1
|
Granulocyte Colony-Stimulating Factor for Treatment of Patients with Chronic Traumatic Brain Injury: A Preliminary Pre-Post Study. Brain Sci 2021; 11:brainsci11111441. [PMID: 34827440 PMCID: PMC8615826 DOI: 10.3390/brainsci11111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic traumatic brain injury (TBI) can cause permanent disability and thereby negatively affect patients, families, and society. Currently, there is no effective treatment for patients with chronic TBI. One possible option is granulocyte colony-stimulating factor (G-CSF), which has potential neuroregenerative and neuroprotective effects through its ability to mobilize hematopoietic stem cells and increase neurogenic growth factor levels. Previous studies have shown that G-CSF administration is safe for patients with neurological diseases such as stroke and dementia. The present study aimed to explore the safety and efficacy of G-CSF use in patients with chronic TBI. Methods: 38 patients with chronic TBI were administered 3-day rounds of G-CSF (10 μg/kg per day) once a month for 6 months. These patients were clinically evaluated using the modified Rankin scale (mRS) and Karnofsky Performance Score (KPS). Laboratory measures of the leucocyte counts and differential count percentage were also assessed. Results: At the 6-month follow-up, further assessment showed that patients tolerated the treatment well with only mild and transient side effects being observed. Further clinical evaluation showed significant improvements in mRS and KPS after G-CSF treatment. Laboratory results also confirmed the action of the medication, with increased leukocytosis and band forms. Conclusions: The results suggest that 6-month chronic G-CSF treatment is safe for patients with chronic TBI and may provide clinical benefits and neurological improvements. The adverse effects of the treatment, however, are transient and usually tolerable. Thus, these preliminary findings suggest that future clinical trials of G-CSF use in patients with chronic TBI are warranted.
Collapse
|
2
|
Liska MG, Dela Peña I. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury. Brain Circ 2017; 3:143-151. [PMID: 30276316 PMCID: PMC6057694 DOI: 10.4103/bc.bc_19_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Michael G Liska
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, College of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
3
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
4
|
de la Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regen Med 2015; 9:409-12. [PMID: 25159056 DOI: 10.2217/rme.14.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ike de la Peña
- Department of Neurosurgery & Brain Repair, Center of Excellence for Aging & Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
5
|
Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, Tang J. G-CSF attenuates neuroinflammation and stabilizes the blood-brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 2015; 272:135-44. [PMID: 25585014 PMCID: PMC4499024 DOI: 10.1016/j.expneurol.2014.12.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Neonatal hypoxia occurs in approximately 60% of premature births and is associated with a multitude of neurological disorders. While various treatments have been developed, translating them from bench to bedside has been limited. We previously showed G-CSF administration was neuroprotective in a neonatal hypoxia-ischemia rat pup model, leading us to hypothesize that G-CSF inactivation of GSK-3β via the PI3K/Akt pathway may attenuate neuroinflammation and stabilize the blood-brain barrier (BBB). METHODS P10 Sprague-Dawley rat pups were subjected to unilateral carotid artery ligation followed by hypoxia for 2.5h. We assessed inflammation by measuring expression levels of IKKβ, NF-κB, TNF-α, IL-1β, IL-10, and IL-12 as well as neutrophil infiltration. BBB stabilization was evaluated by measuring Evans blue extravasation, and Western blot analysis of Claudin-3, Claudin-5, ICAM-1, and VCAM-1. MEASUREMENTS AND MAIN RESULTS First, the time course study showed that p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels peaked at 48h post-HI. The knockdown of GSK-3β with siRNA prevented the HI-induced increase of p-β-catenin/β-catenin, IKKβ, and NF-κB expression levels 48h after HI. G-CSF treatment reduced brain water content and neuroinflammation by downregulating IKKβ, NF-κB, TNF-α, IL-1β, and IL-12 and upregulating IL-10, thereby reducing neutrophil infiltration. Additionally, G-CSF stabilizes the BBB by downregulating VCAM-1 and ICAM-1, as well as upregulating Claudins 3 and 5 in endothelial cells. G-CSFR knockdown by siRNA and Akt inhibition by Wortmannin reversed G-CSF's neuroprotective effects. CONCLUSIONS We demonstrate G-CSF plays a pivotal role in attenuating neuroinflammation and BBB disruption following HI by inactivating GSK-3β through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li Li
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Devin W McBride
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Brandon J Dixon
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Paul R Krafft
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
6
|
De La Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant 2015; 24:447-57. [PMID: 25646620 DOI: 10.3727/096368915x686913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI), a major contributor to deaths and permanent disability worldwide, has been recently described as a progressive cell death process rather than an acute event. TBI pathophysiology is complicated and can be distinguished by the initial primary injury and the subsequent secondary injury that ensues days after the trauma. Therapeutic opportunities for TBI remain very limited with patients subjected to surgery or rehabilitation therapy. The efficacy of stem cell-based interventions, as well as neuroprotective agents in other neurological disorders of which pathologies overlap with TBI, indicates their potential as alternative TBI treatments. Furthermore, their therapeutic limitations may be augmented when combination therapy is pursued instead of using a single agent. Indeed, we demonstrated remarkable combined efficacy of human umbilical cord blood (hUCB) cell therapy and granulocyte-colony-stimulating factor (G-CSF) treatment in TBI models, providing essential evidence for the translation of this approach to treat TBI. Further studies are warranted to determine the mechanisms underlying therapeutic benefits exerted by hUCB + G-CSF in order to enhance its safety and efficacy in the clinic.
Collapse
Affiliation(s)
- Ike De La Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
7
|
Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One 2014; 9:e90953. [PMID: 24621603 PMCID: PMC3951247 DOI: 10.1371/journal.pone.0090953] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/06/2014] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with neuro-inflammation, debilitating sensory-motor deficits, and learning and memory impairments. Cell-based therapies are currently being investigated in treating neurotrauma due to their ability to secrete neurotrophic factors and anti-inflammatory cytokines that can regulate the hostile milieu associated with chronic neuroinflammation found in TBI. In tandem, the stimulation and mobilization of endogenous stem/progenitor cells from the bone marrow through granulocyte colony stimulating factor (G-CSF) poses as an attractive therapeutic intervention for chronic TBI. Here, we tested the potential of a combined therapy of human umbilical cord blood cells (hUCB) and G-CSF at the acute stage of TBI to counteract the progressive secondary effects of chronic TBI using the controlled cortical impact model. Four different groups of adult Sprague Dawley rats were treated with saline alone, G-CSF+saline, hUCB+saline or hUCB+G-CSF, 7-days post CCI moderate TBI. Eight weeks after TBI, brains were harvested to analyze hippocampal cell loss, neuroinflammatory response, and neurogenesis by using immunohistochemical techniques. Results revealed that the rats exposed to TBI treated with saline exhibited widespread neuroinflammation, impaired endogenous neurogenesis in DG and SVZ, and severe hippocampal cell loss. hUCB monotherapy suppressed neuroinflammation, nearly normalized the neurogenesis, and reduced hippocampal cell loss compared to saline alone. G-CSF monotherapy produced partial and short-lived benefits characterized by low levels of neuroinflammation in striatum, DG, SVZ, and corpus callosum and fornix, a modest neurogenesis, and a moderate reduction of hippocampal cells loss. On the other hand, combined therapy of hUCB+G-CSF displayed synergistic effects that robustly dampened neuroinflammation, while enhancing endogenous neurogenesis and reducing hippocampal cell loss. Vigorous and long-lasting recovery of motor function accompanied the combined therapy, which was either moderately or short-lived in the monotherapy conditions. These results suggest that combined treatment rather than monotherapy appears optimal for abrogating histophalogical and motor impairments in chronic TBI.
Collapse
Affiliation(s)
- Sandra A. Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- Office of Research and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Juan Sanchez-Ramos
- James Haley Veterans Affairs Medical Center, Tampa, Florida, United States of America
- Department of Neurology, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Shijie Song
- James Haley Veterans Affairs Medical Center, Tampa, Florida, United States of America
- Department of Neurology, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yang DY, Chen YJ, Wang MF, Pan HC, Chen SY, Cheng FC. Granulocyte colony-stimulating factor enhances cellular proliferation and motor function recovery on rats subjected to traumatic brain injury. Neurol Res 2010; 32:1041-9. [PMID: 20810026 DOI: 10.1179/016164110x12807570510013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) results in neurological dysfunction and death through primary or secondary mechanisms. Here, we evaluated the effect of osmotic pump delivery of granulocyte colony-stimulating factor (G-CSF) on the histopathology and motor function recovery of rats after experimental TBI. METHODS Sprague-Dawley rats were used as experimental model by fluid percussion device to cause brain injury on the motor cortex area. The rats were simultaneously subjected to TBI and were implanted of min-osmotic pump containing recombinant human G-CSF (300 μg/700 μl) via intraperitoneal injection. Motor function was assessed by rotarod test. 5-bromo-2'-deoxyuridine (BrdU) was used to label the proliferating cells and their differentiation was evaluated by histology and immunohistochemistry. RESULTS The G-CSF group showed significantly better motor function recovery than the control group, and the effect lasted up to 14 days after TBI. Moreover, the G-CSF group exhibited a greater increase in the number of BrdU-positive cells compared with the control group. The G-CSF group also had a significantly higher number of DCX-positive cells in the ipsilateral subventricular zone (SVZ) than the control group. CONCLUSIONS These data suggest that the beneficial effect of delivering G-CSF via an osmotic pump may improve the motor function and enhance neurogenesis in the SVZ of the injured brain.
Collapse
Affiliation(s)
- Dar-Yu Yang
- Department of Neurosurgery, Chang Bing Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Matchett GA, Calinisan JB, Matchett GC, Martin RD, Zhang JH. The effect of granulocyte-colony stimulating factor in global cerebral ischemia in rats. Brain Res 2007; 1136:200-7. [PMID: 17210148 PMCID: PMC1820631 DOI: 10.1016/j.brainres.2006.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/07/2006] [Accepted: 12/08/2006] [Indexed: 11/23/2022]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is an endogenous peptide hormone of the hematopoietic system that has entered Phase I/II clinical trials for treatment of ischemic stroke. Severe intraoperative hypotension can lead to global cerebral ischemia and apoptotic neuron loss within the hippocampus. We tested G-CSF in a rat model of global cerebral ischemia. Global cerebral ischemia was induced in male Sprague-Dawley rats (280-330 g) with the 2-vessel occlusion model (hemorrhagic hypotension to a mean arterial pressure of 30-35 mm Hg and bilateral common carotid artery occlusion for 8 min). Three groups of animals were used: global ischemia without treatment (GI, n=49), global ischemia with G-CSF treatment (GI+G-CSF, n=42), and sham surgery (Sham, n=26). Rats in the treatment group received G-CSF (50 mug/kg, subcutaneously) 12 h before surgery, on the day of surgery, and on postoperative Day 1 and were euthanized on Days 2, 3, and 14. Mild hyperglycemia was observed in all groups. T-maze testing for spontaneous alternation demonstrated initial improvement in the G-CSF treatment group but no long-term benefit. Measurement of daily body weight demonstrated an initial trend toward improvement in the G-CSF group. Quantitative Nissl histology of the hippocampus demonstrated equivalent outcomes on Days 3 and 14, which was supported by quantitative TUNEL stain. Immunohistochemistry and Western blot demonstrated an initial increase in phosphorylated-AKT in the GI+G-CSF group on Day 2. We conclude that G-CSF treatment is associated with transient early improvement in neurobehavioral outcomes after global ischemia complicated by mild hyperglycemia, but no long-term protection.
Collapse
Affiliation(s)
- Gerald A. Matchett
- Department of Anesthesiology, Loma Linda, University School of Medicine, Loma Linda, CA
| | - Jason B. Calinisan
- Department of Anesthesiology, Loma Linda, University School of Medicine, Loma Linda, CA
| | - Genoveve C. Matchett
- Department of Anesthesiology, Loma Linda, University School of Medicine, Loma Linda, CA
| | - Robert D. Martin
- Department of Anesthesiology, Loma Linda, University School of Medicine, Loma Linda, CA
| | - John H. Zhang
- Department of Anesthesiology, Loma Linda, University School of Medicine, Loma Linda, CA
- Department of Physiology and Pharmacology, Loma Linda, University School of Medicine, Loma Linda, CA
- Department of Neurosurgery, Loma Linda, University School of Medicine, Loma Linda, CA
| |
Collapse
|