1
|
Ding L, Shen S, Chen J, Tian Z, Shi Q, Han R, Guo Y, Hu F. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev 2023; 36:e0000823. [PMID: 37937997 PMCID: PMC10732083 DOI: 10.1128/cmr.00008-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants, which refer to the substitution, insertion, or deletion of amino acid sequence compared to wild blaKPC type, have reduced utility of ceftazidime-avibactam (CZA), a pioneer antimicrobial agent in treating carbapenem-resistant Enterobacterales infections. So far, more than 150 blaKPC variants have been reported worldwide, and most of the new variants were discovered in the past 3 years, which calls for public alarm. The KPC variant protein enhances the affinity to ceftazidime and weakens the affinity to avibactam by changing the KPC structure, thereby mediating bacterial resistance to CZA. At present, there are still no guidelines or expert consensus to make recommendations for the diagnosis and treatment of infections caused by KPC variants. In addition, meropenem-vaborbactam, imipenem-relebactam, and other new β-lactam-β-lactamase inhibitor combinations have little discussion on KPC variants. This review aims to discuss the clinical characteristics, risk factors, epidemiological characteristics, antimicrobial susceptibility profiles, methods for detecting blaKPC variants, treatment options, and future perspectives of blaKPC variants worldwide to alert this new great public health threat.
Collapse
Affiliation(s)
- Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jing Chen
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Zhen Tian
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
2
|
Nitti MT, Sleghel F, Kaczor M, Aschbacher R, Moroder E, Di Pierro AM, Piscopiello F, Spalla M, Piazza A, Migliavacca R, Pagani E. Colonization of Residents and Staff of an Italian Long-Term Care Facility and an Adjacent Acute Care Hospital Geriatrics Unit by Multidrug-Resistant Bacteria. Microb Drug Resist 2023; 29:477-484. [PMID: 37389822 DOI: 10.1089/mdr.2023.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
In 2022, we undertook a point prevalence screening study for Enterobacterales with extended-spectrum β-lactamases (ESBLs), high-level AmpC cephalosporinases and carbapenemases, and also methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) in a long-term care facility (LTCF) and the associated acute-care hospital Geriatrics unit in Bolzano, Northern Italy. Urine samples and rectal, inguinal, oropharyngeal, and nasal swabs were plated on selective agar plates. Metadata of the patients, including demographic data, were collected, and risk factors for colonization were determined. ESBL, AmpC, carbapenemase, and quinolone resistance genes were investigated by the HybriSpot 12 PCR AUTO System. The following colonization percentages by multidrug-resistant (MDR) bacteria have been found in LTCF residents: all MDR organisms, 59.5%; ESBL producers, 46.0% (mainly CTX-M-type enzymes); carbapenemase producers, 1.1% (one Klebsiella pneumoniae with KPC-type); MRSA, 4.5%; VRE, 6.7%. Colonization by MDR bacteria was 18.9% for LTCF staff and 45.0% for Geriatrics unit patients. Peripheral vascular disease, the presence of any medical device, cancer, and a Katz Index of 0 were significant risk factors for colonization of LTCF residents by MDR bacteria in univariate and/or multivariate regression analysis. To conclude, the ongoing widespread diffusion of MDR bacteria in the LTCF suggests that efforts should be strengthened on MDR screening, implementation of infection control strategies, and antibiotic stewardship programs targeting the unique aspects of LTCFs. ClinicalTrials.gov ID: 0530250-BZ Reg01 30/08/2022.
Collapse
Affiliation(s)
| | - Ferisa Sleghel
- Reparto di Geriatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Malgorzata Kaczor
- Reparto di Geriatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Richard Aschbacher
- Laboratorio Aziendale di Microbiologia e Virologia, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Elena Moroder
- Laboratorio Aziendale di Microbiologia e Virologia, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Angela Maria Di Pierro
- Laboratorio Aziendale di Microbiologia e Virologia, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Francesca Piscopiello
- Dipartimento SCCDP, Unità di Microbiologia e Microbiologia clinica, Università degli Studi di Pavia, Pavia, Italy
| | - Melissa Spalla
- Dipartimento SCCDP, Unità di Microbiologia e Microbiologia clinica, Università degli Studi di Pavia, Pavia, Italy
| | - Aurora Piazza
- Dipartimento SCCDP, Unità di Microbiologia e Microbiologia clinica, Università degli Studi di Pavia, Pavia, Italy
| | - Roberta Migliavacca
- Dipartimento SCCDP, Unità di Microbiologia e Microbiologia clinica, Università degli Studi di Pavia, Pavia, Italy
| | - Elisabetta Pagani
- Laboratorio Aziendale di Microbiologia e Virologia, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| |
Collapse
|
3
|
Piazza A, Principe L, Comandatore F, Perini M, Meroni E, Mattioni Marchetti V, Migliavacca R, Luzzaro F. Whole-Genome Sequencing Investigation of a Large Nosocomial Outbreak Caused by ST131 H30Rx KPC-Producing Escherichia coli in Italy. Antibiotics (Basel) 2021; 10:718. [PMID: 34203731 PMCID: PMC8232337 DOI: 10.3390/antibiotics10060718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
KPC-producing Escherichia coli (KPC-Ec) remains uncommon, being mainly reported as the cause of sporadic episodes of infection rather than outbreak events. Here we retrospectively describe the dynamics of a large hospital outbreak sustained by KPC-Ec, involving 106 patients and 25 hospital wards, during a six-month period. Twenty-nine representative KPC-Ec isolates (8/29 from rectal swabs; 21/29 from other clinical specimens) have been investigated by Whole-Genome Sequencing (WGS). Outbreak isolates showed a multidrug-resistant profile and harbored several resistance determinants, including blaCTX-M-27, aadA5, dfrA17, sulI, gyrA1AB and parC1aAB. Phylogenomic analysis identified the ST131 cluster 1 (23/29 isolates), H30Rx clade C, as responsible for the epidemic event. A further two KPC-Ec ST131 clusters were identified: cluster 2 (n = 2/29) and cluster 3 (n = 1/29). The remaining KPC-Ec resulted in ST978 (n = 2/29) and ST1193 (n = 1/29), and were blaKPC-3 associated. The KPC-Ec ST131 cluster 1, originated in a previous KPC-Kp endemic context probably by plasmid transfer, and showed a clonal dissemination strategy. Transmission of the blaKPC gene to the globally disseminated high-risk ST131 clone represents a serious cause of concern. Application of WGS in outbreak investigations could be useful to better understand the evolution of epidemic events in order to address infection control and contrast interventions, especially when high-risk epidemic clones are involved.
Collapse
Affiliation(s)
- Aurora Piazza
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy;
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, S. Giovanni di Dio Hospital, 88900 Crotone, Italy;
| | - Francesco Comandatore
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy; (F.C.); (M.P.)
| | - Matteo Perini
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy; (F.C.); (M.P.)
| | - Elisa Meroni
- Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (E.M.); (F.L.)
| | | | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy;
| | - Francesco Luzzaro
- Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (E.M.); (F.L.)
| |
Collapse
|
4
|
Hernández-García M, Sánchez-López J, Martínez-García L, Becerra-Aparicio F, Morosini MI, Ruiz-Garbajosa P, Cantón R. Emergence of the New KPC-49 Variant Conferring an ESBL Phenotype with Resistance to Ceftazidime-Avibactam in the ST131-H30R1 Escherichia coli High-Risk Clone. Pathogens 2021; 10:pathogens10010067. [PMID: 33466574 PMCID: PMC7828710 DOI: 10.3390/pathogens10010067] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
We report the emergence of an isolate belonging to the sequence type (ST)131-Escherichia coli high-risk clone with ceftazidime-avibactam resistance recovered from a patient with bacteremia in 2019. Antimicrobial susceptibility was determined and whole genome sequencing (Illumina-NovaSeq6000) and cloning experiments were performed to investigate its resistance phenotype. A KPC-3-producing E. coli isolate susceptible to ceftazidime-avibactam (MIC = 0.5/4 mg/L) and with non-wild type MIC of meropenem (8 mg/L) was detected in a blood culture performed at hospital admission. Following 10-days of standard ceftazidime-avibactam dose treatment, a second KPC-producing E. coli isolate with a phenotype resembling an extended-spectrum β-lactamase (ESBL) producer (meropenem 0.5 mg/L, piperacillin-tazobactam 16/8 mg/L) but resistant to ceftazidime-avibactam (16/4 mg/L) was recovered. Both E. coli isolates belonged to ST131, serotype O25:H4 and sublineage H30R1. Genomics analysis showed a core genome of 5,203,887 base pair with an evolutionary distance of 6 single nucleotide polymorphisms. A high content of resistance and virulence genes was detected in both isolates. The novel KPC-49 variant, an Arg-163-Ser mutant of blaKPC-3, was detected in the isolate with resistance to ceftazidime-avibactam. Cloning experiments revealed that blaKPC-49 gene increases ceftazidime-avibactam MIC and decreases carbapenem MICs when using a porin deficient Klebsiella pneumoniae strain as a host. Both blaKPC-3 and blaKPC-49 genes were located on the transposon Tn4401a as a part of an IncF [F1:A2:B20] plasmid. The emergence of novel blaKPC genes conferring decreased susceptibility to ceftazidime-avibactam and resembling ESBL production in the epidemic ST131-H30R1-E. coli high-risk clone presents a new challenge in clinical practice.
Collapse
Affiliation(s)
- Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Javier Sánchez-López
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Federico Becerra-Aparicio
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
- Correspondence:
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.H.-G.); (J.S.-L.); (L.M.-G.); (F.B.-A.); (M.I.M.); (R.C.)
- Red Española de Investigación en Patología Infecciosa (REIPI), 28029 Madrid, Spain
| |
Collapse
|
5
|
Gong L, Tang N, Chen D, Sun K, Lan R, Zhang W, Zhou H, Yuan M, Chen X, Zhao X, Che J, Bai X, Zhang Y, Xu H, Walsh TR, Lu J, Xu J, Li J, Feng J. A Nosocomial Respiratory Infection Outbreak of Carbapenem-Resistant Escherichia coli ST131 With Multiple Transmissible bla KPC-2 Carrying Plasmids. Front Microbiol 2020; 11:2068. [PMID: 33042037 PMCID: PMC7516988 DOI: 10.3389/fmicb.2020.02068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is well known for its multidrug resistance profile. Carbapenems have been considered the treatment of choice for E. coli ST131 infections, and resistance to carbapenems is emerging due to the acquisition of carbapenemase-encoding genes. In this study, 45 carbapenem-resistant E. coli strains were collected in a hospital. The resistance mechanisms, plasmid profiles, and genetic relatedness of these strains were determined. Phylogenetic relationships between these strains were assessed by molecular profiling and aligned with patient clinical details. The genetic context of bla KPC-2 was analyzed to trace the potential dissemination of bla KPC-2. The 45 carbapenem-resistant E. coli ST131 strains were closely related. Initially prevalent only in a single ward, ST131 subsequently spread to other ward, resulting in a respiratory infection outbreak of carbapenem-resistant E. coli ST131. Eight of the 30 patients died within 28 days of the first isolation of E. coli ST131. The bla KPC-2-positive plasmid profiles suggest that the carbapenem resistance was due to the acquisition by E. coli ST131 of transmissible plasmids pE0272_KPC and pE0171_KPC carrying bla KPC-2. Additionally, diverse multidrug resistance elements were transferred and rearranged between these plasmids mediated by IS26. Our research indicates that clinical attention should be paid to the importance of E. coli ST131 in respiratory infections and the spread of bla KPC -carrying E. coli ST131.
Collapse
Affiliation(s)
- Lin Gong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
- Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Na Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dongke Chen
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Kaiwen Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Min Yuan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Xia Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Xiaofei Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Jie Che
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Xuemei Bai
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Yunfei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Timothy R. Walsh
- Department of Medical, Microbiology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jinxing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Juan Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Lee M, Choi TJ. Species Transferability of Klebsiella pneumoniae Carbapenemase-2 Isolated from a High-Risk Clone of Escherichia coli ST410. J Microbiol Biotechnol 2020; 30:974-981. [PMID: 32522962 PMCID: PMC9728272 DOI: 10.4014/jmb.1912.12049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Sequence type 410 (ST410) of Escherichia coli is an extraintestinal pathogen associated with multi drug resistance. In this study, we aimed to investigate the horizontal propagation pathway of a highrisk clone of E. coli ST410 that produces Klebsiella pneumoniae carbapenemase (KPC). blaKPCencoding E. coli and K. pneumoniae isolates were evaluated, and complete sequencing and comparative analysis of blaKPC-encoding plasmids from E. coli and K. pneumoniae, antimicrobial susceptibility tests, polymerase chain reaction, multilocus sequence typing, and conjugal transfer of plasmids were performed. Whole-genome sequencing was performed for plasmids mediating KPC-2 production in E. coli and K. pneumoniae clinical isolates. Strains E. coli CPEc171209 and K. pneumoniae CPKp171210 were identified as ST410 and ST307, respectively. CPEc171209 harbored five plasmids belonging to serotype O8:H21, which is in the antimicrobial-resistant clade C4/H24. The CPKp171210 isolate harbored three plasmids. Both strains harbored various additional antimicrobial resistance genes. The IncX3 plasmid pECBHS_9_5 harbored blaKPC-2 within a truncated Tn4401a transposon, which also contains blaSHV-182 with duplicated conjugative elements. This plasmid displayed 100% identity with the IncX3 plasmid pKPBHS_10_3 from the K. pneumoniae CPKp171210 ST307 strain. The genes responsible for the conjugal transfer of the IncX3 plasmid included tra/trb clusters and pil genes coding the type IV pilus. ST410 can be transmitted between patients, posing an elevated risk in clinical settings. The emergence of a KPC-producing E. coli strain (ST410) is concerning because the blaKPC-2-bearing plasmids may carry treatment resistance across species barriers. Transgenic translocation occurs among carbapenem-resistant bacteria, which may spread rapidly via horizontal migration.
Collapse
Affiliation(s)
- Miyoung Lee
- Department of Microbiology Pukyoung National University Busan 48513, Republic of Korea,Department of Laboratory Medicine, BHS Hanseo Hospital Busan 48253, Republic of Korea
| | - Tae-Jin Choi
- Department of Microbiology Pukyoung National University Busan 48513, Republic of Korea,Corresponding author Phone: +82-51-629-5617 Fax: +82-51-629-5619 E-mail:
| |
Collapse
|
7
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
8
|
Mattioni Marchetti V, Bitar I, Mercato A, Nucleo E, Marchesini F, Mancinelli M, Prati P, Scarsi GS, Hrabak J, Pagani L, Fabbi M, Migliavacca R. Deadly Puppy Infection Caused by an MDR Escherichia coli O39 bla CTX-M-15, bla CMY-2, bla DHA-1, and aac(6)-Ib-cr - Positive in a Breeding Kennel in Central Italy. Front Microbiol 2020; 11:584. [PMID: 32351465 PMCID: PMC7174561 DOI: 10.3389/fmicb.2020.00584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial consumption in veterinary medicine has led to the spread of multi drug-resistance in clinically important bacteria, with the companion animals and their environment involved as emerging reservoirs. While CTX-M-15 and CMY-2 acquired β-lactamases have been widely detected in the bacterial population of companion and breeding animals in European area, DHA-1 enzymes have been rarely reported in veterinary medicine. The aim of the study was to characterize the Escherichia coli associated with mortality of a litter of Bulldog puppies in a breeding kennel located in Pesaro area, Central Italy. The E. coli strains O39 serotype were resistant to 3rd/4th generation cephalosporins, chloramphenicol, aminoglycosides, trimethoprim-sulfamethoxazole, and ciprofloxacin, retaining susceptibility to carbapenems, colistin, fosfomycin, and levofloxacin (by Microscan Autoscan4, EUCAST clinical breakpoints). Pulse field gel electrophoreses (PFGE-XbaI) on five E. coli strains revealed the presence of a single profile. Whole genome sequencing (WGS) analysis revealed a complex resistome, harboring bla TEM-1b, bla CTX-M-15, bla OXA-1, aph(6)-Ib, aac(6')Ib-cr, aac(3)-Ila, aph(6)-Id, aadA1, qnrB1, sul2, catA1, catB3, tetA, and dfrA14 genes located on a 302597 bp IncHI2/HI2A plasmid. Moreover, bla DHA-1, qnrB4, mph(A), sul1, and dfrA17 determinants were carried on an 83,429 bp IncFII plasmid. A bla CMY-2 determinant was carried on a 90,249 bp IncI1 plasmid. Two IncX1 and IncX4 plasmids without antimicrobial resistance genes were also detected. The presence of lpfA, iss, astA, and gad virulence factors was highlighted. This is the first report in Italy on an invasive infection in eight 2-weeks old dogs caused by the same MDR E. coli O39 bla CTX-M-15, bla CMY-2, bla DHA-1, and aac(6')-Ib-cr positive strain. The above MDR E. coli clone caused the death of the entire litter, despite amoxicillin-clavulanate and enrofloxacin administration. The tank for storage of the water used to prepare the milk-based meal for the litter was the suspected reservoir.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Alessandra Mercato
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Elisabetta Nucleo
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Federica Marchesini
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marika Mancinelli
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Paola Prati
- Pavia Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Pavia, Italy
| | - Giada Simona Scarsi
- Pavia Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Pavia, Italy
| | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Laura Pagani
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Fabbi
- Pavia Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Pavia, Italy
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Ripabelli G, Sammarco ML, Scutellà M, Felice V, Tamburro M. Carbapenem-Resistant KPC- and TEM-Producing Escherichia coli ST131 Isolated from a Hospitalized Patient with Urinary Tract Infection: First Isolation in Molise Region, Central Italy, July 2018. Microb Drug Resist 2019; 26:38-45. [PMID: 31386590 DOI: 10.1089/mdr.2019.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In July 2018, a Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli ST131 was isolated from a patient admitted to the Vascular Surgery Unit of the main hospital of Molise region, Central Italy. Sequencing and alignment with the available sequences revealed that the isolate harbored the KPC-2 variant and TEM-1 beta-lactamase. This observation raises great concerns about the spread of carbapenem resistance in national and local settings with high endemicity level of KPC in K. pneumoniae, and underlines the importance of strengthening a proactive surveillance.
Collapse
Affiliation(s)
- Giancarlo Ripabelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio," University of Molise, Campobasso, Italy
| | - Michela Lucia Sammarco
- Department of Medicine and Health Sciences "Vincenzo Tiberio," University of Molise, Campobasso, Italy
| | - Massimiliano Scutellà
- Laboratory Medicine Unit, "Antonio Cardarelli" Hospital, Azienda Sanitaria Regionale del Molise, Campobasso, Italy
| | - Valentina Felice
- Laboratory Medicine Unit, "Antonio Cardarelli" Hospital, Azienda Sanitaria Regionale del Molise, Campobasso, Italy
| | - Manuela Tamburro
- Department of Medicine and Health Sciences "Vincenzo Tiberio," University of Molise, Campobasso, Italy
| |
Collapse
|
10
|
Interplay among IncA and bla KPC-Carrying Plasmids in Citrobacter freundii. Antimicrob Agents Chemother 2019; 63:AAC.02609-18. [PMID: 30858205 DOI: 10.1128/aac.02609-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
We report two KPC-producing Citrobacter freundii isolates from unrelated patients. In one case, bla KPC-2 was harbored on a novel variant of a Tn4401 transposon of an IncN plasmid conjugated together with a coresident IncA plasmid, whereas in the other one, bla KPC-3 was on a Tn4401a transposon located on an IncX3-IncA self-conjugative plasmid fusion. The interplay among plasmids carrying bla KPC and the coresident IncA plasmids offers new information on plasmids coresident within clinically relevant enterobacteria.
Collapse
|
11
|
Jeong S, Kim JO, Yoon EJ, Bae IK, Lee W, Lee H, Park Y, Lee K, Jeong SH. Extensively Drug-Resistant Escherichia coli Sequence Type 1642 Carrying an IncX3 Plasmid Containing the blaKPC-2 Gene Associated with Transposon Tn4401a. Ann Lab Med 2018; 38:17-22. [PMID: 29071814 PMCID: PMC5700142 DOI: 10.3343/alm.2018.38.1.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 09/07/2017] [Indexed: 01/17/2023] Open
Abstract
Background Extensively drug-resistant (XDR) Enterobacteriaceae carrying the blaKPC gene have emerged as a major global therapeutic concern. The purpose of this study was to analyze the complete sequences of plasmids from KPC-2 carbapenemase-producing XDR Escherichia coli sequence type (ST) 1642 isolates. Methods We performed antimicrobial susceptibility testing, PCR, multilocus sequence typing (MLST), and whole-genome sequencing to characterize the plasmid-mediated KPC-2-producing E. coli clinical isolates. Results The isolates were resistant to most available antibiotics, including meropenem, ampicillin, ceftriaxone, gentamicin, and ciprofloxacin, but susceptible to tigecycline and colistin. The isolates were identified as the rare ST1642 by MLST. The isolates carried four plasmids: the first 69-kb conjugative IncX3 plasmid harbors blaKPC-2 within a truncated Tn4401a transposon and blaSHV-11 with duplicated conjugative elements. The second 142-kb plasmid with a multireplicon consisting of IncQ, IncFIA, and IncIB carries blaTEM-1b and two class 1 integrons. This plasmid also harbors a wide variety of additional antimicrobial resistance genes including aadA5, dfrA17, mph(A), sul1, tet(B), aac(3′)-IId, strA, strB, and sul2. Conclusions The complete sequence analysis of plasmids from an XDR E. coli strain related to persistent infection showed the coexistence of a blaKPC-2–carrying IncX3-type plasmid and a class 1 integron-harboring multireplicon, suggesting its potential to cause outbreaks. Of additional clinical significance, the rare ST1642, identified in a cat, could constitute the source of human infection.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kosin University College of Medicine, Busan, Korea
| | - Jung Ok Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Medical and Life Science, Shilla University, Busan, Korea
| | - Woonhyoung Lee
- Department of Laboratory Medicine, Kosin University College of Medicine, Busan, Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yongjung Park
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Ilsan, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Nucleo E, Caltagirone M, Marchetti VM, D'Angelo R, Fogato E, Confalonieri M, Reboli C, March A, Sleghel F, Soelva G, Pagani E, Aschbacher R, Migliavacca R, Pagani L. Colonization of long-term care facility residents in three Italian Provinces by multidrug-resistant bacteria. Antimicrob Resist Infect Control 2018. [PMID: 29527303 PMCID: PMC5839059 DOI: 10.1186/s13756-018-0326-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Rationale and aims of the study were to compare colonization frequencies with MDR bacteria isolated from LTCF residents in three different Northern Italian regions, to investigate risk factors for colonization and the genotypic characteristics of isolates. The screening included Enterobacteriaceae expressing extended-spectrum β-lactamases (ESβLs) and high-level AmpC cephalosporinases, carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa or Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Methods Urine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on selective agar; resistance genes were sought by PCR and sequencing. Demographic and clinical data were collected. Results Among the LTCF residents, 75.0% (78/104), 69.4% (84/121) and 66.1% (76/115) were colonized with at least one of the target organisms in LTCFs located in Milan, Piacenza and Bolzano, respectively. ESβL producers (60.5, 66.1 and 53.0%) were highly predominant, mainly belonging to Escherichia coli expressing CTX-M group-1 enzymes. Carbapenemase-producing enterobacteria were found in 7.6, 0.0 and 1.6% of residents; carbapemenase-producing P. aeruginosa and A. baumannii were also detected. Colonization by MRSA (24.0, 5.7 and 14.8%) and VRE (20.2, 0.8 and 0.8%) was highly variable. Several risk factors for colonization by ESβL-producing Enterobacteriaceae and MRSA were found and compared among LTCFs in the three Provinces. Colonization differences among the enrolled LTCFs can be partially explained by variation in risk factors, resident populations and staff/resident ratios, applied hygiene measures and especially the local antibiotic resistance epidemiology. Conclusions The widespread diffusion of MDR bacteria in LTCFs within three Italian Provinces confirms that LTCFs are an important reservoir of MDR organisms in Italy and suggests that future efforts should focus on MDR screening, improved implementation of infection control strategies and antibiotic stewardship programs targeting the complex aspects of LTCFs.
Collapse
Affiliation(s)
- Elisabetta Nucleo
- 1Department of Clinical Surgical Diagnostic and Pediatric Sciences, Laboratory of Microbiology and Clinical Microbiology, University of Pavia, Via Brambilla 74, 27100 Pavia, Italy
| | - Mariasofia Caltagirone
- 1Department of Clinical Surgical Diagnostic and Pediatric Sciences, Laboratory of Microbiology and Clinical Microbiology, University of Pavia, Via Brambilla 74, 27100 Pavia, Italy
| | - Vittoria Mattioni Marchetti
- 1Department of Clinical Surgical Diagnostic and Pediatric Sciences, Laboratory of Microbiology and Clinical Microbiology, University of Pavia, Via Brambilla 74, 27100 Pavia, Italy
| | - Roberto D'Angelo
- Laboratory of Clinical Microbiology, ASP "Golgi-Redaelli", via Bartolomeo d'Alviano 78, 20146 Milan, Italy
| | - Elena Fogato
- Laboratory of Clinical Microbiology, ASP "Golgi-Redaelli", via Bartolomeo d'Alviano 78, 20146 Milan, Italy
| | | | - Camilla Reboli
- O.U. of Microbiology, Azienda Sanitaria Locale di Piacenza, Piacenza, Italy
| | - Albert March
- Geriatric Unit, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Ferisa Sleghel
- Geriatric Unit, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Gertrud Soelva
- Geriatric Unit, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Elisabetta Pagani
- Microbiology and Virology Laboratory, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Richard Aschbacher
- Microbiology and Virology Laboratory, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Roberta Migliavacca
- 1Department of Clinical Surgical Diagnostic and Pediatric Sciences, Laboratory of Microbiology and Clinical Microbiology, University of Pavia, Via Brambilla 74, 27100 Pavia, Italy
| | - Laura Pagani
- 1Department of Clinical Surgical Diagnostic and Pediatric Sciences, Laboratory of Microbiology and Clinical Microbiology, University of Pavia, Via Brambilla 74, 27100 Pavia, Italy
| | | | | |
Collapse
|
13
|
Bitar I, Piazza A, Gaiarsa S, Villa L, Pedroni P, Oliva E, Nucleo E, Pagani L, Carattoli A, Migliavacca R. ST405 NDM-5 producing Escherichia coli in Northern Italy: the first two clinical cases. Clin Microbiol Infect 2017; 23:489-490. [DOI: 10.1016/j.cmi.2017.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/24/2022]
|
14
|
Markovska R, Stoeva T, Boyanova L, Stankova P, Pencheva D, Kaneva R, Mitev V, Mitov I. Isolation of Escherichia coli ST131 producing KPC-2 in Bulgaria. Infect Dis (Lond) 2017; 49:429-431. [DOI: 10.1080/23744235.2016.1270464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Rumyana Markovska
- Medical University-Sofia, Bulgaria, Medical Faculty, Department of Medical Microbiology
| | - Temenuga Stoeva
- Medical University of Varna, Department of Microbiology, Varna, Bulgaria
| | - Lyudmila Boyanova
- Medical University-Sofia, Bulgaria, Medical Faculty, Department of Medical Microbiology
| | - Petya Stankova
- Medical University-Sofia, Bulgaria, Medical Faculty, Department of Medical Microbiology
| | | | - Radka Kaneva
- Medical University- Sofia, Bulgaria, Molecular Medicine Center
| | - Vanyo Mitev
- Medical University- Sofia, Bulgaria, Molecular Medicine Center
| | - Ivan Mitov
- Medical University-Sofia, Bulgaria, Medical Faculty, Department of Medical Microbiology
| |
Collapse
|
15
|
Aschbacher R, Pagani E, Confalonieri M, Farina C, Fazii P, Luzzaro F, Montanera PG, Piazza A, Pagani L. Review on colonization of residents and staff in Italian long-term care facilities by multidrug-resistant bacteria compared with other European countries. Antimicrob Resist Infect Control 2016; 5:33. [PMID: 27766146 PMCID: PMC5057254 DOI: 10.1186/s13756-016-0136-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rates of colonization and infection with multidrug-resistant (MDR) bacteria are increasing worldwide, in both acute care hospitals and long-term care facilities (LTCFs). Italy has one of the highest prevalence of MDR bacteria in European countries, especially with regard to methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase (ESBL) or carbapenemase producing Enterobacteriaceae (CPE). METHOD Review of studies on colonization by MDR bacteria from Italian LTCFs, risk factors for colonization and molecular characteristics of surveillance and clinical isolates, compared with other European countries. RESULTS High variability of MDR colonization has been reported within and especially between European countries. Only a few surveillance studies have been performed in Italian LTCFs; these show MRSA colonization prevalence of 7.8-38.7 % for residents and 5.2-7.0 % for staff members, ESBL prevalence of 49.0-64.0 % for residents and 5.2-14.5 % for staff and prevalence of CPE of 1.0-6.3 % for residents and 0.0-1.5 % for staff. In Italian LTCFs, as well as in other European countries, the most prevalent ESBLs from surveillance or clinical Escherichia coli isolates were found to be CTX-M-type enzymes, particularly CTX-M-15, expressed by the pandemic ST131 clonal group; this lineage also expresses carbapenemase genes of the blaVIM and blaKPC types. Various risk factors for colonization of residents by MDR bacteria were identified. CONCLUSIONS The limited data from Italian LTCFs confirms these settings as important reservoirs for MDR organisms, allowing important considerations regarding the infection risk by these organisms. Nevertheless, more extended and countrywide screening studies for MDR colonization in Italian LTCFs are required. To promote further studies of various microbiological aspects related to LTCFs, the Association of Italian Clinical Microbiologists (Associazione Microbiologi Clinici Italiani; AMCLI) in 2016 has set up a new Working Group for the Study of Infections in LTCFs (Gruppo di Lavoro per lo Studio delle Infezioni nelle Residenze Sanitarie Assistite e Strutture Territoriali assimilabili; GLISTer), consisting of Clinical Microbiologists represented by the authors of this review article.
Collapse
Affiliation(s)
- Richard Aschbacher
- Laboratorio Aziendale di Microbiologia e Virologia, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Elisabetta Pagani
- Laboratorio Aziendale di Microbiologia e Virologia, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | | | - Claudio Farina
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, USC Microbiologia e Virologia, Bergamo, Italy
| | - Paolo Fazii
- P.O. Spirito Santo Laboratorio Analisi, Pescara, Italy
| | - Francesco Luzzaro
- Ospedale A. Manzoni, Laboratorio Microbiologia e Virologia, Lecco, Italy
| | | | - Aurora Piazza
- Dipartimento SCCDP, Unità di Microbiologia e Microbiologia clinica, Pavia, Italy
| | - Laura Pagani
- Dipartimento SCCDP, Unità di Microbiologia e Microbiologia clinica, Pavia, Italy
| |
Collapse
|