1
|
Coleman WL, McCartney LE. GABA has a presynaptic inhibitory effect at Lumbricus terrestris body wall muscle synapses. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001055. [PMID: 38107026 PMCID: PMC10722302 DOI: 10.17912/micropub.biology.001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Earthworm body wall muscle synapses have been suggested to contain both excitatory and inhibitory inputs, and therefore allow for investigation of excitatory/inhibitory signaling in an easily accessible model system. While previous studies have focused on postsynaptic GABAergic inhibitory mechanisms, this study investigated the hypothesis that GABAergic signaling also has presynaptic inhibitory function. This hypothesis was tested by loading synaptogreen C4 dye (also called FM1-43) into presynaptic vesicles in the presence of GABA at Lumbricus terrestris longitudinal muscle synapses. GABA treatment significantly reduced the fluorescence intensity observed at these synapses, suggesting that GABAergic signaling does indeed have a presynaptic inhibitory mechanism.
Collapse
Affiliation(s)
- William L. Coleman
- Biology, Commonwealth University of Pennsylvania- Bloomsburg. Bloomsburg, PA, USA
| | - Leah E. McCartney
- Biology, Commonwealth University of Pennsylvania- Bloomsburg. Bloomsburg, PA, USA
| |
Collapse
|
2
|
Carvalhais LG, Martinho VC, Ferreiro E, Pinheiro PS. Unraveling the Nanoscopic Organization and Function of Central Mammalian Presynapses With Super-Resolution Microscopy. Front Neurosci 2021; 14:578409. [PMID: 33584169 PMCID: PMC7874199 DOI: 10.3389/fnins.2020.578409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
The complex, nanoscopic scale of neuronal function, taking place at dendritic spines, axon terminals, and other minuscule structures, cannot be adequately resolved using standard, diffraction-limited imaging techniques. The last couple of decades saw a rapid evolution of imaging methods that overcome the diffraction limit imposed by Abbe's principle. These techniques, including structured illumination microscopy (SIM), stimulated emission depletion (STED), photo-activated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), among others, have revolutionized our understanding of synapse biology. By exploiting the stochastic nature of fluorophore light/dark states or non-linearities in the interaction of fluorophores with light, by using modified illumination strategies that limit the excitation area, these methods can achieve spatial resolutions down to just a few tens of nm or less. Here, we review how these advanced imaging techniques have contributed to unprecedented insight into the nanoscopic organization and function of mammalian neuronal presynapses, revealing new organizational principles or lending support to existing views, while raising many important new questions. We further discuss recent technical refinements and newly developed tools that will continue to expand our ability to delve deeper into how synaptic function is orchestrated at the nanoscopic level.
Collapse
Affiliation(s)
- Lia G Carvalhais
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Vera C Martinho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paulo S Pinheiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Limon A, Delbruck E, Yassine A, Pandya D, Myers RM, Barchas JD, Lee F, Schatzberg, Watson SJ, Akil H, Bunney WE, Vawter MP, Sequeira A. Electrophysiological evaluation of extracellular spermine and alkaline pH on synaptic human GABA A receptors. Transl Psychiatry 2019; 9:218. [PMID: 31488811 PMCID: PMC6728327 DOI: 10.1038/s41398-019-0551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 01/25/2023] Open
Abstract
Polyamines have fundamental roles in brain homeostasis as key modulators of cellular excitability. Several studies have suggested alterations in polyamine metabolism in stress related disorders, suicide, depression, and neurodegeneration, making the pharmacological modulation of polyamines a highly appealing therapeutic strategy. Polyamines are small aliphatic molecules that can modulate cationic channels involved in neuronal excitability. Previous indirect evidence has suggested that polyamines can modulate anionic GABAA receptors (GABAARs), which mediate inhibitory signaling and provide a direct route to reduce hyperexcitability. Here, we attempted to characterize the effect that spermine, the polyamine with the strongest reported effect on GABAARs, has on human postmortem native GABAARs. We microtransplanted human synaptic membranes from the dorsolateral prefrontal cortex of four cases with no history of mental or neurological disorders, and directly recorded spermine effects on ionic GABAARs responses on microtransplanted oocytes. We show that in human synapses, inhibition of GABAARs by spermine was better explained by alkalization of the extracellular solution. Additionally, spermine had no effect on the potentiation of GABA-currents by diazepam, indicating that even if diazepam binding is enhanced by spermine, it does not translate to changes in functional activity. Our results clearly demonstrate that while extracellular spermine does not have direct effects on human native synaptic GABAARs, spermine-mediated shifts of pH inhibit GABAARs. Potential spermine-mediated increase of pH in synapses in vivo may therefore participate in increased neuronal activity observed during physiological and pathological states, and during metabolic alterations that increase the release of spermine to the extracellular milieu.
Collapse
Affiliation(s)
- A. Limon
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA ,0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - E. Delbruck
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Yassine
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - D. Pandya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - R. M. Myers
- 0000 0004 0408 3720grid.417691.cHudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - J. D. Barchas
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - F. Lee
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA USA
| | - S. J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - H. Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - W. E. Bunney
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - M. P. Vawter
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Sequeira
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| |
Collapse
|
4
|
Alejandre-García T, Peña-del Castillo JG, Hernández-Cruz A. GABAA receptor: a unique modulator of excitability, Ca2+ signaling, and catecholamine release of rat chromaffin cells. Pflugers Arch 2017; 470:67-77. [DOI: 10.1007/s00424-017-2080-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
|
5
|
Abstract
This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation.
Collapse
|
6
|
Tzitzitlini AG, Pedro SC, Martha PAE, Rodolfo DL, Arturo HC. Modulation of spontaneous intracellular Ca²⁺ fluctuations and spontaneous cholinergic transmission in rat chromaffin cells in situ by endogenous GABA acting on GABAA receptors. Pflugers Arch 2015; 468:351-65. [PMID: 26490458 DOI: 10.1007/s00424-015-1744-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/04/2015] [Indexed: 12/30/2022]
Abstract
Using fluorescence [Ca(2+)]i imaging in rat adrenal slices, we characterized the effects of agonists and antagonists of the GABAA receptor (GABAA-R) on resting intracellular Ca(2+) ([Ca(2+)]i) and spontaneous [Ca(2+)]i fluctuations (SCFs) in hundreds of individual chromaffin cells (CCs) recorded simultaneously in situ. Muscimol, a GABAA-R agonist (20 μM; 25 s), induced an increase of resting [Ca(2+)]i in 43 ± 3 % of CCs, a decrease in 26 ± 2 %, and no response in 30 ± 5 %. In Ca(2+)-free external medium, SCFs ceased completely and muscimol failed to elicit [Ca(2+)]i rises. All muscimol-induced [Ca(2+)]i changes were blocked by the GABAA-R antagonist bicuculline, suggesting that they result from changes in membrane potential depending on the cell's Cl(-) equilibrium potential. Unexpectedly, bicuculline increased the amplitude and frequency of SCFs in 54 % of CCs, revealing a tonic inhibition of SCFs by ambient GABA acting through GABAA-R. Mecamylamine (a specific nicotinic cholinergic blocker) decreased basal SCF activity in 18 % of CCs and inhibited bicuculline-induced SCF intensification, suggesting that spontaneous acetylcholine (ACh) release from nerve endings contributes to SCF generation in CCs in situ and that blockade of presynaptic GABAA-Rs intensifies SCFs in part through the disinhibition of spontaneous cholinergic transmission. Electrophysiological experiments confirmed that spontaneous excitatory postsynaptic currents recorded from CCs in situ were enhanced by bicuculline. To our knowledge, this is the first description of a regulatory effect of endogenous GABA on synaptic currents and SCFs of adrenal CCs. These findings denote a novel GABA-mediated presynaptic and postsynaptic regulatory mechanism of CC activity which may participate in the control of catecholamine secretion.
Collapse
Affiliation(s)
- Alejandre-García Tzitzitlini
- Departamento Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Circuito de la Investigación Científica s/n, Ciudad Universitaria, México, D.F., C.P. 04510, México
| | - Segura-Chama Pedro
- Laboratorio Nacional de Canalopatías from Instituto de Fisiología Celular, México, México
- Unidad de Investigación en Medicina Experimental, México, México
| | - Pérez-Armendáriz E Martha
- Departamento de Biología Celular y Tisular, from Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., C.P. 04510, Mexico
| | - Delgado-Lezama Rodolfo
- Departamento de Fisiología Biofísica y Neurociencias, from Centro de Investigación y Estudios Avanzados del IPN, Ave. IPN 2508, México City, D.F., México
| | - Hernández-Cruz Arturo
- Departamento Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Circuito de la Investigación Científica s/n, Ciudad Universitaria, México, D.F., C.P. 04510, México.
- Laboratorio Nacional de Canalopatías from Instituto de Fisiología Celular, México, México.
| |
Collapse
|
7
|
Huang Y, Chen J, Chen Y, Zhuang Y, Sun M, Behnisch T. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system. Front Cell Neurosci 2015; 9:299. [PMID: 26300734 PMCID: PMC4523793 DOI: 10.3389/fncel.2015.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson's disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP(+). Here, we present data showing that acute bath-application of MPP(+) elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP(+) were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP(+) reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP(+) on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP(+) affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system.
Collapse
Affiliation(s)
- YuYing Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - JunFang Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Ying Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - YingHan Zhuang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Mu Sun
- Neurodegeneration Discovery Performance Unit, GSK R&D Shanghai, China
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
8
|
Seiler MJ, Jones BW, Aramant RB, Yang PB, Keirstead HS, Marc RE. Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration. Eur J Neurosci 2012; 35:1692-704. [PMID: 22594836 DOI: 10.1111/j.1460-9568.2012.08078.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinal progenitor sheet transplants have been shown to extend neuronal processes into a degenerating host retina and to restore visual responses in the brain. The aim of this study was to identify cells involved in transplant signals to retinal degenerate hosts using computational molecular phenotyping (CMP). S334ter line 3 rats received fetal retinal sheet transplants at the age of 24-40 days. Donor tissues were incubated with slow-releasing microspheres containing brain-derived neurotrophic factor or glial cell-derived neurotrophic factor. Up to 265 days after surgery, eyes of selected rats were vibratome-sectioned through the transplant area (some slices stained for donor marker human placental alkaline phosphatase), dehydrated and embedded in Eponate, sectioned into serial ultrathin datasets and probed for rhodopsin, cone opsin, CRALBP (cellular retinaldehyde binding protein), l-glutamate, l-glutamine, glutathione, glycine, taurine, γ-aminobutyric acid (GABA) and DAPI (4',6-diamidino-2-phenylindole). In large transplant areas, photoreceptor outer segments in contact with host retinal pigment epithelium revealed rod and cone opsin immunoreactivity whereas no such staining was found in the degenerate host retina. Transplant photoreceptor layers contained high taurine levels. Glutamate levels in the transplants were higher than in the host retina whereas GABA levels were similar. The transplant inner nuclear layer showed some loss of neurons, but amacrine cells and horizontal cells were not reduced. In many areas, glial hypertrophy between the host and transplant was absent and host and transplant neuropil appeared to intermingle. CMP data indicate that horizontal cells and both glycinergic and GABAergic amacrine cells are involved in a novel circuit between transplant and host, generating alternative signal pathways between transplant and degenerating host retina.
Collapse
Affiliation(s)
- M J Seiler
- Anatomy & Neurobiol/Reeve-Irvine Research Center, UC Irvine, Irvine, CA 92697-4265, USA
| | | | | | | | | | | |
Collapse
|
9
|
GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 2012; 2012:805830. [PMID: 22530158 PMCID: PMC3316990 DOI: 10.1155/2012/805830] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022] Open
Abstract
GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.
Collapse
|
10
|
Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol 2011; 95:104-32. [PMID: 21802488 PMCID: PMC4878907 DOI: 10.1016/j.pneurobio.2011.07.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
Abstract
GABA is the main inhibitory neurotransmitter in the adult forebrain, where it activates ionotropic type A and metabotropic type B receptors. Early studies have shown that GABA(A) receptor-mediated inhibition controls neuronal excitability and thus the occurrence of seizures. However, more complex, and at times unexpected, mechanisms of GABAergic signaling have been identified during epileptiform discharges over the last few years. Here, we will review experimental data that point at the paradoxical role played by GABA(A) receptor-mediated mechanisms in synchronizing neuronal networks, and in particular those of limbic structures such as the hippocampus, the entorhinal and perirhinal cortices, or the amygdala. After having summarized the fundamental characteristics of GABA(A) receptor-mediated mechanisms, we will analyze their role in the generation of network oscillations and their contribution to epileptiform synchronization. Whether and how GABA(A) receptors influence the interaction between limbic networks leading to ictogenesis will be also reviewed. Finally, we will consider the role of altered inhibition in the human epileptic brain along with the ability of GABA(A) receptor-mediated conductances to generate synchronous depolarizing events that may lead to ictogenesis in human epileptic disorders as well.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montreal H3A 2B4 Quebec, Canada.
| | | |
Collapse
|
11
|
Nickel modulates the electrical activity of cultured cortical neurons through a specific effect on N-methyl-d-aspartate receptor channels. Neuroscience 2011; 177:43-55. [DOI: 10.1016/j.neuroscience.2010.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/10/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
|
12
|
Lindsly C, Frazier CJ. Two distinct and activity-dependent mechanisms contribute to autoreceptor-mediated inhibition of GABAergic afferents to hilar mossy cells. J Physiol 2010; 588:2801-22. [PMID: 20547680 DOI: 10.1113/jphysiol.2009.184648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report that bath application of 3 mum carbachol (CCh), a muscarinic acetylcholine receptor agonist, reduces evoked IPSC amplitude recorded from hilar mossy cells in the rat dentate gyrus through a presynaptic mechanism. While CCh has been shown to inhibit evoked IPSCs in other systems, this effect is intriguing in that it does not require inhibitory action of either presynaptic muscarinic receptors or presynaptic cannabinoid receptors. Previous work from our lab has shown that identical application of CCh produces an action potential-dependent increase in ambient GABA in this system; however, inhibition of evoked IPSCs produced by both 3 and 10 mum CCh is insensitive to the GABA(B) antagonist CGP52432. Therefore we hypothesized that CCh-mediated inhibition of evoked IPSCs might be produced by activity-dependent increases in ambient GABA and subsequent activation of presynaptic GABA(A) receptors. Consistent with that hypothesis, we report that CCh-mediated inhibition of evoked IPSCs appears to be well correlated with CCh-mediated facilitation of spontaneous IPSCs and that CCh does not affect GABA(B)-mediated IPSCs recorded in the presence of the GABA(A) receptor antagonist picrotoxin. Intriguingly, however, we found that bath application of the GAT-1 transport blocker NO-711 (1 mum) produces inhibition of evoked IPSCs that is reversed by CGP52432, and that lower doses of CCh produce inhibition with greater CGP52432 sensitivity. These observations, combined with subsequent work on multiple pulse depression, reveal that feedback inhibition of GABAergic afferents to hilar mossy cells is governed by a complex relationship between two distinct and activity-dependent mechanisms.
Collapse
Affiliation(s)
- Casie Lindsly
- Department of Neuroscience, College of Medicine, University of Florida,1600 S.W. Archer Road, Gainesville, FL 32610, USA
| | | |
Collapse
|
13
|
Tolman JA, Faulkner MA. Vigabatrin: a comprehensive review of drug properties including clinical updates following recent FDA approval. Expert Opin Pharmacother 2009; 10:3077-89. [DOI: 10.1517/14656560903451690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 2008; 9:331-43. [PMID: 18382465 PMCID: PMC2709246 DOI: 10.1038/nrn2370] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.
Collapse
Affiliation(s)
- Tija C. Jacob
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Stephen J. Moss
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Pharmacology, University College London, WC1E 6BT, UK
| | - Rachel Jurd
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|