1
|
Matavel A, Lopes CMB. PKC activation and PIP(2) depletion underlie biphasic regulation of IKs by Gq-coupled receptors. J Mol Cell Cardiol 2009; 46:704-12. [PMID: 19233191 DOI: 10.1016/j.yjmcc.2009.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/21/2009] [Accepted: 02/03/2009] [Indexed: 10/24/2022]
Abstract
KCNQ1 is co-assembled with KCNE1 subunits in the heart to form the cardiac delayed rectifier K(+) current (IKs), which is one of the main currents responsible for myocyte repolarization. The most commonly inherited form of cardiac arrhythmias, long-QT syndrome type 1 (LQT1), is due to mutations on KCNQ1. Gq-coupled receptors (GqPCRs) are known to mediate positive inotropism in human ventricular myocardium. The mechanism of IKs current modulation by GqPCRs remains incompletely understood. Here we studied the molecular mechanisms underlying Gq regulation of the IKs channel. Heterologously expressed IKs (human KCNQ1/KCNE1 subunits) was measured in Xenopus oocytes, expressed together with GqPCRs. Our data from several GqPCRs shows that IKs is regulated in a biphasic manner, showing both an activation and an inhibition phase. Receptor-mediated inhibition phase was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP2) was blocked by the lipid kinase inhibitor wortmannin. In addition, stimulation of PIP(2) production, by overexpression of phosphatidylinositol-4-phosphate-5-kinase (PIP5-kinase), decreased receptor-mediated inhibition. The receptor-mediated activation phase was inhibited by the PKC inhibitor calphostin C and by a mutation in a putative PKC phosphorylation site in the KCNE1 subunit. Our results indicate that the depletion of membrane PIP(2) underlies receptor-mediated inhibition of IKs and that phosphorylation by PKC of the KCNE1 subunit underlies the GqPCR-mediated channel activation.
Collapse
Affiliation(s)
- Alessandra Matavel
- Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Box: CVRI, Rochester, NY 14642, USA
| | | |
Collapse
|
2
|
Morokuma J, Blackiston D, Levin M. KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 2008; 21:357-72. [PMID: 18453744 PMCID: PMC3632048 DOI: 10.1159/000129628] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2008] [Indexed: 01/12/2023] Open
Abstract
Several ion transporters have been implicated in left-right (LR) patterning. Here, we characterize a new component of the early bioelectrical circuit: the potassium channel KCNQ1 and its accessory subunit KCNE1. Having cloned the native Xenopus versions of both genes, we show that both are asymmetrically localized as maternal proteins during the first few cleavages of frog embryo development in a process dependent on microtubule and actin organization. Molecular loss-of-function using dominant negative constructs demonstrates that both gene products are required for normal LR asymmetry. We propose a model whereby these channels provide an exit path for K(+) ions brought in by the H(+),K(+)-ATPase. This physiological module thus allows the obligate but electroneutral H(+),K(+)-ATPase to generate an asymmetric voltage gradient on the left and right sides. Our data reveal a new, bioelectrical component of the mechanisms patterning a large-scale axis in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Junji Morokuma
- Center for Regenerative and Developmental Biology, Forsyth Institute, Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
3
|
Sarzani R, Pietrucci F, Francioni M, Salvi F, Letizia C, D'Erasmo E, Dessì Fulgheri P, Rappelli A. Expression of potassium channel isoforms mRNA in normal human adrenals and aldosterone-secreting adenomas. J Endocrinol Invest 2006; 29:147-53. [PMID: 16610241 DOI: 10.1007/bf03344088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increased aldosterone secretion has been found in a mouse lacking the KCNE1 gene which codes for a regulatory protein of the KCNQ1 gene product, forming the channel for the outward rectifying delayed K+ current. Abnormalities in proteins regulating the K+ fluxes across membranes may be responsible for aldosterone-secreting adenomas (aldosteronomas) also because K+ channels are involved in cell growth. Normal and adenomatous adrenal samples and NCI-H295 cell line were used to: a) evaluate KCNE1 and KCNQ1 gene expression, b) sequence the full length cDNAs of KCNE1 and both KCNQ1 isoforms. These differently spliced KCNE1 and KCNQ1 mRNAs were expressed in adrenal tissue. In contrast, KCNQ1 isoform 2 mRNA was not expressed in kidney control tissues and NCl-H295 cell line. NCI-H295 cell line also had a significantly lower expression of KCNQ1 isoform 1 mRNA than normal adrenals and aldosteronomas. We did not find any somatic mutations in the coding sequences of both genes. This different expression pattern of KCNQ1 isoforms in NCI-H295 cell line with the lack of the mRNA for the dominant-negative KCNQ1 isoform 2 supports the involvement of voltage-gated K+ channel in cell proliferation.
Collapse
Affiliation(s)
- R Sarzani
- Department of Internal Medicine, Polytechnical University of Marche, Ancona, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci 2003. [PMID: 12657675 DOI: 10.1523/jneurosci.23-06-02161.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phospholemman (FXYD1) is a homolog of the Na,K-ATPase gamma subunit (FXYD2), a small accessory protein that modulates ATPase activity. Here we show that phospholemman is highly expressed in selected structures in the CNS. It is most abundant in cerebellum, where it was detected in the molecular layer, in Purkinje neurons, and in axons traversing the granule cell layer. Phospholemman was particularly enriched in choroid plexus, the organ that secretes CSF in the ventricles, where it colocalized with Na,K-ATPase in the apical membrane. It was also enriched, with Na,K-ATPase, in certain tanycytes or ependymal cells of the ventricle wall. Two different experimental approaches demonstrated that phospholemman physically associated with the Na,K-ATPase in cerebellum and choroid plexus: the proteins copurified after detergent treatment and co-immunoprecipitated from solubilized crude membranes using either anti-phospholemman or anti-Na,K-ATPase antibodies. Phospholemman antibodies precipitated all three Na,K-ATPase alpha subunit isoforms (alpha1-alpha3) from cerebellum, indicating that the interaction is not specific to a particular alpha isoform and consistent with the presence of phospholemman in both neurons and glia. Antibodies against the C-terminal domain of phospholemman reduced Na,K-ATPase activity in vitro without effect on Na+ affinity. At least two other FXYD family members have been detected in the CNS, suggesting that additional complexity of sodium pump regulation will be found.
Collapse
|
5
|
Béguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, Geering K. FXYD7 is a brain-specific regulator of Na,K-ATPase alpha 1-beta isozymes. EMBO J 2002; 21:3264-73. [PMID: 12093728 PMCID: PMC125393 DOI: 10.1093/emboj/cdf330] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, corticosteroid hormone-induced factor (CHIF) and the gamma-subunit, two members of the FXYD family of small proteins, have been identified as regulators of renal Na,K-ATPase. In this study, we have investigated the tissue distribution and the structural and functional properties of FXYD7, another family member which has not yet been characterized. Expressed exclusively in the brain, FXYD7 is a type I membrane protein bearing N-terminal, post-translationally added modifications on threonine residues, most probably O-glycosylations that are important for protein stabilization. Expressed in Xenopus oocytes, FXYD7 can interact with Na,K-ATPase alpha 1-beta 1, alpha 2-beta 1 and alpha 3-beta 1 but not with alpha-beta 2 isozymes, whereas, in brain, it is only associated with alpha 1-beta isozymes. FXYD7 decreases the apparent K(+) affinity of alpha 1-beta 1 and alpha 2-beta 1, but not of alpha 3-beta1 isozymes. These data suggest that FXYD7 is a novel, tissue- and isoform-specific Na,K-ATPase regulator which could play an important role in neuronal excitability.
Collapse
Affiliation(s)
| | | | - Florianne Monnet-Tschudi
- Institute of Pharmacology and Toxicology and
Institute of Physiology, University of Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Switzerland and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 Israel Corresponding author e-mail: P.Béguin and G.Crambert contributed equally to this work
| | | | | | - Haim Garty
- Institute of Pharmacology and Toxicology and
Institute of Physiology, University of Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Switzerland and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 Israel Corresponding author e-mail: P.Béguin and G.Crambert contributed equally to this work
| | - Käthi Geering
- Institute of Pharmacology and Toxicology and
Institute of Physiology, University of Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Switzerland and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 Israel Corresponding author e-mail: P.Béguin and G.Crambert contributed equally to this work
| |
Collapse
|
6
|
Cowley EA, Linsdell P. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3. J Physiol 2002; 538:747-57. [PMID: 11826162 PMCID: PMC2290097 DOI: 10.1113/jphysiol.2001.013300] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transepithelial anion secretion in many tissues depends upon the activity of basolateral channels. Using monolayers of the Calu-3 cell line, a human submucosal serous cell model mounted in an Ussing chamber apparatus, we investigated the nature of the K+ channels involved in basal, cAMP- and Ca2+-stimulated anion secretion, as reflected by the transepithelial short circuit current (I(sc)). The non-specific K+ channel inhibitor Ba2+ inhibited the basal I(sc) by either 77 or 16 % when applied directly to the basolateral or apical membranes, respectively, indicating that a basolateral K+ conductance is required for maintenance of basal anion secretion. Using the K+ channel blockers clofilium and clotrimazole, we found basal I(sc) to be sensitive to clofilium, with a small clotrimazole-sensitive component. By stimulating the cAMP and Ca2+ pathways, we determined that cAMP-stimulated anion secretion was almost entirely abolished by clofilium, but insensitive to clotrimazole. In contrast, the Ca2+-stimulated response was sensitive to both clofilium and clotrimazole. Thus, pharmacologically distinct basolateral K+ channels are differentially involved in the control of anion secretion under different conditions. Isolation of the basolateral K+ conductance in permeabilized monolayers revealed a small basal and forskolin-stimulated I(sc). Finally, using the reverse transcriptase-polymerase chain reaction, we found that Calu-3 cells express the K+ channel genes KCNN4 and KCNQ1 and the subunits KCNE2 and KCNE3. We conclude that while KCNN4 contributes to Ca2+-activated anion secretion by Calu-3 cells, basal and cAMP-activated secretion are more critically dependent on other K+ channel types, possibly involving one or more class of KCNQ1-containing channel complexes.
Collapse
Affiliation(s)
- Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | |
Collapse
|
7
|
Seebohm G, Lerche C, Pusch M, Steinmeyer K, Brüggemann A, Busch AE. A kinetic study on the stereospecific inhibition of KCNQ1 and I(Ks) by the chromanol 293B. Br J Pharmacol 2001; 134:1647-54. [PMID: 11739240 PMCID: PMC1572901 DOI: 10.1038/sj.bjp.0704421] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Recently we and others have demonstrated a stereoselective inhibition of slowly activating human I(Ks) (KCNQ1/MinK) and homomeric KCNQ1 potassium channels by the enantiomers of the chromanol 293B. Here, we further characterized the mechanism of the 293B block and studied the influence of the 293B enantiomers on the gating kinetics of both channels after their heterologous expression in Xenopus oocytes. 2. Kinetic analysis of currents partially blocked with 10 microM of each 293B enantiomer revealed that only 3R,4S-293B but not 3S,4R-293B exhibited a time-dependent block of I(Ks) and KCNQ1 currents, indicating preferential open channel block activity. 3. Inhibition of both KCNQ1 and I(Ks) channels by 3R,4S-293B but not by 3S,4R-293B increased during a 2 Hz train of stimuli. 4. At high extracellular potassium concentrations the inhibition of KCNQ1 by 3R,4S-293B and 3S,4R-293B was unaffected. Drug inhibition of KCNQ1 and I(Ks) by both enantiomers also did not display a significant voltage-dependence, indicating that 293B does not strongly interact with permeant ions in the pore. 5. The inhibitory properties of 3R,4S-293B on I(Ks)-channels but not those of 3S,4R-293B fulfill the theoretical requirements for a novel class III antiarrhythmic drug, i.e. positive use-dependency. This enantiomer therefore represents a valuable pharmacological tool to evaluate the therapeutic efficiency of I(Ks)blockade.
Collapse
Affiliation(s)
- G Seebohm
- Aventis Pharma Deutschland GmbH, DG Cardiovascular diseases, D-65926 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Kim SJ, Kim JK, Pavenstädt H, Greger R, Hug MJ, Bleich M. Regulation of slowly activating potassium current (I(Ks)) by secretin in rat pancreatic acinar cells. J Physiol 2001; 535:349-58. [PMID: 11533128 PMCID: PMC2278805 DOI: 10.1111/j.1469-7793.2001.00349.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The secretagogue-activated K(+) conductance is indispensable for the electrogenic Cl(-) secretion in exocrine tissue. In this study, we investigated the effect of secretin and other cAMP-mediated secretagogues on the slowly activating voltage-dependent K(+) current (I(Ks)) of rat pancreatic acinar cells (RPAs) with the whole-cell patch clamp technique. 2. Upon depolarization, RPAs showed I(Ks) superimposed upon the instantaneous background outward current. Secretin (5 nM), vasoactive intestinal peptide (5 nM), forskolin (5 microM), isoprenaline (10 microM) or 3-isobutyl-1-methylxanthine (IBMX, 0.1 mM) increased the amplitude of I(Ks) two- to fourfold. 3. The physiological concentration of secretin (50 pM) had a relatively weak effect on I(Ks) (160 % increase), which was significantly enhanced by transient co-stimulation with carbachol (CCh) (10 microM). However, the secretin-induced production of cAMP, which was measured by enzyme-linked immunosorbent assay, was not augmented by co-stimulation with CCh. 4. This study is the first to demonstrate the regulation of K(+) channels in RPAs by cAMP-mediated agonists. The I(Ks) channel is a common target for both Ca(2+) and cAMP agonists. The vagal stimulation under the physiological concentration of secretin facilitates I(Ks), which provides an additional driving force for Cl(-) secretion.
Collapse
Affiliation(s)
- S J Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Béguin P, Crambert G, Guennoun S, Garty H, Horisberger JD, Geering K. CHIF, a member of the FXYD protein family, is a regulator of Na,K-ATPase distinct from the gamma-subunit. EMBO J 2001; 20:3993-4002. [PMID: 11483503 PMCID: PMC149142 DOI: 10.1093/emboj/20.15.3993] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological role of small membrane proteins of the new FXYD family is largely unknown. The best characterized FXYD protein is the gamma-subunit of the Na,K-ATPase (NKA) that modulates the Na,K-pump function in the kidney. Here, we report that, similarly to gamma(a) and gamma(b) splice variants, the FXYD protein CHIF (corticosteroid-induced factor) is a type I membrane protein which is associated with NKA in renal tissue, and modulates the Na,K-pump transport when expressed in Xenopus oocytes. In contrast to gamma(a) and gamma(b), which both decrease the apparent Na+ affinity of the Na,K-pump, CHIF significantly increases the Na+ affinity and decreases the apparent K+ affinity due to an increased Na+ competition at external binding sites. The extracytoplasmic FXYD motif is required for stable gamma-subunit and CHIF interaction with NKA, while cytoplasmic, positively charged residues are necessary for the gamma-subunit's association efficiency and for CHIF's functional effects. These data document that CHIF is a new tissue-specific regulator of NKA which probably plays a crucial role in aldosterone-responsive tissues responsible for the maintenance of body Na+ and K+ homeostasis.
Collapse
Affiliation(s)
| | | | | | - Haim Garty
- Institut de Pharmacologie et de Toxicologie de l’Université de Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland and
Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
P.Béguin and G.Crambert contributed equally to this work
| | | | - Käthi Geering
- Institut de Pharmacologie et de Toxicologie de l’Université de Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland and
Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
P.Béguin and G.Crambert contributed equally to this work
| |
Collapse
|
10
|
Kurokawa J, Motoike H, Kass R. TEA(+)-sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled I(Ks) channels. J Gen Physiol 2001; 117:43-52. [PMID: 11134230 PMCID: PMC2232469 DOI: 10.1085/jgp.117.1.43] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
I(Ks), a slowly activating delayed rectifier K(+) current through channels formed by the assembly of two subunits KCNQ1 (KvLQT1) and KCNE1 (minK), contributes to the control of the cardiac action potential duration. Coassembly of the two subunits is essential in producing the characteristic and physiologically critical kinetics of assembled channels, but it is not yet clear where or how these subunits interact. Previous investigations of external access to the KCNE1 protein in assembled I(Ks) channels relied on occlusion of the pore by extracellular application of TEA(+), despite the very low TEA(+) sensitivity (estimated EC(50) > 100 mM) of channels encoded by coassembly of wild-type KCNQ1 with the wild type (WT) or a series of cysteine-mutated KCNE1 constructs. We have engineered a high affinity TEA(+) binding site into the h-KCNQ1 channel by either a single (V319Y) or double (K318I, V319Y) mutation, and retested it for pore-delimited access to specific sites on coassembled KCNE1 subunits. Coexpression of either KCNQ1 construct with WT KCNE1 in Chinese hamster ovary cells does not alter the TEA(+) sensitivity of the homomeric channels (IC(50) approximately 0.4 mM [TEA(+)](out)), providing evidence that KCNE1 coassembly does not markedly alter the structure of the outer pore of the KCNQ1 channel. Coexpression of a cysteine-substituted KCNE1 (F54C) with V319Y significantly increases the sensitivity of channels to external Cd(2+), but neither the extent of nor the kinetics of the onset of (or the recovery from) Cd(2+) block was affected by [TEA(+)](o) at 10x the IC(50) for channel block. These data strongly suggest that access of Cd(2+) to the cysteine-mutated site on KCNE1 is independent of pore occlusion caused by TEA(+) binding to the outer region of the KCNE1/V319Y pore, and that KCNE1 does not reside within the pore region of the assembled channels.
Collapse
Affiliation(s)
- J. Kurokawa
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - H.K. Motoike
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - R.S. Kass
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| |
Collapse
|
11
|
Lerche C, Seebohm G, Wagner CI, Scherer CR, Dehmelt L, Abitbol I, Gerlach U, Brendel J, Attali B, Busch AE. Molecular impact of MinK on the enantiospecific block of I(Ks) by chromanols. Br J Pharmacol 2000; 131:1503-6. [PMID: 11139424 PMCID: PMC1572493 DOI: 10.1038/sj.bjp.0703734] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Slowly activating I:(Ks) (KCNQ1/MinK) channels were expressed in Xenopous: oocytes and their sensitivity to chromanols was compared to homomeric KCNQ1 channels. To elucidate the contribution of the ss-subunit MinK on chromanol block, a formerly described chromanol HMR 1556 and its enantiomer S5557 were tested for enantio-specificity in blocking I:(Ks) and KCNQ1 as shown for the single enantiomers of chromanol 293B. Both enantiomers blocked homomeric KCNQ1 channels to a lesser extent than heteromeric I:(Ks) channels. Furthermore, we expressed both WT and mutant MinK subunits to examine the involvement of particular MinK protein regions in channel block by chromanols. Through a broad variety of MinK deletion and point mutants, we could not identify amino acids or regions where sensitivity was abolished or strikingly diminished (>2.5 fold). This could indicate that MinK does not directly take part in chromanol binding but acts allosterically to facilitate drug binding to the principal subunit KCNQ1.
Collapse
Affiliation(s)
- C Lerche
- Aventis Pharma Deutschland GmbH, Cardiovascular Diseases, 65926 Frankfurt a. M., Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|