1
|
Choudhery MS, Mahmood R, Harris DT. Stem Cell Banking of Adipose Tissue. CURRENT STEM CELL REPORTS 2022; 8:174-183. [DOI: 10.1007/s40778-022-00222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
|
2
|
Amaroli A, Pasquale C, Zekiy A, Benedicenti S, Marchegiani A, Sabbieti MG, Agas D. Steering the multipotent mesenchymal cells towards an anti-inflammatory and osteogenic bias via photobiomodulation therapy: How to kill two birds with one stone. J Tissue Eng 2022; 13:20417314221110192. [PMID: 35832724 PMCID: PMC9272199 DOI: 10.1177/20417314221110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The bone marrow-derived multipotent mesenchymal cells (MSCs) have captured scientific interest due to their multi-purpose features and clinical applications. The operational dimension of MSCs is not limited to the bone marrow reservoir, which exerts bone-building and niche anabolic tasks; they also meet the needs of quenching inflammation and restoring inflamed tissues. Thus, the range of MSC activities extends to conditions such as neurodegenerative diseases, immune disorders and various forms of osteopenia. Steering these cells towards becoming an effective therapeutic tool has become mandatory. Many laboratories have employed distinct strategies to improve the plasticity and secretome of MSCs. We aimed to present how photobiomodulation therapy (PBM-t) can manipulate MSCs to render them an extraordinary anti-inflammatory and osteogenic instrument. Moreover, we discuss the outcomes of different PBM-t protocols on MSCs, concluding with some perplexities and complexities of PBM-t in vivo but encouraging and feasible in vitro solutions.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
3
|
Choudhery MS. Strategies to improve regenerative potential of mesenchymal stem cells. World J Stem Cells 2021; 13:1845-1862. [PMID: 35069986 PMCID: PMC8727227 DOI: 10.4252/wjsc.v13.i12.1845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Punjab, Pakistan
- Department of Genetics and Molecular Biology, University of Health Sciences, Lahore 54600, Punjab, Pakistan
| |
Collapse
|
4
|
Chiann K, Xuan WM, Hossain MS, Hanapi NSM, Nasreen HE, Islam MZ, Ahmed IA, Haque N. Awareness and Attitude towards Dental Pulp Stem Cell Banking among Malaysians. HEALTH POLICY AND TECHNOLOGY 2021. [DOI: 10.1016/j.hlpt.2021.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Haque N, Fareez IM, Fong LF, Mandal C, Kasim NHA, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020. [DOI: 10.4252/wjsc.v12.i9.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
6
|
Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020; 12:938-951. [PMID: 33033556 PMCID: PMC7524697 DOI: 10.4252/wjsc.v12.i9.938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Ismail M Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Liew Fong Fong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Life Science, Khulna University, Khulna 9208, Bangladesh
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 411007, Indonesia
| | - Kranthi Raja Kacharaju
- Department of Conservative Dentistry, Faculty of Dentistry MAHSA University, Selangor 42610, Malaysia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
7
|
Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S. Protective effects of stem cells from human exfoliated deciduous teeth derived conditioned medium on osteoarthritic chondrocytes. PLoS One 2020; 15:e0238449. [PMID: 32886713 PMCID: PMC7473555 DOI: 10.1371/journal.pone.0238449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
Collapse
Affiliation(s)
- Suleiman Alhaji Muhammad
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Norshariza Nordin
- Department of Biomedical Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Paisal Hussin
- Department of Orthopaedics, Columbia Asia Hospital, Selangor, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Dean’s Office, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sharida Fakurazi
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Human Anatomy, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23421-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Haque N, Khan IM, Abu Kasim NH. Survival and immunomodulation of stem cells from human extracted deciduous teeth expanded in pooled human and foetal bovine sera. Cytokine 2019; 120:144-154. [PMID: 31071675 DOI: 10.1016/j.cyto.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2019] [Accepted: 04/27/2019] [Indexed: 12/17/2022]
Abstract
The immunomodulatory properties of mesenchymal stem cells (MSCs) from autologous and allogeneic sources are useful in stimulating tissue regeneration and repair. To obtain a high number of MSCs for transplantation requires extensive in vitro expansion with culture media supplements that can cause xeno-contamination of cells potentially compromising function and clinical outcomes. In this study stem cells from human extracted deciduous teeth (SHED) were cultured in Knockout™ DMEM supplemented with either pooled human serum (pHS) or foetal bovine serum (FBS) to compare their suitability in maintaining immunomodulatory properties of cells during in vitro expansion. No significant difference in cell survival of SHED grown in pHS (pHS-SHED) or FBS (FBS-SHED) was observed when co-cultured with complement, monocytes or lymphocytes. However, significant changes in the expression of sixteen paracrine factors involved in immunomodulation were observed in the supernatants of FBS-SHED co-cultures with monocytes or lymphocytes compared to that in pHS-SHEDs after both 24 and 120 h of incubation. Further analysis of changing protein levels of paracrine factors in co-cultures using biological pathway analysis software predicted upregulation of functions associated with immunogenicity in FBS-SHED and lymphocyte co-cultures compared to pHS-SHED co-cultures. Pathway analysis also predicted significant stimulation of HMGB1 and TREM1 signalling pathways in FBS-SHED co-cultures indicating activation of immune cells and inflammation. Though FBS supplementation does not impact survival of SHED, our combinatorial biological pathway analysis supports the idea that in vitro expansion of SHEDs in pHS provides optimal conditions to minimise xeno-contamination and inflammation and maintain their immunomodulatory properties.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, Malaysia; Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ilyas M Khan
- Centre for NanoHealth, Swansea University Medical School, Swansea, UK
| | - Noor Hayaty Abu Kasim
- Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Preconditioning of Human Dental Pulp Stem Cells with Leukocyte- and Platelet-Rich Fibrin-Derived Factors Does Not Enhance Their Neuroregenerative Effect. Stem Cells Int 2019; 2019:8589149. [PMID: 31089335 PMCID: PMC6476049 DOI: 10.1155/2019/8589149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pathologies of the central nervous system are characterized by loss of brain tissue and neuronal function which cannot be adequately restored by endogenous repair processes. This stresses the need for novel treatment options such as cell-based therapies that are able to restore damaged tissue or stimulate repair. This study investigated the neuroregenerative potential of the conditioned medium of human dental pulp stem cells (CM-hDPSCs) on neural stem cell (NSC) proliferation and migration as well as on neurite outgrowth of primary cortical neurons (pCNs). Additionally, the effect of leukocyte- and platelet-rich fibrin (L-PRF) priming on the neuroregenerative potential of the hDPSC secretome on NSCs and pCNs was evaluated. L-PRF contains factors that enhance stem cell-induced regeneration, but its effect on hDPSC-mediated neuroregeneration is unknown. This study demonstrated that CM-hDPSCs enhanced neuritogenesis. Moreover, CM-hDPSCs had a chemoattractant effect on NSCs. Although priming hDPSCs with L-PRF increased brain-derived neurotrophic factor secretion, no additional effects on the paracrine-mediated repair mechanisms were observed. These data support the neuroregenerative potential of hDPSCs, and although priming had no additional effect, the potential of L-PRF-primed hDPSCs on distinct regenerative mechanisms remains to be clarified.
Collapse
|
11
|
Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment. Clin Oral Investig 2019; 23:3821-3831. [PMID: 30687907 DOI: 10.1007/s00784-019-02811-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells. MATERIALS AND METHODS Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay. RESULTS Viability of iDPSCs was significantly (p < 0.05) higher in 20% HPL-supplemented media compared to iDPSCs. Expression of 10 out of 12 selected angiogenic genes, four out of seven adhesion molecules, and seven out of nine cytokine-producing genes were significantly (p < 0.05) higher in cells maintained in 20% HPL-supplemented media compared to that in FBS-supplemented media. Furthermore, expression of all the selected growth factors was significantly higher (p < 0.05) in the supernatants from 20% HPL media at 12 and 24 h post-incubation. CONCLUSION This study suggests that 20% HPL could be optimum to stimulate angiogenesis-related factors in iDPSCs while maintaining their viability. CLINICAL RELEVANCE This data may suggest the potential use of 20% HPL for expanding DPSCs scheduled for clinical trials for regenerative therapies including dental pulp regeneration.
Collapse
|
12
|
Haque N, Widera D, Abu Kasim NH. Stem Cells from Human Extracted Deciduous Teeth Expanded in Foetal Bovine and Human Sera Express Different Paracrine Factors After Exposure to Freshly Prepared Human Serum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:175-186. [PMID: 30771186 DOI: 10.1007/5584_2018_299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The response of stem cells to paracrine factors within the host's body plays an important role in the regeneration process after transplantation. The aim of this study was to determine the viability and paracrine factor profile of stem cells from human extracted deciduous teeth (SHED) pre-cultivated in media supplemented with either foetal bovine serum (FBS) or pooled human serum (pHS) in the presence of individual human sera (iHS). METHODS SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors. RESULTS Proliferation of SHED was significantly higher (p < 0.05) in pHS supplemented media compared to FBS supplemented media. pHS-SHED also maintained their higher proliferation rate compared to FBS-SHED in the presence of iHS. In iHS supplemented media, FBS-SHED expressed significantly higher levels of SDF-1A (p < 0.05) after 24 h compared to pHS-SHED. Similar results were found for HGF (p < 0.01), LIF (p < 0.05), PDGF-BB (p < 0.05), SDF-1A (p < 0.01), and IL-10 (p < 0.05) when cell culture supernatants from FBS-SHED were profiled 120 h post-incubation. CONCLUSION SHED expanded in pHS instead of FBS have higher proliferative capacity and show an altered secretion profile. Further studies are needed to determine whether these differences could result in better engraftment and regeneration following transplantation.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarum, Selangor, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Noor Hayaty Abu Kasim
- Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. .,Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|