1
|
Hegde A, Chhallani AK, Gupta B, Kadapatti K, Karnad D, Maheshwarappa HM, Panja S, Routray P, Shah R, Singh SJ, Juneja D. ISCCM Position Statement on the Management of Severe Malaria in Intensive Care Unit. Indian J Crit Care Med 2024; 28:S59-S66. [PMID: 39234225 PMCID: PMC11369926 DOI: 10.5005/jp-journals-10071-24765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/27/2024] [Indexed: 09/06/2024] Open
Abstract
Malaria is a worldwide health concern, but a great majority of cases occur in tropical countries like India. With almost 95% of Indian population living in malaria endemic regions, India contributes to most of the global malaria cases and deaths, outside of African countries. Despite significant advances towards malaria control and eradication, mortality associated with severe malaria remains particularly high. Changing epidemiology, vulnerable patient population, overlapping symptomatology, and limited availability of parenteral preparations of artemisinin derivatives pose significant challenges in management of severe malaria. Further, the dearth of large-scale randomized trials from the developing countries makes it difficult to establish evidence-based guidelines pertaining to their situation. Thus, this position paper aims to provide guidance to critical care physicians across the country on managing patients with severe malaria in intensive care units (ICUs). How to cite this article Hegde A, Chhallani AK, Gupta B, Kadapatti K, Karnad D, Maheshwarappa HM, et al. ISCCM Position Statement on the Management of Severe Malaria in Intensive Care Unit. Indian J Crit Care Med 2024;28(S2):S59-S66.
Collapse
Affiliation(s)
- Ashit Hegde
- Department of General Medicine and Critical Care, PD Hinduja National Hospital, Mumbai, Maharashtra, India
| | - Akshay K Chhallani
- Department of Critical Care Medicine, Apollo Hospital, Navi Mumbai, Maharashtra, India
| | - Bikram Gupta
- Division of Critical Care Medicine, Department of Anaesthesiology, IMS, BHU, Varanasi, Uttar Pradesh, India
| | | | - Dilip Karnad
- Department of Critical Care, Jupiter Hospital, Thane, Maharashtra, India
| | | | - Sauren Panja
- Department of Critical Care Medicine, NH-RN Tagore Hospital, Kolkata, West Bengal, India
| | - Pragyan Routray
- Department of Critical Care, Care Hospitals, Bhubaneswar, Odisha, India
| | - Ritesh Shah
- Department of Critical Care Medicine, Wardwizard Group of Hospitals, Vadodara, Gujarat, India
| | - Simran J Singh
- Department of General Medicine and Critical Care, PD Hinduja Hospital, Mahim, Maharashtra, India
| | - Deven Juneja
- Department of Critical Care Medicine, Max Super Speciality Hospital, Saket, New Delhi, India
| |
Collapse
|
2
|
Carlier MSA, Nyamu W, Makale J, Williams TN, Rowe JA, Kariuki SN. Dantu Blood Group Erythrocytes Form Large Plasmodium falciparum Rosettes Less Commonly. Am J Trop Med Hyg 2024; 110:436-443. [PMID: 38295409 PMCID: PMC10919173 DOI: 10.4269/ajtmh.23-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/04/2023] [Indexed: 02/02/2024] Open
Abstract
Dantu erythrocytes, which express a hybrid glycophorin B/A protein, are protective against severe malaria. Recent studies have shown that Dantu impairs Plasmodium falciparum invasion by increasing erythrocyte membrane tension, but its effects on pathological host-parasite adhesion interactions such as rosetting, the binding of uninfected erythrocytes to P. falciparum-infected erythrocytes, have not been investigated previously. The expression of several putative host rosetting receptors-including glycophorin A (GYPA), glycophorin C (GYPC), complement receptor 1 (CR1), and band 3, which complexes with GYPA to form the Wrightb blood group antigen-are altered on Dantu erythrocytes. Here, we compare receptor expression, and rosetting at both 1 hour and 48 hours after mixing with mature trophozoite-stage Kenyan laboratory-adapted P. falciparum strain 11019 parasites in Dantu and non-Dantu erythrocytes. Dantu erythrocytes showed lower staining for GYPA and CR1, and greater staining for band 3, as observed previously, whereas Wrightb and GYPC staining did not vary significantly. No significant between-genotype differences in rosetting were seen after 1 hour, but the percentage of large rosettes was significantly less in both Dantu heterozygous (mean, 16.4%; standard error of the mean [SEM], 3.2) and homozygous donors (mean, 15.4%; SEM, 1.4) compared with non-Dantu erythrocytes (mean, 32.9%; SEM, 7.1; one-way analysis of variance, P = 0.025) after 48 hours. We also found positive correlations between erythrocyte mean corpuscular volume (MCV), the percentage of large rosettes (Spearman's rs = 0.5970, P = 0.0043), and mean rosette size (rs = 0.5206, P = 0.0155). Impaired rosetting resulting from altered erythrocyte membrane receptor expression and reduced MCV might add to the protective effect of Dantu against severe malaria.
Collapse
Affiliation(s)
- Molly S. A. Carlier
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Wilfred Nyamu
- Department of Epidemiology and Demography, KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Makale
- Department of Epidemiology and Demography, KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas N. Williams
- Department of Epidemiology and Demography, KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - J. Alexandra Rowe
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Silvia N. Kariuki
- Department of Epidemiology and Demography, KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
3
|
Toohey JM, Otero L, Flores Siaca IG, Acevedo MA. Identifying individual and spatial drivers of heterogeneous transmission and virulence of malaria in Caribbean anoles. Ecosphere 2022. [DOI: 10.1002/ecs2.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- John M. Toohey
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Luisa Otero
- Department of Biology University of Puerto Rico San Juan Puerto Rico USA
| | | | - Miguel A. Acevedo
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
- Department of Biology University of Puerto Rico San Juan Puerto Rico USA
| |
Collapse
|
4
|
Abstract
Lactic acidosis and hyperlactatemia are common metabolic disturbances in patients with severe malaria. Lactic acidosis causes physiological adverse effects, which can aggravate the outcome of malaria. Despite its clear association with mortality in malaria patients, the etiology of lactic acidosis is not completely understood. In this review, the possible contributors to lactic acidosis and hyperlactatemia in patients with malaria are discussed. Both increased lactate production and impaired lactate clearance may play a role in the pathogenesis of lactic acidosis. The increased lactate production is caused by several factors, including the metabolism of intraerythrocytic Plasmodium parasites, aerobic glycolysis by activated immune cells, and an increase in anaerobic glycolysis in hypoxic cells and tissues as a consequence of parasite sequestration and anemia. Impaired hepatic and renal lactate clearance, caused by underlying liver and kidney disease, might further aggravate hyperlactatemia. Multiple factors thus participate in the etiology of lactic acidosis in malaria, and further investigations are required to fully understand their relative contributions and the consequences of this major metabolic disturbance.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| |
Collapse
|
5
|
Reuterswärd P, Bergström S, Orikiiriza J, Lindquist E, Bergström S, Andersson Svahn H, Ayoglu B, Uhlén M, Wahlgren M, Normark J, Ribacke U, Nilsson P. Levels of human proteins in plasma associated with acute paediatric malaria. Malar J 2018; 17:426. [PMID: 30442134 PMCID: PMC6238294 DOI: 10.1186/s12936-018-2576-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background The intimate interaction between the pathophysiology of the human host and the biology of the Plasmodium falciparum parasite results in a wide spectrum of disease outcomes in malaria. Development of severe disease is associated with a progressively augmented imbalance in pro- and anti-inflammatory responses to high parasite loads and sequestration of parasitized erythrocytes. Although these phenomena collectively constitute common denominators for the wide variety of discrete severe malaria manifestations, the mechanistic rationales behind discrepancies in outcome are poorly understood. Exploration of the human pathophysiological response by variations in protein profiles in plasma presents an excellent opportunity to increase the understanding. This is ultimately required for better prediction, prevention and treatment of malaria, which is essential for ongoing elimination and eradication efforts. Results An affinity proteomics approach was used to analyse 541 paediatric plasma samples collected from community controls and patients with mild or severe malaria in Rwanda. Protein profiles were generated with an antibody-based suspension bead array containing 255 antibodies targetting 115 human proteins. Here, 57 proteins were identified with significantly altered levels (adjusted p-values < 0.001) in patients with malaria compared to controls. From these, the 27 most significant proteins (adjusted p-values < 10−14) were selected for a stringent analysis approach. Here, 24 proteins showed elevated levels in malaria patients and included proteins involved in acute inflammatory response as well as cell adhesion. The remaining three proteins, also implicated in immune regulation and cellular adhesivity, displayed lower abundance in malaria patients. In addition, 37 proteins (adjusted p-values < 0.05) were identified with increased levels in patients with severe compared to mild malaria. This set includes, proteins involved in tissue remodelling and erythrocyte membrane proteins. Collectively, this approach has been successfully used to identify proteins both with known and unknown association with different stages of malaria. Conclusion In this study, a high-throughput affinity proteomics approach was used to find protein profiles in plasma linked to P. falciparum infection and malaria disease progression. The proteins presented herein are mainly involved in inflammatory response, cellular adhesion and as constituents of erythrocyte membrane. These findings have a great potential to provide increased conceptual understanding of host-parasite interaction and malaria pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12936-018-2576-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philippa Reuterswärd
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Sofia Bergström
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Judy Orikiiriza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Helene Andersson Svahn
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Medicine, Division of Immunology and Rheumatology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mathias Uhlén
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Normark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
6
|
Vandermosten L, Pham TT, Knoops S, De Geest C, Lays N, Van der Molen K, Kenyon CJ, Verma M, Chapman KE, Schuit F, De Bosscher K, Opdenakker G, Van den Steen PE. Adrenal hormones mediate disease tolerance in malaria. Nat Commun 2018; 9:4525. [PMID: 30375380 PMCID: PMC6207723 DOI: 10.1038/s41467-018-06986-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Malaria reduces host fitness and survival by pathogen-mediated damage and inflammation. Disease tolerance mechanisms counter these negative effects without decreasing pathogen load. Here, we demonstrate that in four different mouse models of malaria, adrenal hormones confer disease tolerance and protect against early death, independently of parasitemia. Surprisingly, adrenalectomy differentially affects malaria-induced inflammation by increasing circulating cytokines and inflammation in the brain but not in the liver or lung. Furthermore, without affecting the transcription of hepatic gluconeogenic enzymes, adrenalectomy causes exhaustion of hepatic glycogen and insulin-independent lethal hypoglycemia upon infection. This hypoglycemia is not prevented by glucose administration or TNF-α neutralization. In contrast, treatment with a synthetic glucocorticoid (dexamethasone) prevents the hypoglycemia, lowers cerebral cytokine expression and increases survival rates. Overall, we conclude that in malaria, adrenal hormones do not protect against lung and liver inflammation. Instead, they prevent excessive systemic and brain inflammation and severe hypoglycemia, thereby contributing to tolerance. Disease tolerance mechanisms counter the negative effects of infection without decreasing the pathogen load. Here, the authors show that in mouse models of malaria, such disease tolerance can be conferred by adrenal hormones, by preventing excessive inflammation and hypoglycemia.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Charlotte De Geest
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Natacha Lays
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Kristof Van der Molen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Christopher J Kenyon
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Manu Verma
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Karen E Chapman
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Karolien De Bosscher
- Nuclear Receptor Lab, Receptor Research Laboratories, VIB Center for Medical Biotechnology, Ghent University, Gent, 9000, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
7
|
Bonneaud C, Sepil I, Wilfert L, Calsbeek R. Plasmodium Infections in Natural Populations of Anolis sagrei Reflect Tolerance Rather Than Susceptibility. Integr Comp Biol 2018; 57:352-361. [PMID: 28859403 PMCID: PMC5886326 DOI: 10.1093/icb/icx044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parasites can represent formidable selection pressures for hosts, but the cost of infection is sometimes difficult to demonstrate in natural populations. While parasite exploitation strategies may, in some instances, actually inflict low costs on their hosts, the response of hosts to infection is also likely to determine whether or not these costs can be detected. Indeed, costs of infection may be obscured if infected individuals in the wild are those that are the most tolerant, rather than the most susceptible, to infection. Here we test this hypothesis in two natural populations of Anolis sagrei, one of the most common anole lizard of the Bahamas. Plasmodium parasites were detected in > 7% of individuals and belonged to two distinct clades: P. mexicanum and P. floriensis. Infected individuals displayed greater body condition than non-infected ones and we found no association between infection status, stamina, and survival to the end of the breeding season. Furthermore, we found no significant difference in the immuno-competence (measured as a response to phytohemagglutinin challenge) of infected versus non-infected individuals. Taken together, our results suggest that the infected individuals that are caught in the wild are those most able to withstand the cost of the infection and that susceptible, infected individuals have been removed from the population (i.e., through disease-induced mortality). This study highlights the need for caution when interpreting estimates of infection costs in natural populations, as costs may appear low either when parasites exploitation strategies truly inflict low costs on their hosts or when those costs are so high that susceptible hosts are removed from the population.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10?9EF, UK
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford, OX1?3PS, UK
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10?9EF, UK
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, New Hampshire, Hanover, NH 03755, USA
| |
Collapse
|
8
|
|
9
|
Surowiec I, Gouveia-Figueira S, Orikiiriza J, Lindquist E, Bonde M, Magambo J, Muhinda C, Bergström S, Normark J, Trygg J. The oxylipin and endocannabidome responses in acute phase Plasmodium falciparum malaria in children. Malar J 2017; 16:358. [PMID: 28886714 PMCID: PMC5591560 DOI: 10.1186/s12936-017-2001-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxylipins and endocannabinoids are low molecular weight bioactive lipids that are crucial for initiation and resolution of inflammation during microbial infections. Metabolic complications in malaria are recognized contributors to severe and fatal malaria, but the impact of malaria infection on the production of small lipid derived signalling molecules is unknown. Knowledge of immunoregulatory patterns of these molecules in malaria is of great value for better understanding of the disease and improvement of treatment regimes, since the action of these classes of molecules is directly connected to the inflammatory response of the organism. METHODS Detection of oxylipins and endocannabinoids from plasma samples from forty children with uncomplicated and severe malaria as well as twenty controls was done after solid phase extraction followed by chromatography mass spectrometry analysis. The stable isotope dilution method was used for compound quantification. Data analysis was done with multivariate (principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA®) and univariate approaches (receiver operating characteristic (ROC) curves, t tests, correlation analysis). RESULTS Forty different oxylipin and thirteen endocannabinoid metabolites were detected in the studied samples, with one oxylipin (thromboxane B2, TXB2) in significantly lower levels and four endocannabinoids (OEA, PEA, DEA and EPEA) at significantly higher levels in infected individuals as compared to controls according to t test analysis with Bonferroni correction. Three oxylipins (13-HODE, 9-HODE and 13-oxo-ODE) were higher in severe compared to uncomplicated malaria cases according to the results from multivariate analysis. Observed changes in oxylipin levels can be connected to activation of cytochrome P450 (CYP) and 5-lipoxygenase (5-LOX) metabolic pathways in malaria infected individuals compared to controls, and related to increased levels of all linoleic acid oxylipins in severe patients compared to uncomplicated ones. The endocannabinoids were extremely responsive to malaria infection with majority of this class of molecules found at higher levels in infected individuals compared to controls. CONCLUSIONS It was possible to detect oxylipin and endocannabinoid molecules that can be potential biomarkers for differentiation between malaria infected individuals and controls and between different classes of malaria. Metabolic pathways that could be targeted towards an adjunctive therapy in the treatment of malaria were also pinpointed.
Collapse
Affiliation(s)
- Izabella Surowiec
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sandra Gouveia-Figueira
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Judy Orikiiriza
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Immunology, Trinity College, Dublin, Ireland
- Rwanda Military Hospital, Kigali, Rwanda
| | | | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Charles Muhinda
- Rwanda Military Hospital, Kigali, Rwanda
- Department of Immunology and Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Johan Normark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
- Division of Infectious Diseases, Department Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Oliver SV, Brooke BD. The effects of ingestion of hormonal host factors on the longevity and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PLoS One 2017; 12:e0180909. [PMID: 28700639 PMCID: PMC5507448 DOI: 10.1371/journal.pone.0180909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Exogenous vertebrate-derived factors circulating in the blood have the capacity to modulate the biology of haematophagous insects. These include insulin, insulin growth factor 1 (IGF) and transforming growth factor β1 (TGFβ). The effects of the consumption of these three proteins were examined on laboratory strains of Anopheles arabiensis. SENN, an insecticide susceptible strain and SENN DDT, a resistant strain selected from SENN, were fed with host factor-supplemented sucrose. Adult longevity was measured and insecticide resistance phenotype over time was assessed by WHO bioassay. Detoxification and oxidative stress defence enzyme activity was assessed calorimetrically. Insulin supplementation augmented insecticide resistance in young adult mosquitoes. This effect was due to the hormonal nature of the protein, as heat-denatured insulin did not elicit the same response. In contrast, IGF and TGFβ consumption generally reduced the expression of insecticide resistance. Insulin ingestion significantly reduced longevity in the insecticide susceptible strain. IGF elicited the same response in the susceptible strain, while TGF consumption had no effect on either strain. Consumption of all factors significantly decreased Glutathione S-transferase activity and increased cytochrome P450 and superoxide dismutase activity. This suggests that the altered detoxification phenotype is mediated primarily by cytochrome P450 activity, which would result in an increase in oxidative stress. The increased superoxide dismutase activity suggests that this enzyme class alleviates the oxidative stress as opposed to glutathione-based redox systems. Oxidative stress responses play a crucial role in insecticide resistance and longevity. These data show that ingested hormonal factors can affect mosquito longevity and insecticide susceptibility, both of which are important characteristics in terms of malaria transmission and control.
Collapse
Affiliation(s)
- Shüné V. Oliver
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Basil D. Brooke
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Pigeault R, Vézilier J, Cornet S, Zélé F, Nicot A, Perret P, Gandon S, Rivero A. Avian malaria: a new lease of life for an old experimental model to study the evolutionary ecology of Plasmodium. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140300. [PMID: 26150666 PMCID: PMC4528498 DOI: 10.1098/rstb.2014.0300] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 08/13/2023] Open
Abstract
Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology.
Collapse
Affiliation(s)
- Romain Pigeault
- MIVEGEC (UMR CNRS 5290), Montpellier, France CEFE (UMR CNRS 5175), Montpellier, France
| | | | | | - Flore Zélé
- Centre for Environmental Biology, University of Lisbon, Lisbon, Portugal
| | - Antoine Nicot
- MIVEGEC (UMR CNRS 5290), Montpellier, France CEFE (UMR CNRS 5175), Montpellier, France
| | | | | | - Ana Rivero
- MIVEGEC (UMR CNRS 5290), Montpellier, France
| |
Collapse
|
12
|
Drexler AL, Pietri JE, Pakpour N, Hauck E, Wang B, Glennon EKK, Georgis M, Riehle MA, Luckhart S. Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathog 2014; 10:e1004231. [PMID: 24968248 PMCID: PMC4072789 DOI: 10.1371/journal.ppat.1004231] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/20/2014] [Indexed: 01/03/2023] Open
Abstract
Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.
Collapse
Affiliation(s)
- Anna L. Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Jose E. Pietri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Eric Hauck
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Elizabeth K. K. Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Martha Georgis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
13
|
Insights gained from P. falciparum cultivation in modified media. ScientificWorldJournal 2013; 2013:363505. [PMID: 23956690 PMCID: PMC3727134 DOI: 10.1155/2013/363505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/23/2013] [Indexed: 11/17/2022] Open
Abstract
In vitro cultivation of Plasmodium falciparum, the agent of severe human malaria, has enabled advances in basic research and accelerated the development of new therapies. Since the introduction of in vitro parasite culture nearly 40 years ago, most workers have used a medium consisting of RPMI 1640 medium supplemented with lipids and hypoxanthine. While these standardized conditions yield robust parasite growth and facilitate comparison of results from different studies, they may also lead to implicit assumptions that limit future advances. Here, I review recent studies that used modified culture conditions to challenge these assumptions and explore parasite physiology. The findings are relevant to understanding in vivo parasite phenotypes and the prioritization of antimalarial targets.
Collapse
|
14
|
Drexler A, Nuss A, Hauck E, Glennon E, Cheung K, Brown M, Luckhart S. Human IGF1 extends lifespan and enhances resistance to Plasmodium falciparum infection in the malaria vector Anopheles stephensi. ACTA ACUST UNITED AC 2013; 216:208-17. [PMID: 23255191 DOI: 10.1242/jeb.078873] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The highly conserved insulin/insulin-like growth factor (IGF) signaling (IIS) pathway regulates metabolism, development, lifespan and immunity across a wide range of organisms. Previous studies have shown that human insulin ingested in the blood meal can activate mosquito IIS, resulting in attenuated lifespan and increased malaria parasite infection. Because human IGF1 is present at higher concentrations in blood than insulin and is functionally linked with lifespan and immune processes, we predicted that human IGF1 ingested in a blood meal would affect lifespan and malaria parasite infection in the mosquito Anopheles stephensi. Here we demonstrate that physiological levels of ingested IGF1, like insulin, can persist intact in the blood-filled midgut for up to 30 h and disseminate into the mosquito body, and that both peptides activate IIS in mosquito cells and midgut. At these same levels, ingested IGF1 alone extended average mosquito lifespan by 23% compared with controls and, more significantly, when ingested in infected blood meals, reduced the prevalence of Plasmodium falciparum-infected mosquitoes by >20% and parasite load by 35-50% compared with controls. Thus, the effects of ingested IGF1 on mosquito lifespan and immunity are opposite to those of ingested insulin. These results offer the first evidence that insect cells can functionally discriminate between mammalian insulin and IGF1. Further, in light of previous success in genetically targeting IIS to alter mosquito lifespan and malaria parasite transmission, this study indicates that a more complete understanding of the IIS-activating ligands in blood can be used to optimize transgenic strategies for malaria control.
Collapse
Affiliation(s)
- Anna Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Saiki E, Nagao K, Aonuma H, Fukumoto S, Xuan X, Bannai M, Kanuka H. Multivariable analysis of host amino acids in plasma and liver during infection of malaria parasite Plasmodium yoelii. Malar J 2013; 12:19. [PMID: 23324562 PMCID: PMC3551679 DOI: 10.1186/1475-2875-12-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria is the most significant human parasitic disease, and yet understanding of the energy metabolism of the principle pathogen, Plasmodium falciparum, remains to be fully elucidated. Amino acids were shown to be essential nutritional requirements since early times and much of the current knowledge of Plasmodium energy metabolism is based on early biochemical work, performed using basic analytical techniques, carried out almost exclusively on human plasma with considerable inter-individual variability. METHODS In order to further characterize the fate of amino acid metabolism in malaria parasite, multivariate analysis using statistical modelling of amino acid concentrations (aminogram) of plasma and liver were determined in host infected with rodent malaria parasite, Plasmodium yoelii. RESULTS AND CONCLUSION Comprehensive and statistical aminogram analysis revealed that P. yoelii infection caused drastic change of plasma and liver aminogram, and altered intra- and inter-correlation of amino acid concentration in plasma and liver. These findings of the interactions between amino acids and Plasmodium infection may provide insight to reveal the interaction between nutrients and parasites.
Collapse
Affiliation(s)
- Erisha Saiki
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kenji Nagao
- Institute for Innovation, Ajinomoto Co Inc, Kanagawa, 210-8680, Japan
| | - Hiroka Aonuma
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Makoto Bannai
- Institute for Innovation, Ajinomoto Co Inc, Kanagawa, 210-8680, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
16
|
Sengupta A, Ghosh S, Basant A, Malusare S, Johri P, Pathak S, Sharma S, Sonawat HM. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study. Malar J 2011; 10:384. [PMID: 22196439 PMCID: PMC3298531 DOI: 10.1186/1475-2875-10-384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/23/2011] [Indexed: 12/16/2022] Open
Abstract
Background Plasmodium vivax is responsible for the majority of malarial infection in the Indian subcontinent. This species of the parasite is generally believed to cause a relatively benign form of the disease. However, recent reports from different parts of the world indicate that vivax malaria can also have severe manifestation. Host response to the parasite invasion is thought to be an important factor in determining the severity of manifestation. In this paper, attempt was made to determine the host metabolic response associated with P. vivax infection by means of NMR spectroscopy-based metabonomic techniques in an attempt to better understand the disease pathology. Methods NMR spectroscopy of urine samples from P. vivax-infected patients, healthy individuals and non-malarial fever patients were carried out followed by multivariate statistical analysis. Two data analysis techniques were employed, namely, Principal Component Analysis [PCA] and Orthogonal Projection to Latent Structure Discriminant Analysis [OPLS-DA]. Several NMR signals from the urinary metabolites were further selected for univariate comparison among the classes. Results The urine metabolic profiles of P. vivax-infected patients were distinct from those of healthy individuals as well as of non-malarial fever patients. A highly predictive model was constructed from urine profile of malarial and non-malarial fever patients. Several metabolites were found to be varying significantly across these cohorts. Urinary ornithine seems to have the potential to be used as biomarkers of vivax malaria. An increasing trend in pipecolic acid was also observed. The results suggest impairment in the functioning of liver as well as impairment in urea cycle. Conclusions The results open up a possibility of non-invasive analysis and diagnosis of P. vivax using urine metabolic profile. Distinct variations in certain metabolites were recorded, and amongst these, ornithine may have the potential of being used as biomarker of malaria. Pipecolic acid also showed increasing trend in the malaria patient compared to the other groups.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Drugs are the most frequent cause of hypoglycaemia in adults. Although hypoglycaemia is a well known adverse effect of antidiabetic agents, it may occasionally develop in the course of treatment with drugs used in everyday clinical practice, including NSAIDs, analgesics, antibacterials, antimalarials, antiarrhythmics, antidepressants and other miscellaneous agents. They induce hypoglycaemia by stimulating insulin release, reducing insulin clearance or interfering with glucose metabolism. Several drugs may also potentiate the hypoglycaemic effect of antidiabetic agents. Administration of these agents to individuals with diabetes mellitus is of most concern. Many of these drugs, and depending on clinical setting, may also induce hyperglycaemia. Drug-induced hepatotoxicity and nephrotoxicity may lead in certain circumstances to hypoglycaemia. Some drugs may also induce hypoglycaemia by causing pancreatitis. Drug-induced hypoglycaemia is usually mild but may be severe. Effective clinical management can be handled through awareness of this drug-induced adverse effect on blood glucose levels. Herein, we review pertinent clinical information on the incidence of drug-induced hypoglycaemia and discuss the underlying pathophysiological mechanisms, and prevention and management.
Collapse
Affiliation(s)
- Chaker Ben Salem
- Department of Clinical Pharmacology, Faculty of Medicine of Sousse, and Medical Intensive Care Unit, Sahloul University Hospital, Sousse, Tunisia.
| | | | | | | |
Collapse
|
18
|
Dowling DP, Ilies M, Olszewski KL, Portugal S, Mota MM, Llinás M, Christianson DW. Crystal structure of arginase from Plasmodium falciparum and implications for L-arginine depletion in malarial infection . Biochemistry 2010; 49:5600-8. [PMID: 20527960 DOI: 10.1021/bi100390z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 2.15 A resolution crystal structure of arginase from Plasmodium falciparum, the parasite that causes cerebral malaria, is reported in complex with the boronic acid inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) (K(d) = 11 microM). This is the first crystal structure of a parasitic arginase. Various protein constructs were explored to identify an optimally active enzyme form for inhibition and structural studies and to probe the structure and function of two polypeptide insertions unique to malarial arginase: a 74-residue low-complexity region contained in loop L2 and an 11-residue segment contained in loop L8. Structural studies indicate that the low-complexity region is largely disordered and is oriented away from the trimer interface; its deletion does not significantly compromise enzyme activity. The loop L8 insertion is located at the trimer interface and makes several intra- and intermolecular interactions important for enzyme function. In addition, we also demonstrate that arg- Plasmodium berghei sporozoites show significantly decreased liver infectivity in vivo. Therefore, inhibition of malarial arginase may serve as a possible candidate for antimalarial therapy against liver-stage infection, and ABH may serve as a lead for the development of inhibitors.
Collapse
Affiliation(s)
- Daniel P Dowling
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinás M. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 2009; 5:191-9. [PMID: 19218089 DOI: 10.1016/j.chom.2009.01.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/19/2008] [Accepted: 01/22/2009] [Indexed: 01/25/2023]
Abstract
Intracellular pathogens have devised mechanisms to exploit their host cells to ensure their survival and replication. The malaria parasite Plasmodium falciparum relies on an exchange of metabolites with the host for proliferation. Here we describe a mass spectrometry-based metabolomic analysis of the parasite throughout its 48 hr intraerythrocytic developmental cycle. Our results reveal a general modulation of metabolite levels by the parasite, with numerous metabolites varying in phase with the developmental cycle. Others differed from uninfected cells irrespective of the developmental stage. Among these was extracellular arginine, which was specifically converted to ornithine by the parasite. To identify the biochemical basis for this effect, we disrupted the plasmodium arginase gene in the rodent malaria model P. berghei. These parasites were viable but did not convert arginine to ornithine. Our results suggest that systemic arginine depletion by the parasite may be a factor in human malarial hypoargininemia associated with cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Kellen L Olszewski
- Department of Molecular Biology, 2Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Graz B, Dicko M, Willcox ML, Lambert B, Falquet J, Forster M, Giani S, Diakite C, Dembele EM, Diallo D, Barennes H. Sublingual sugar for hypoglycaemia in children with severe malaria: a pilot clinical study. Malar J 2008; 7:242. [PMID: 19025610 PMCID: PMC2605470 DOI: 10.1186/1475-2875-7-242] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 11/23/2008] [Indexed: 12/04/2022] Open
Abstract
Background Hypoglycaemia is a poor prognostic indicator in severe malaria. Intravenous infusions are rarely feasible in rural areas. The efficacy of sublingual sugar (SLS) was assessed in a pilot randomized controlled trial among hypoglycaemic children with severe malaria in Mali. Methods Of 151 patients with presumed severe malaria, 23 children with blood glucose concentrations < 60 mg/dl (< 3.3 mmol/l) were assigned randomly to receive either intravenous 10% glucose (IVG; n = 9) or sublingual sugar (SLS; n = 14). In SLS, a teaspoon of sugar, moistened with a few drops of water, was gently placed under the tongue every 20 minutes. The child was put in the recovery position. Blood glucose concentration (BGC) was measured every 5–10 minutes for the first hour. All children were treated for malaria with intramuscular artemether. The primary outcome measure was treatment response, defined as reaching a BGC of >= 3.3 mmol/l (60 mg/dl) within 40 minutes after admission. Secondary outcome measures were early treatment response at 20 minutes, relapse (early and late), maximal BGC gain (CGmax), and treatment delay. Results There was no significant difference between the groups in the primary outcome measure. Treatment response occurred in 71% and 67% for SLS and IVG, respectively. Among the responders, relapses occurred in 30% on SLS at 40 minutes and in 17% on IVG at 20 minutes. There was one fatality in each group. Treatment failures in the SLS group were related to children with clenched teeth or swallowing the sugar, whereas in the IVG group, they were due to unavoidable delays in beginning an infusion (median time 17.5 min (range 3–40). Among SLS, the BGC increase was rapid among the nine patients who really kept the sugar sublingually. All but one increased their BGC by 10 minutes with a mean gain of 44 mg/dl (95%CI: 20.5–63.4). Conclusion Sublingual sugar appears to be a child-friendly, well-tolerated and effective promising method of raising blood glucose in severely ill children. More frequent repeated doses are needed to prevent relapse. Children should be monitored for early swallowing which leads to delayed absorption, and in this case another dose of sugar should be given. Sublingual sugar could be proposed as an immediate "first aid" measure while awaiting intravenous glucose. In many cases it may avert the need for intravenous glucose.
Collapse
|
21
|
|
22
|
Kang MA, Mott TM, Tapley EC, Lewis EE, Luckhart S. Insulin regulates aging and oxidative stress in Anopheles stephensi. ACTA ACUST UNITED AC 2008; 211:741-8. [PMID: 18281336 DOI: 10.1242/jeb.012955] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Observations from nematodes to mammals indicate that insulin/insulin-like growth factor signaling (IIS) regulates lifespan. As in other organisms, IIS is conserved in mosquitoes and signaling occurs in multiple tissues. During bloodfeeding, mosquitoes ingest human insulin. This simple observation suggested that exogenous insulin could mimic the endogenous hormonal control of aging in mosquitoes, providing a new model to examine this phenomenon at the organismal and cellular levels. To this end, female Anopheles stephensi mosquitoes were maintained on diets containing human insulin provided daily in sucrose or three times weekly by artificial bloodmeal. Regardless of delivery route, mosquitoes provided with insulin at 1.7 x 10(-4) and 1.7 x 10(-3) micromol l(-1), doses 0.3-fold and 3.0-fold higher than non-fasting blood levels, died at a faster rate than controls. In mammals, IIS induces the synthesis of reactive oxygen species and downregulates antioxidants, events that increase oxidative stress and that have been associated with reduced lifespan. Insulin treatment of mosquito cells in vitro induced hydrogen peroxide synthesis while dietary supplementation reduced total superoxide dismutase (SOD) activity and manganese SOD activity relative to controls. The effects of insulin on mortality were reversed when diets were supplemented with manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a cell-permeable SOD mimetic agent, suggesting that insulin-induced mortality was due to oxidative stress. In addition, dietary insulin activated Akt/protein kinase B and extracellular signal-regulated kinase (ERK) in the mosquito midgut, suggesting that, as observed in Caenorhabditis elegans, the midgut may act as a 'signaling center' for mosquito aging.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
23
|
Clark IA, Budd AC, Alleva LM, Cowden WB. Human malarial disease: a consequence of inflammatory cytokine release. Malar J 2006; 5:85. [PMID: 17029647 PMCID: PMC1629020 DOI: 10.1186/1475-2875-5-85] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/10/2006] [Indexed: 12/24/2022] Open
Abstract
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficiency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Alison C Budd
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lisa M Alleva
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - William B Cowden
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|