1
|
Liffner B, Absalon S. Expansion microscopy of apicomplexan parasites. Mol Microbiol 2024; 121:619-635. [PMID: 37571814 DOI: 10.1111/mmi.15135] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Apicomplexan parasites comprise significant pathogens of humans, livestock and wildlife, but also represent a diverse group of eukaryotes with interesting and unique cell biology. The study of cell biology in apicomplexan parasites is complicated by their small size, and historically this has required the application of cutting-edge microscopy techniques to investigate fundamental processes like mitosis or cell division in these organisms. Recently, a technique called expansion microscopy has been developed, which rather than increasing instrument resolution like most imaging modalities, physically expands a biological sample. In only a few years since its development, a derivative of expansion microscopy known as ultrastructure-expansion microscopy (U-ExM) has been widely adopted and proven extremely useful for studying cell biology of Apicomplexa. Here, we review the insights into apicomplexan cell biology that have been enabled through the use of U-ExM, with a specific focus on Plasmodium, Toxoplasma and Cryptosporidium. Further, we summarize emerging expansion microscopy modifications and modalities and forecast how these may influence the field of parasite cell biology in future.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Patra KP, Kaur H, Kolli SK, Wozniak JM, Prieto JH, Yates JR, Gonzalez DJ, Janse CJ, Vinetz JM. A Hetero-Multimeric Chitinase-Containing Plasmodium falciparum and Plasmodium gallinaceum Ookinete-Secreted Protein Complex Involved in Mosquito Midgut Invasion. Front Cell Infect Microbiol 2021; 10:615343. [PMID: 33489941 PMCID: PMC7821095 DOI: 10.3389/fcimb.2020.615343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria parasites are transmitted by Anopheles mosquitoes. During its life cycle in the mosquito vector the Plasmodium ookinete escapes the proteolytic milieu of the post-blood meal midgut by traversing the midgut wall. This process requires penetration of the chitin-containing peritrophic matrix lining the midgut epithelium, which depends in part on ookinete-secreted chitinases. Plasmodium falciparum ookinetes have one chitinase (PfCHT1), whereas ookinetes of the avian-infecting parasite, P. gallinaceum, have two, a long and a short form, PgCHT1 and PgCHT2, respectively. Published data indicates that PgCHT2 forms a high molecular weight (HMW) reduction-sensitive complex; and one binding partner is the ookinete-produced von Willebrand A-domain-containing protein, WARP. Size exclusion chromatography data reported here show that P. gallinaceum PgCHT2 and its ortholog, P. falciparum PfCHT1 are covalently-linked components of a HMW chitinase-containing complex (> 1,300 kDa). Mass spectrometry of ookinete-secreted proteins isolated using a new chitin bead pull-down method identified chitinase-associated proteins in P. falciparum and P. gallinaceum ookinete-conditioned culture media. Mass spectrometry of this complex showed the presence of several micronemal proteins including von Willebrand factor A domain-related protein (WARP), ookinete surface enolase, and secreted ookinete adhesive protein (SOAP). To test the hypothesis that ookinete-produced PfCHT1 can form a high molecular homo-multimer or, alternatively, interacts with P. berghei ookinete-produced proteins to produce an HMW hetero-multimer, we created chimeric P. berghei parasites expressing PfCHT1 to replace PbCHT1, enabling the production of large numbers of PfCHT1-expressing ookinetes. We show that chimeric P. berghei ookinetes express monomeric PfCHT1, but a HMW complex containing PfCHT1 is not present. A better understanding of the chitinase-containing HMW complex may enhance development of next-generation vaccines or drugs that target malaria transmission stages.
Collapse
Affiliation(s)
- Kailash P Patra
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Hargobinder Kaur
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob M Wozniak
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Judith Helena Prieto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Department of Chemistry, Western Connecticut State University, Danbury, CT, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Azevedo R, Mendes AM, Prudêncio M. The Impact of Antiretroviral Therapy on Malaria Parasite Transmission. Front Microbiol 2020; 10:3048. [PMID: 32038528 PMCID: PMC6993566 DOI: 10.3389/fmicb.2019.03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Coendemicity between the human immunodeficiency virus (HIV) and Plasmodium parasites, the causative agents of acquired immunodeficiency syndrome (AIDS) and malaria, respectively, occurs in several regions around the world. Although the impact of the interaction between these two organisms is not well understood, it is thought that the outcome of either disease may be negatively influenced by coinfection. Therefore, it is important to understand how current first-line antiretroviral therapies (ART) might impact Plasmodium infection in these regions. Here, we describe the effect of 18 antiretroviral compounds and of first-line ART on the blood and sporogonic stages of Plasmodium berghei in vitro and in vivo. We show that the combination zidovudine + lamivudine + lopinavir/ritonavir (LPV/r), employed as first-line HIV treatment in the field, has a strong inhibitory activity on the sporogonic stages of P. berghei and that several non-nucleoside reverse transcriptase inhibitors (NNRTI) have a moderate effect on this stage of the parasite’s life cycle. Our results expose the effect of current first-line ART on Plasmodium infection and identify potential alternative therapies for HIV/AIDS that might impact malaria transmission.
Collapse
Affiliation(s)
- Raquel Azevedo
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - António M Mendes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Prudêncio
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Azevedo R, Mendes AM, Prudêncio M. Inhibition of Plasmodium sporogonic stages by ivermectin and other avermectins. Parasit Vectors 2019; 12:549. [PMID: 31752986 PMCID: PMC6873674 DOI: 10.1186/s13071-019-3805-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background The transmissible forms of Plasmodium parasites result from a process of sporogony that takes place inside their obligatory mosquito vector and culminates in the formation of mammalian-infective parasite forms. Ivermectin is a member of the avermectin family of endectocides, which has been proposed to inhibit malaria transmission due its insecticidal effect. However, it remains unclear whether ivermectin also exerts a direct action on the parasite’s blood and transmission stages. Methods We employed a rodent model of infection to assess the impact of ivermectin treatment on P. berghei asexual and sexual blood forms in vivo. We then made use of a newly established luminescence-based methodology to evaluate the activity of ivermectin and other avermectins against the sporogonic stages of P. berghei parasites in vitro independent of their role on mosquito physiology. Results Our results show that whereas ivermectin does not affect the parasite’s parasitemia, gametocytemia or exflagellation in the mammalian host, several members of the avermectin family of compounds exert a strong inhibitory effect on the generation and development of P. berghei oocysts. Conclusions Our results shed light on the action of avermectins against Plasmodium transmission stages and highlight the potential of these compounds to help prevent the spread of malaria.
Collapse
Affiliation(s)
- Raquel Azevedo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
| |
Collapse
|
5
|
Vaughan AM, Kappe SHI. Malaria Parasite Liver Infection and Exoerythrocytic Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025486. [PMID: 28242785 DOI: 10.1101/cshperspect.a025486] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109.,Department of Global Health, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Patra KP, Vinetz JM. New ultrastructural analysis of the invasive apparatus of the Plasmodium ookinete. Am J Trop Med Hyg 2012; 87:412-7. [PMID: 22802443 DOI: 10.4269/ajtmh.2012.11-0609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasion of the mosquito midgut by the Plasmodium ookinete determines the success of transmission of malaria parasites from humans to mosquitoes and therefore, is a potential target for molecular intervention. Here, we show higher-resolution ultrastructural details of developing and mature P. gallinaceum ookinetes than previously available. Improved fixation and processing methods yielded substantially improved transmission electron micrographs of ookinetes, particularly with regard to visualization of subcellular secretory and other organelles. These new images provide new insights into the synthesis and function of vital invasive machinery focused on the following features: apical membrane protrusions presumptively used for attachment and protein secretion, dark spherical bodies at the apical end of the mature ookinete, and the presence of a dense array of micronemes apposed to microtubules at the apical end of the ookinete involved in constitutive secretion. This work advances understanding of the molecular and cellular details of the Plasmodium ookinete and provides the basis of future, more detailed mechanistic experimentation on the biology of the Plasmodium ookinete.
Collapse
Affiliation(s)
- Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
7
|
Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, Sinden RE, Leroy D. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med 2012; 9:e1001169. [PMID: 22363211 PMCID: PMC3283556 DOI: 10.1371/journal.pmed.1001169] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. METHODS AND FINDINGS Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. CONCLUSIONS These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.
Collapse
Affiliation(s)
- Michael Delves
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - David Plouffe
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Christian Scheurer
- Swiss Tropical & Public Health Institute Swiss TPH, Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stephan Meister
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Sergio Wittlin
- Swiss Tropical & Public Health Institute Swiss TPH, Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Elizabeth A. Winzeler
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| |
Collapse
|
8
|
Mueller AK, Kohlhepp F, Hammerschmidt C, Michel K. Invasion of mosquito salivary glands by malaria parasites: prerequisites and defense strategies. Int J Parasitol 2010; 40:1229-35. [PMID: 20621627 DOI: 10.1016/j.ijpara.2010.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
9
|
Li F, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM. Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the plasmodium ookinete. J Biol Chem 2010; 285:8076-83. [PMID: 20056606 DOI: 10.1074/jbc.m109.063388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To invade its definitive host, the mosquito, the malaria parasite must cross the midgut peritrophic matrix that is composed of chitin cross-linked by chitin-binding proteins and then develop into an oocyst on the midgut basal lamina. Previous evidence indicates that Plasmodium ookinete-secreted chitinase is important in midgut invasion. The mechanistic role of other ookinete-secreted enzymes in midgut invasion has not been previously examined. De novo mass spectrometry sequencing of a protein obtained by benzamidine affinity column of Plasmodium gallinaceum ookinete axenic culture supernatant demonstrated the presence of an ookinete-secreted plasmepsin, an aspartic protease previously only known to be present in the digestive vacuole of asexual stage malaria parasites. This plasmepsin, the ortholog of Plasmodium falciparum plasmepsin 4, was designated PgPM4. PgPM4 and PgCHT2 (the P. gallinaceum ortholog of P. falciparum chitinase PfCHT1) are both localized on the ookinete apical surface, and both are present in micronemes. Aspartic protease inhibitors (peptidomimetic and natural product), calpain inhibitors, and anti-PgPM4 monoclonal antibodies significantly reduced parasite infectivity for mosquitoes. These results suggest that plasmepsin 4, previously known only to function in the digestive vacuole of asexual blood stage Plasmodium, plays a role in how the ookinete interacts with the mosquito midgut interactions as it becomes an oocyst. These data are the first to delineate a role for an aspartic protease in mediating Plasmodium invasion of the mosquito and demonstrate the potential for plasmepsin 4 as a malaria transmission-blocking vaccine target.
Collapse
Affiliation(s)
- Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
10
|
Patra KP, Johnson JR, Cantin GT, Yates JR, Vinetz JM. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum. Proteomics 2008; 8:2492-9. [PMID: 18563747 DOI: 10.1002/pmic.200700727] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.
Collapse
Affiliation(s)
- Kailash P Patra
- Department of Medicine, George Palade Laboratories, University of California San Diego, CA 92093, USA
| | | | | | | | | |
Collapse
|
11
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA. Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malar J 2006; 5:68. [PMID: 16887043 PMCID: PMC1557861 DOI: 10.1186/1475-2875-5-68] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 08/03/2006] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The population dynamics of Plasmodium sporogony within mosquitoes consists of an early phase where parasite abundance decreases during the transition from gametocyte to oocyst, an intermediate phase where parasite abundance remains static as oocysts, and a later phase where parasite abundance increases during the release of progeny sporozoites from oocysts. Sporogonic development is complete when sporozoites invade the mosquito salivary glands. The dynamics and efficiency of this developmental sequence were determined in laboratory strains of Anopheles dirus, Anopheles minimus and Anopheles sawadwongporni mosquitoes for Plasmodium vivax parasites circulating naturally in western Thailand. METHODS Mosquitoes were fed blood from 20 symptomatic Thai adults via membrane feeders. Absolute densities were estimated for macrogametocytes, round stages (= female gametes/zygotes), ookinetes, oocysts, haemolymph sporozoites and salivary gland sporozoites. From these census data, five aspects of population dynamics were analysed; 1) changes in life-stage prevalence during early sporogony, 2) kinetics of life-stage formation, 3) efficiency of life-stage transitions, 4) density relationships between successive life-stages, and 5) parasite aggregation patterns. RESULTS There was no difference among the three mosquito species tested in total losses incurred by P. vivax populations during early sporogony. Averaged across all infections, parasite populations incurred a 68-fold loss in abundance, with losses of ca. 19-fold, 2-fold and 2-fold at the first (= gametogenesis/fertilization), second (= round stage transformation), and third (= ookinete migration) life-stage transitions, respectively. However, total losses varied widely among infections, ranging from 6-fold to over 2,000-fold loss. Losses during gametogenesis/fertilization accounted for most of this variability, indicating that gametocytes originating from some volunteers were more fertile than those from other volunteers. Although reasons for such variability were not determined, gametocyte fertility was not correlated with blood haematocrit, asexual parasitaemia, gametocyte density or gametocyte sex ratio. Round stages and ookinetes were present in mosquito midguts for up to 48 hours and development was asynchronous. Parasite losses during fertilization and round stage differentiation were more influenced by factors intrinsic to the parasite and/or factors in the blood, whereas ookinete losses were more strongly influenced by mosquito factors. Oocysts released sporozoites on days 12 to 14, but even by day 22 many oocysts were still present on the midgut. The per capita production was estimated to be approximately 500 sporozoites per oocyst and approximately 75% of the sporozoites released into the haemocoel successfully invaded the salivary glands. CONCLUSION The major developmental bottleneck in early sporogony occurred during the transition from macrogametocyte to round stage. Sporozoite invasion into the salivary glands was very efficient. Information on the natural population dynamics of sporogony within malaria-endemic areas may benefit intervention strategies that target early sporogony (e.g., transmission blocking vaccines, transgenic mosquitoes).
Collapse
Affiliation(s)
- Gabriela E Zollner
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Narong Ponsa
- Department of Entomology, USAMC-AFRIMS, Bangkok, Thailand
| | - Gabriel W Garman
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Shreekanta Poudel
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Jeffrey A Bell
- Department of Entomology, USAMC-AFRIMS, Bangkok, Thailand
| | | | - Russell E Coleman
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Jefferson A Vaughan
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| |
Collapse
|