of Medicine, United States
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Lewis Katz School of Medicine, Temple University, United States
| | - Scott M Rawls
- Temple University Lewis Katz School of Medicine, United States
| | - Mengchu Li
- Virginia Commonwealth University School of Pharmacy, United States
| | - Boshi Huang
- Virginia Commonwealth University School of Pharmacy, United States
| | - Piyusha P Pagare
- Virginia Commonwealth University School of Pharmacy, United States
| | | | | | | | - Matthew Banks
- Virginia Commonwealth University School of Medicine, United States
| | - Yan Zhang
- Virginia Commonwealth University School of Pharmacy, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, United States
| |
Collapse
|
4
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Leon Duque MA, Vallavoju N, Woo CM. Chemical tools for the opioids. Mol Cell Neurosci 2023; 125:103845. [PMID: 36948231 PMCID: PMC10247539 DOI: 10.1016/j.mcn.2023.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.
Collapse
Affiliation(s)
- Mark Anthony Leon Duque
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, United States of America.
| |
Collapse
|
6
|
Liu-Chen LY, Huang P. Signaling underlying kappa opioid receptor-mediated behaviors in rodents. Front Neurosci 2022; 16:964724. [PMID: 36408401 PMCID: PMC9670127 DOI: 10.3389/fnins.2022.964724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022] Open
Abstract
Kappa opioid receptor (KOR) agonists are potentially useful as analgesic and anti-pruritic agents, for prevention and treatment of substance use disorders, and for treatment of demyelinating diseases. However, side effects of KOR agonists, including psychotomimesis, dysphoria, and sedation, have caused early termination of clinical trials. Understanding the signaling mechanisms underlying the beneficial therapeutic effects and the adverse side effects may help in the development of KOR agonist compounds. In this review, we summarize the current knowledge in this regard in five sections. First, studies conducted on mutant mouse lines (GRK3-/-, p38alpha MAPK-/-, β-arrestin2-/-, phosphorylation-deficient KOR) are summarized. In addition, the abilities of four distinct KOR agonists, which have analgesic and anti-pruritic effects with different side effect profiles, to cause KOR phosphorylation are discussed. Second, investigations on the KOR agonist nalfurafine, both in vitro and in vivo are reviewed. Nalfurafine was the first KOR full agonist approved for clinical use and in the therapeutic dose range it did not produce significant side effects associated with typical KOR agonists. Third, large-scale high-throughput phosphoproteomic studies without a priori hypotheses are described. These studies have revealed that KOR-mediated side effects are associated with many signaling pathways. Fourth, several novel G protein-biased KOR agonists that have been characterized for in vitro biochemical properties and agonist biases and in vivo behavior effects are described. Lastly, possible mechanisms underlying KOR-mediated CPA, hypolocomotion and motor incoordination are discussed. Overall, it is agreed upon that the analgesic and anti-pruritic effects of KOR agonists are mediated via G protein signaling. However, there is no consensus on the mechanisms underlying their side effects. GRK3, p38 MAPK, β-arrestin2, mTOR pathway, CB1 cannabinoid receptor and protein kinase C have been implicated in one side effect or another. For drug discovery, after initial in vitro characterization, in vivo pharmacological characterizations in various behavior tests are still the most crucial steps and dose separation between beneficial therapeutic effects and adverse side effects are the critical determinant for the compounds to be moved forward for clinical development.
Collapse
Affiliation(s)
- Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
7
|
Chen C, Huang P, Bland K, Li M, Zhang Y, Liu-Chen LY. Agonist-Promoted Phosphorylation and Internalization of the Kappa Opioid Receptor in Mouse Brains: Lack of Connection With Conditioned Place Aversion. Front Pharmacol 2022; 13:835809. [PMID: 35652052 PMCID: PMC9149264 DOI: 10.3389/fphar.2022.835809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Selective kappa opioid receptor (KOR) agonists are promising antipruritic agents and analgesics. However, clinical development of KOR agonists has been limited by side effects, including psychotomimetic effects, dysphoria, and sedation, except for nalfurafine, and recently. CR845 (difelikefalin). Activation of KOR elicits G protein- and β-arrestin-mediated signaling. KOR-induced analgesic and antipruritic effects are mediated by G protein signaling. However, different results have been reported as to whether conditioned place aversion (CPA) induced by KOR agonists is mediated by β-arrestin signaling. In this study, we examined in male mice if there was a connection between agonist-promoted CPA and KOR phosphorylation and internalization, proxies for β-arrestin recruitment in vivo using four KOR agonists. Herein, we demonstrated that at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, promoted KOR phosphorylation at T363 and S369 in mouse brains, as detected by immunoblotting with phospho-KOR-specific antibodies. In addition, at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, caused KOR internalization in the ventral tegmental area of a mutant mouse line expressing a fusion protein of KOR conjugated at the C-terminus with tdTomato (KtdT). We have reported previously that the KOR agonists U50,488H and methoxymethyl salvinorin B (MOM-SalB) cause CPA, whereas nalfurafine and 42B do not, at doses effective for analgesic and antiscratch effects. Taken together, these data reveal a lack of connection between agonist-promoted KOR-mediated CPA with agonist-induced KOR phosphorylation and internalization in male mice.
Collapse
Affiliation(s)
- Chongguang Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Huang
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Kathryn Bland
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Agonist-promoted kappa opioid receptor (KOR) phosphorylation has behavioral endpoint-dependent and sex-specific effects. Neuropharmacology 2022; 202:108860. [PMID: 34736959 PMCID: PMC9122667 DOI: 10.1016/j.neuropharm.2021.108860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
We reported previously that the selective agonist U50,488H promoted phosphorylation of the mouse kappa opioid receptor (mKOR) in vitro at four residues in the C-terminal domain. In this study, we generated a mutant mouse line in which all the four residues were mutated to Ala (K4A) to examine the in vivo functional significance of agonist-induced KOR phosphorylation. U50,488H promoted KOR phosphorylation in brains of the wildtype (WT), but not K4A, male and female mice. Autoradiography of [3H] 69,593 binding to KOR in brain sections showed that WT and K4A mice had similar KOR distribution and expression levels in brain regions without sex differences. In K4A mice, U50,488H inhibited compound 48/80-induced scratching and attenuated novelty-induced hyperlocomotion to similar extents as in WT mice without sex differences. Interestingly, repeated pretreatment with U50,488H (80 mg/kg, s.c.) resulted in profound tolerance to the anti-scratch effects of U50,488H (5 mg/kg, s.c.) in WT mice of both sexes and female K4A mice, while in male K4A mice tolerance was attenuated. Moreover, U50,488H (2 mg/kg) induced conditioned place aversion (CPA) in WT mice of both sexes and male K4A mice, but not in female K4A mice. In contrast, U50,488H (5 mg/kg) caused CPA in male, but not female, mice, regardless of genotype. Thus, agonist-promoted KOR phosphorylation plays important roles in U50,488H-induced tolerance and CPA in a sex-dependent manner, without affecting acute U50,488H-induced anti-pruritic and hypo-locomotor effects. These results are the first to demonstrate sex differences in the effects of GPCR phosphorylation on the GPCR-mediated behaviors.
Collapse
|
9
|
Zhao Y, Joshi AA, Aldrich JV, Murray TF. Quantification of kappa opioid receptor ligand potency, efficacy and desensitization using a real-time membrane potential assay. Biomed Pharmacother 2021; 143:112173. [PMID: 34536757 PMCID: PMC8516733 DOI: 10.1016/j.biopha.2021.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 10/25/2022] Open
Abstract
We explored the utility of the real-time FLIPR Membrane Potential (FMP) assay as a method to assess kappa opioid receptor (KOR)-induced hyperpolarization. The FMP Blue dye was used to measure fluorescent signals reflecting changes in membrane potential in KOR expressing CHO (CHO-KOR) cells. Treatment of CHO-KOR cells with kappa agonists U50,488 or dynorphin [Dyn (1-13)NH2] produced rapid and concentration-dependent decreases in FMP Blue fluorescence reflecting membrane hyperpolarization. Both the nonselective opioid antagonist naloxone and the κ-selective antagonists nor-binaltorphimine (nor-BNI) and zyklophin produced rightward shifts in the U50,488 concentration-response curves, consistent with competitive antagonism of the KOR mediated response. The decrease in fluorescent emission produced by U50,488 was blocked by overnight pertussis toxin pretreatment, indicating the requirement for PTX-sensitive G proteins in the KOR mediated response. We directly compared the potency of U50,488 and Dyn (1-13)NH2 in the FMP and [35S]GTPγS binding assays, and found that both were approximately 10 times more potent in the cellular fluorescence assay. The maximum responses of both U50,488 and Dyn (1-13)NH2 declined following repeated additions, reflecting receptor desensitization. We assessed the efficacy and potency of structurally distinct KOR small molecule and peptide ligands. The FMP assay reliably detected both partial agonists and stereoselectivity. Using KOR-selective peptides with varying efficacies, we found that the FMP assay allowed high throughput quantification of peptide efficacy. These data demonstrate that the FMP assay is a sensitive method for assessing κ-opioid receptor induced hyperpolarization, and represents a useful approach for quantification of potency, efficacy and desensitization of KOR ligands.
Collapse
Affiliation(s)
- Yuanzi Zhao
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
| | - Anand A Joshi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA.
| | - Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - Thomas F Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|