1
|
Singh I, Wang L, Xia B, Liu J, Tahiri A, El Ouaamari A, Wheeler MB, Pang ZP. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci 2022; 12:178. [PMID: 36309763 PMCID: PMC9618215 DOI: 10.1186/s13578-022-00914-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) control of metabolism plays a pivotal role in maintaining energy balance. In the brain, Glucagon-like peptide 1 (GLP-1), encoded by the proglucagon 'Gcg' gene, produced in a distinct population of neurons in the nucleus tractus solitarius (NTS), has been shown to regulate feeding behavior leading to the suppression of appetite. However, neuronal networks that mediate endogenous GLP-1 action in the CNS on feeding and energy balance are not well understood. RESULTS We analyzed the distribution of GLP-1R-expressing neurons and axonal projections of NTS GLP-1-producing neurons in the mouse brain. GLP-1R neurons were found to be broadly distributed in the brain and specific forebrain regions, particularly the hypothalamus, including the arcuate nucleus of the hypothalamus (ARC), a brain region known to regulate energy homeostasis and feeding behavior, that receives dense NTSGcg neuronal projections. The impact of GLP-1 signaling in the ARC GLP-1R-expressing neurons and the impact of activation of ARC GLP-1R on food intake was examined. Application of GLP-1R specific agonist Exendin-4 (Exn-4) enhanced a proportion of the ARC GLP-1R-expressing neurons and pro-opiomelanocortin (POMC) neuronal action potential firing rates. Chemogenetic activation of the ARC GLP-1R neurons by using Cre-dependent hM3Dq AAV in the GLP-1R-ires-Cre mice, established that acute activation of the ARC GLP-1R neurons significantly suppressed food intake but did not have a strong impact on glucose homeostasis. CONCLUSIONS These results highlight the importance of central GLP-1 signaling in the ARC that express GLP-1R that upon activation, regulate feeding behavior.
Collapse
Affiliation(s)
- Ishnoor Singh
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Baijuan Xia
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.413458.f0000 0000 9330 9891School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 550025 China
| | - Ji Liu
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.59053.3a0000000121679639National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Azeddine Tahiri
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Abdelfattah El Ouaamari
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Michael B. Wheeler
- grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada ,Metabolism Research Group, Division of Advanced Diagnostics, Toronto, ON Canada
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA ,grid.430387.b0000 0004 1936 8796Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
2
|
Gumnit MG, Watters JJ, Baker TL, Johnson SM, Johnson SM. Mu-opioid receptor-dependent transformation of respiratory motor pattern in neonates in vitro. Front Physiol 2022; 13:921466. [PMID: 35936900 PMCID: PMC9353126 DOI: 10.3389/fphys.2022.921466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Endogenous opioid peptides activating mu-opioid receptors (MORs) are part of an intricate neuromodulatory system that coordinates and optimizes respiratory motor output to maintain blood-gas homeostasis. MOR activation is typically associated with respiratory depression but also has excitatory effects on breathing and respiratory neurons. We hypothesized that low level MOR activation induces excitatory effects on the respiratory motor pattern. Thus, low concentrations of an MOR agonist drug (DAMGO, 10–200 nM) were bath-applied to neonatal rat brainstem-spinal cord preparations while recording inspiratory-related motor output on cervical spinal roots (C4-C5). Bath-applied DAMGO (50–200 nM) increased inspiratory motor burst amplitude by 40–60% during (and shortly following) drug application with decreased burst frequency and minute activity. Reciprocal changes in inspiratory burst amplitude and frequency were balanced such that 20 min after DAMGO (50–200 nM) application, minute activity was unaltered compared to pre-DAMGO levels. The DAMGO-induced inspiratory burst amplitude increase did not require crossed cervical spinal pathways, was expressed on thoracic ventral spinal roots (T4-T8) and remained unaltered by riluzole pretreatment (blocks persistent sodium currents associated with gasping). Split-bath experiments showed that the inspiratory burst amplitude increase was induced only when DAMGO was bath-applied to the brainstem and not the spinal cord. Thus, MOR activation in neonates induces a respiratory burst amplitude increase via brainstem-specific mechanisms. The burst amplitude increase counteracts the expected MOR-dependent frequency depression and may represent a new mechanism by which MOR activation influences respiratory motor output.
Collapse
|
3
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
4
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
5
|
Intracerebroventricular Injection of the Glutamatergic Receptors Antagonist Affects N/OFQ-Induced Hyperphagia in Neonatal Broilers: Role of NMDA and AMPA Receptors. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018; 38:1588-1599. [PMID: 29311142 DOI: 10.1523/jneurosci.1925-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Orexin (also known as hypocretin) neurons are considered a key component of the ascending arousal system. They are active during wakefulness, at which time they drive and maintain arousal, and are silent during sleep. Their activity is controlled by long-range inputs from many sources, as well as by more short-range inputs, including from presumptive GABAergic neurons in the lateral hypothalamus/perifornical region (LH/PF). To characterize local GABAergic input to orexin neurons, we used channelrhodopsin-2-assisted circuit mapping in brain slices. We expressed channelrhodopsin-2 in GABAergic neurons (Vgat+) in the LH/PF and recorded from genetically identified surrounding orexin neurons (LH/PFVgat → Orx). We performed all experiments in mice of either sex. Photostimulation of LH/PF GABAergic neurons inhibited the firing of orexin neurons through the release of GABA, evoking GABAA-mediated IPSCs in orexin neurons. These photo-evoked IPSCs were maintained in the presence of TTX, indicating direct connectivity. Carbachol inhibited LH/PFVgat → Orx input through muscarinic receptors. By contrast, application of orexin was without effect on LH/PFVgat → Orx input, whereas dynorphin, another peptide produced by orexin neurons, inhibited LH/PFVgat → Orx input through κ-opioid receptors. Our results demonstrate that orexin neurons are under inhibitory control by local GABAergic neurons and that this input is depressed by cholinergic signaling, unaffected by orexin and inhibited by dynorphin. We propose that local release of dynorphin may, via collaterals, provides a positive feedback to orexin neurons and that, during wakefulness, orexin neurons may be disinhibited by acetylcholine and by their own release of dynorphin.SIGNIFICANCE STATEMENT The lateral hypothalamus contains important wake-promoting cell populations, including orexin-producing neurons. Intermingled with the orexin neurons, there are other cell populations that selectively discharge during nonrapid eye movement or rapid eye movement sleep. Some of these sleep-active neurons release GABA and are thought to inhibit wake-active neurons during rapid eye movement and nonrapid eye movement sleep. However, this hypothesis had not been tested. Here we show that orexin neurons are inhibited by a local GABAergic input. We propose that this local GABAergic input inhibits orexin neurons during sleep but that, during wakefulness, this input is depressed, possibly through cholinergically mediated disinhibition and/or by release of dynorphin from orexin neurons themselves.
Collapse
|
7
|
Rabbani G, Baig MH, Lee EJ, Cho WK, Ma JY, Choi I. Biophysical Study on the Interaction between Eperisone Hydrochloride and Human Serum Albumin Using Spectroscopic, Calorimetric, and Molecular Docking Analyses. Mol Pharm 2017; 14:1656-1665. [DOI: 10.1021/acs.molpharmaceut.6b01124] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gulam Rabbani
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| | - Mohammad Hassan Baig
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| | - Eun Ju Lee
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| | - Won-Kyung Cho
- Korean
Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Donggu, Daegu-41062, Republic of Korea
| | - Jin Yeul Ma
- Korean
Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Donggu, Daegu-41062, Republic of Korea
| | - Inho Choi
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| |
Collapse
|
8
|
Rabbani G, Baig MH, Lee EJ, Cho WK, Ma JY, Choi I. Biophysical Study on the Interaction between Eperisone Hydrochloride and Human Serum Albumin Using Spectroscopic, Calorimetric, and Molecular Docking Analyses. Mol Pharm 2017. [DOI: 10.1021/acs.molpharmaceut.6b01124 pmid: 28380300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gulam Rabbani
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| | - Mohammad Hassan Baig
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| | - Eun Ju Lee
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| | - Won-Kyung Cho
- Korean
Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Donggu, Daegu-41062, Republic of Korea
| | - Jin Yeul Ma
- Korean
Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Donggu, Daegu-41062, Republic of Korea
| | - Inho Choi
- Department
of Medical Biotechnology, YeungNam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
| |
Collapse
|
9
|
Barber AF, Erion R, Holmes TC, Sehgal A. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells. Genes Dev 2016; 30:2596-2606. [PMID: 27979876 PMCID: PMC5204352 DOI: 10.1101/gad.288258.116] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
Abstract
Barber et al. show that Drosophila insulin-producing cells (IPCs) are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding. Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology.
Collapse
Affiliation(s)
- Annika F Barber
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Renske Erion
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92697, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Li ZW, Wu B, Ye P, Tan ZY, Ji YH. Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats. J Headache Pain 2016; 17:90. [PMID: 27687165 PMCID: PMC5042912 DOI: 10.1186/s10194-016-0685-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. Methods An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca2+-activated K+ (BKCa) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. Results The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BKCa channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. Conclusions These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine.
Collapse
Affiliation(s)
- Zheng-Wei Li
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Bin Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Pin Ye
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai, 200436, People's Republic of China.
| |
Collapse
|
11
|
Ferrari LL, Agostinelli LJ, Krashes MJ, Lowell BB, Scammell TE, Arrigoni E. Dynorphin inhibits basal forebrain cholinergic neurons by pre- and postsynaptic mechanisms. J Physiol 2016; 594:1069-85. [PMID: 26613645 DOI: 10.1113/jp271657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/24/2015] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS The basal forebrain is an important component of the ascending arousal system and may be a key site through which the orexin neurons promote arousal. It has long been known that orexin-A and -B excite basal forebrain cholinergic neurons, but orexin-producing neurons also make the inhibitory peptide dynorphin. Using whole-cell recordings in brain slices, we found that dynorphin-A directly inhibits basal forebrain cholinergic neurons via κ-opioid receptors, and decreases afferent excitatory synaptic input to these neurons. While the effects of dynorphin-A and orexin-A desensitize over multiple applications, co-application of dynorphin-A and orexin-A produces a sustained response that reverses depending on the membrane potential of basal forebrain cholinergic neurons. At -40 mV the net effect of the co-application is inhibition by dynorphin-A, whereas at -70 mV the excitatory response to orexin-A prevails. ABSTRACT The basal forebrain (BF) is an essential component of the ascending arousal systems and may be a key site through which the orexin (also known as hypocretin) neurons drive arousal and promote the maintenance of normal wakefulness. All orexin neurons also make dynorphin, and nearly all brain regions innervated by the orexin neurons express kappa opiate receptors, the main receptor for dynorphin. This is remarkable because orexin excites target neurons including BF neurons, but dynorphin has inhibitory effects. We identified the sources of dynorphin input to the magnocellular preoptic nucleus and substantia innominata (MCPO/SI) in mice and determined the effects of dynorphin-A on MCPO/SI cholinergic neurons using patch-clamp recordings in brain slices. We found that the orexin neurons are the main source of dynorphin input to the MCPO/SI region, and dynorphin-A inhibits MCPO/SI cholinergic neurons through κ-opioid receptors by (1) activation of a G protein-coupled inwardly rectifying potassium current, (2) inhibition of a voltage-gated Ca(2+) current and (3) presynaptic depression of the glutamatergic input to these neurons. The responses both to dynorphin-A and to orexin-A desensitize, but co-application of dynorphin-A and orexin-A produces a sustained response. In addition, the polarity of the response to the co-application depends on the membrane potential of BF neurons; at -40 mV the net effect of the co-application is inhibition by dynorphin-A, whereas at -70 mV the excitatory response to orexin-A prevails. This suggests that depending on their state of activation, BF cholinergic neurons can be excited or inhibited by signals from the orexin neurons.
Collapse
Affiliation(s)
- L L Ferrari
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - L J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - M J Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892-1453, USA
| | - B B Lowell
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - T E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - E Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
12
|
Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex. J Cereb Blood Flow Metab 2015; 35:1819-26. [PMID: 26104288 PMCID: PMC4635237 DOI: 10.1038/jcbfm.2015.130] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/30/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
Most functional magnetic resonance imaging (fMRI) animal studies rely on anesthesia, which can induce a variety of drug-dependent physiological changes, including depression of neuronal activity and cerebral metabolism as well as direct effects on the vasculature. The goal of this study was to characterize the effects of anesthesia on the BOLD signal and neuronal activity. Simultaneous fMRI and electrophysiology were used to measure changes in single units (SU), multi-unit activity (MUA), local field potentials (LFP), and the blood oxygenation level-dependent (BOLD) response in the somatosensory cortex during whisker stimulation of rabbits before, during and after anesthesia with fentanyl or isoflurane. Our results indicate that anesthesia modulates the BOLD signal as well as both baseline and stimulus-evoked neuronal activity, and, most significantly, that the relationship between the BOLD and electrophysiological signals depends on the type of anesthetic. Specifically, the behavior of LFP observed under isoflurane did not parallel the behavior of BOLD, SU, or MUA. These findings suggest that the relationship between these signals may not be straightforward. BOLD may scale more closely with the best measure of the excitatory subcomponents of the underlying neuronal activity, which may vary according to experimental conditions that alter the excitatory/inhibitory balance in the cortex.
Collapse
|
13
|
Akrouh A, Kerschensteiner D. Morphology and function of three VIP-expressing amacrine cell types in the mouse retina. J Neurophysiol 2015; 114:2431-8. [PMID: 26311183 PMCID: PMC4620131 DOI: 10.1152/jn.00526.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30-50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.
Collapse
Affiliation(s)
- Alejandro Akrouh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri; and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci 2015; 35:3644-51. [PMID: 25716862 DOI: 10.1523/jneurosci.4187-14.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Melanin-concentrating hormone (MCH) regulates vital physiological functions, including energy balance and sleep. MCH cells are thought to be GABAergic, releasing GABA to inhibit downstream targets. However, there is little experimental support for this paradigm. To better understand the synaptic mechanisms of mouse MCH neurons, we performed neuroanatomical mapping and characterization followed by optogenetics to test their functional connectivity at downstream targets. Synaptophysin-mediated projection mapping showed that the lateral septal nucleus (LS) contained the densest accumulation of MCH nerve terminals. We then expressed channel rhodopsin-2 in MCH neurons and photostimulated MCH projections to determine their effect on LS activity. Photostimulation of MCH projections evoked a monosynaptic glutamate release in the LS. Interestingly, this led to a feedforward inhibition that depressed LS firing by a robust secondary GABA release. This study presents a circuit analysis between MCH and LS neurons and confirms their functional connection via monosynaptic and polysynaptic pathways. Our findings indicate that MCH neurons are not exclusively GABAergic and reveal a glutamate-mediated, feedforward mechanism that inhibits LS cells.
Collapse
|
15
|
What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014; 29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
In the last eight years optogenetic tools have been widely used to identify functional synaptic connectivity between specific neuronal populations. Most of our knowledge comes from the photo-activation of channelrhodopsin-2 (ChR2) expressing inputs that release glutamate and GABA. More recent studies have been reporting releases of acetylcholine and biogenic amines but direct evidence for photo-evoked released of neuropeptides is still limited particularly in brain slice studies. The high fidelity in the responses with photo-evoked amino-acid transmission is ideal for ChR2-assisted circuit mapping and this approach has been successfully used in different fields of neuroscience. Conversely, neuropeptides employ a slow mode of communication and might require higher frequency and prolonged stimulations to be released. These factors may have contributed to the apparent lack of success for optogenetic release of neuropeptides. In addition, once released, neuropeptides often act on multiple sites and at various distances from the site of release resulting in a greater complexity of postsynaptic responses. Here, we focus on what optogenetics is telling us-and failing to tell us-about fast neurotransmitters and neuropeptides.
Collapse
|
16
|
Lu YC, Chen YZ, Wei YY, He XT, Li X, Hu W, Yanagawa Y, Wang W, Wu SX, Dong YL. Neurochemical properties of the synapses between the parabrachial nucleus-derived CGRP-positive axonal terminals and the GABAergic neurons in the lateral capsular division of central nucleus of amygdala. Mol Neurobiol 2014; 51:105-18. [PMID: 24794145 DOI: 10.1007/s12035-014-8713-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022]
Abstract
The lateral capsular division of central nucleus of amygdala (CeC) contains neurons using γ-amino butyric acid (GABA) as the predominant neurotransmitter and expresses abundant calcitonin gene-related peptide (CGRP)-positive terminals. However, the relationship between them has not been revealed yet. Using GAD67-green fluorescent protein (GFP) knock-in mouse, we investigated the neurochemical features of synapses between CGRP-positive terminals and GABAergic neurons within CeC and the potential involvement of CGRP1 receptor by combining fluorescent in situ hybridization for CGRP1 receptor mRNA with immunofluorescent histochemistry for GFP and CGRP. The ultrastructures of these synapses were investigated with pre-embedding electron microscopy for GFP and CGRP. We found that some GABAergic neurons in the CeC received parabrachial nucleus (PBN) derived CGRP innervations and some of these GABAergic neurons can be activated by subcutaneous injection of formalin. Moreover, more than 90 % GABAergic neurons innervated by CGRP-positive terminal also express CGRP1 receptor mRNA. The CGRP-positive fibers made symmetric synapses onto the GABAergic somata, and asymmetric synapses onto the GABA-LI dendritic shafts and spines. This study provides direct ultrastructural evidences for the synaptic contacts between CGRP-positive terminals and GABAergic neurons within the CeC, which may underlie the pain-related neural pathway from PBN to CeC and be involved in the chronic pain modulation.
Collapse
Affiliation(s)
- Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
18
|
Kallupi M, Varodayan FP, Oleata CS, Correia D, Luu G, Roberto M. Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats. Neuropsychopharmacology 2014; 39:1081-92. [PMID: 24169802 PMCID: PMC3957102 DOI: 10.1038/npp.2013.308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
Abstract
The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100-1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1-13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.
Collapse
Affiliation(s)
- Marsida Kallupi
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Florence P Varodayan
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Diego Correia
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department of Pharmacology, Universidade Federal do Paraná, Jardim das Américas, Curitiba, Paraná, Brazil
| | - George Luu
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
19
|
Maksimovic S, Baba Y, Lumpkin EA. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci 2013; 1279:13-21. [PMID: 23530998 DOI: 10.1111/nyas.12057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analysis reveals that Merkel cells express dozens of presynaptic molecules that are essential for synaptic vesicle release in neurons. Merkel cells also produce a host of neuroactive substances that can act as fast excitatory neurotransmitters or neuromodulators. Here, we review the major neurotransmitters found in Merkel cells and discuss these findings in relation to the potential function of Merkel cells in touch reception.
Collapse
Affiliation(s)
- Srdjan Maksimovic
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
20
|
Abstract
Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Collapse
|
21
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
22
|
Banghart MR, Sabatini BL. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 2012; 73:249-59. [PMID: 22284180 PMCID: PMC3282187 DOI: 10.1016/j.neuron.2011.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 12/19/2022]
Abstract
Neuropeptides activate G protein-coupled receptors to acutely modulate cellular excitability and synaptic transmission. However, due to the lack of reagents for precise delivery of peptides within dense brain tissue, the spatiotemporal scale over which neuropeptides act is unknown. To achieve rapid and spatially delimited delivery of neuropeptides in mammalian brain tissue, we developed photoactivatable analogs of two opioids: [Leu⁵]-enkephalin (LE) and the 8 amino acid form of Dynorphin A (Dyn-8). These peptides are functionally inactive prior to photolysis, and exposure to ultraviolet (UV) light causes clean release of LE and Dyn-8. Recordings from acute slices of rat locus coeruleus (LC) demonstrated that photorelease of LE activates mu opioid receptor-coupled K+ channels with kinetics that approach the limits imposed by G protein-mediated signaling. Temporally precise and spatially delimited photorelease revealed the kinetics and ionic nature of the mu opioid response and the mechanisms that determine the spatial profile of enkephalinergic volume transmission in LC.
Collapse
Affiliation(s)
- Matthew R. Banghart
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Dong YL, Fukazawa Y, Wang W, Kamasawa N, Shigemoto R. Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. J Comp Neurol 2011; 518:4771-91. [PMID: 20963828 DOI: 10.1002/cne.22487] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurons in the laterocapsular division of the central nucleus of the amygdala (CeC), which is known as the "nociceptive amygdala," receive glutamatergic inputs from the parabrachial nucleus (PB) and the basolateral nucleus of amygdala (BLA), which convey nociceptive information from the dorsal horn of the spinal cord and polymodal information from the thalamus and cortex, respectively. Here, we examined the ultrastructural properties of PB- and BLA-CeC synapses identified with EGFP-expressing lentivirus in rats. In addition, the density of synaptic AMPA receptors (AMPARs) on CeC neurons was studied by using highly sensitive SDS-digested freeze-fracture replica labeling (SDS-FRL). Afferents from the PB made asymmetrical synapses mainly on dendritic shafts (88%), whereas those from the BLA were on dendritic spines (81%). PB-CeC synapses in dendritic shafts were significantly larger (median 0.072 μm(2)) than BLA-CeC synapses in spines (median 0.058 μm(2); P = 0.02). The dendritic shafts that made synapses with PB fibers were also significantly larger than those that made synapses with BLA fibers, indicating that the PB fibers make synapses on more proximal parts of dendrites than the BLA fibers. SDS-FRL revealed that almost all excitatory postsynaptic sites have AMPARs in the CeC. The density of AMPAR-specific gold particles in individual synapses was significantly higher in spine synapses (median 510 particles/μm(2)) than in shaft synapses (median 427 particles/μm(2); P = 0.01). These results suggest that distinct synaptic impacts from PB- and BLA-CeC pathways contribute to the integration of nociceptive and polymodal information in the CeC.
Collapse
Affiliation(s)
- Yu-Lin Dong
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | |
Collapse
|
25
|
Merighi A, Salio C, Ferrini F, Lossi L. Neuromodulatory function of neuropeptides in the normal CNS. J Chem Neuroanat 2011; 42:276-87. [PMID: 21385606 DOI: 10.1016/j.jchemneu.2011.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 01/15/2023]
Abstract
Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.
Collapse
Affiliation(s)
- Adalberto Merighi
- University of Turin, Department of Veterinary Morphophysiology, Via Leonardo da Vinci 44, 10095 Grugliasco, Torino, Italy.
| | | | | | | |
Collapse
|
26
|
Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 2010; 30:10927-38. [PMID: 20702721 DOI: 10.1523/jneurosci.0657-10.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
B-type natriuretic peptide (BNP) has been known to be secreted from cardiac myocytes and activate its receptor, natriuretic peptide receptor-A (NPR-A), to reduce ventricular fibrosis. However, the function of BNP/NPR-A pathway in the somatic sensory system has been unknown. In the present study, we report a novel function of BNP in pain modulation. Using microarray and immunoblot analyses, we found that BNP and NPR-A were expressed in the dorsal root ganglion (DRG) of rats and upregulated after intraplantar injection of complete Freund's adjuvant (CFA). Immunohistochemistry showed that BNP was expressed in calcitonin gene-related peptide (CGRP)-containing small neurons and IB4 (isolectin B4)-positive neurons, whereas NPR-A was present in CGRP-containing neurons. Application of BNP reduced the firing frequency of small DRG neurons in the presence of glutamate through opening large-conductance Ca2+-activated K+ channels (BKCa channels). Furthermore, intrathecal injection of BNP yielded inhibitory effects on formalin-induced flinching behavior and CFA-induced thermal hyperalgesia in rats. Blockade of BNP signaling by BNP antibodies or cGMP-dependent protein kinase (PKG) inhibitor KT5823 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester] impaired the recovery from CFA-induced thermal hyperalgesia. Thus, BNP negatively regulates nociceptive transmission through presynaptic receptor NPR-A, and activation of the BNP/NPR-A/PKG/BKCa channel pathway in nociceptive afferent neurons could be a potential strategy for inflammatory pain therapy.
Collapse
|
27
|
Ogren SO, Kuteeva E, Elvander-Tottie E, Hökfelt T. Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol 2009; 626:9-17. [PMID: 19837050 DOI: 10.1016/j.ejphar.2009.09.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 08/27/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neuropeptides represent by far the most common signalling molecules in the central nervous system. They are involved in a wide range of physiological functions and can act as neurotransmitters, neuromodulators or hormones in the central nervous system and in the periphery. Accumulating evidence during the past 40 years has implicated a number of neuropeptides in various cognitive functions including learning and memory. A major focus has been on the possibility that neuropeptides, by coexisting with classical neurotransmitters, can modulate classical transmitter function of importance for cognition. It has become increasingly clear that most transmitter systems in the brain can release a cocktail of signalling molecules including classical transmitters and several neuropeptides. However, the neuropeptides seem to come into action mainly under conditions of severe stress or aversive events, which have linked their action also to regulation of affective components of behaviour. This paper summarises some of the results of three neuropeptides, which can impact on hippocampal cognition by intrinsic (dynorphins, nociceptin) or extrinsic (galanin) modulation. The results obtained with these neuropeptides in rodent studies indicate that they are important for various aspects of hippocampal learning and memory as well as hippocampal plasticity. Recent studies in humans have also shown that dysregulation of these neuropeptides may be of importance for both neurodegenerative and neuropsychiatric disorders associated with cognitive impairments. It is concluded that compounds acting on neuropeptide receptor subtypes will represent novel targets for a number of disorders, which involve cognitive deficiencies.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Activation of nociceptin opioid peptide (NOP) receptor impairs contextual fear learning in mice through glutamatergic mechanisms. Neurobiol Learn Mem 2009; 91:393-401. [PMID: 19100850 DOI: 10.1016/j.nlm.2008.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/12/2008] [Accepted: 12/02/2008] [Indexed: 12/20/2022]
Abstract
The present study investigated whether the selective nociceptin opioid peptide (NOP) receptor agonist, Ro64-6198, impairs acquisition of fear conditioning through glutamatergic mechanisms. Systemic administration of Ro64-6198 (0.3 and 1mg/kg) or the non-competitive NMDA receptor antagonist, MK-801 (0.03 and 0.1mg/kg) prior to conditioning severely impaired contextual but not cued fear learning in C57BL/6N mice. When administered together at sub-effective doses, Ro64-6198 (0.5mg/kg) and MK-801 (0.05mg/kg), synergistically impaired contextual fear learning, but left cued fear learning intact. We next used the immediate shock deficit paradigm (ISD) to examine the effects of Ro64-6198 and MK-801 on contextual memory formation in the absence of the foot-shock. As expected, naive mice that were shocked briefly after being placed in the training chamber displayed no contextual fear conditioning. This learning deficit was elevated by prior exposure of mice to the training context. Furthermore, administration of Ro64-6198 and MK-801, either separately at amnesic doses (1mg/kg and 0.1mg/kg, respectively) or concomitantly at sub-effective doses (0.5mg/kg and 0.05mg/kg, respectively) significantly reduced the facilitating effects of context preexposure. These findings demonstrate the existence of functional antagonism between NOP and NMDA receptors that predominantly contributes to modulation of conditioned fear learning which involves spatial-processing demands.
Collapse
|
29
|
Krnjević K. Electrophysiology of cerebral ischemia. Neuropharmacology 2008; 55:319-33. [DOI: 10.1016/j.neuropharm.2008.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 12/20/2022]
|