1
|
Sánchez-Ramón S, Fuentes-Antrás J, Rider NL, Pérez-Segura P, de la Fuente-Muñoz E, Fernández-Arquero M, Neves E, Pérez de Diego R, Ocaña A, Guevara-Hoyer K. Exploring gastric cancer genetics: A turning point in common variable immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100203. [PMID: 38283086 PMCID: PMC10818086 DOI: 10.1016/j.jacig.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 01/30/2024]
Abstract
Background Gastric cancer (GC) stands as a prominent cause of cancer-related mortality and ranks second among the most frequently diagnosed malignancies in individuals with common variable immunodeficiency (CVID). Objective We sought to conduct a comprehensive, large-scale genetic analysis to explore the CVID-associated germline variant landscape within gastric adenocarcinoma samples and to seek to delineate the transcriptomic similarities between GC and CVID. Methods We investigated the presence of CVID-associated germline variants in 1591 GC samples and assessed their impact on tumor mutational load. The progression of GC was evaluated in patients with and without these variants. Transcriptomic similarities were explored by matching differentially expressed genes in GC to healthy gastric tissue with a CVID transcriptomic signature. Results CVID-associated germline variants were found in 60% of GC samples. Our analysis revealed a significant association between the presence of CVID-related genetic variants and higher tumor mutational load in GC (P < .0001); high GC mutational load seems to be linked to immunotherapy response and worse prognosis. Transcriptomic similarities unveiled key genes and pathways implicated in innate immune responses and tumorigenesis. We identified upregulated genes related to oncogene drivers, inflammation, tumor suppression, DNA repair, and downregulated immunomodulatory genes shared between GC and CVID. Conclusions Our findings contribute to a deeper understanding of potential molecular modulators of GC and shed light on the intricate interplay between immunodeficiency and cancer. This study underscores the clinical relevance of CVID-related variants in influencing GC progression and opens avenues for further exploration into novel therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Department of Medical Oncology, IdSSC, San Carlos University Hospital, and CIBERONC, Madrid, Spain
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicholas L. Rider
- Division of Clinical Informatics, Pediatrics, Allergy and Immunology, Liberty University College of Osteopathic Medicine and Collaborative Health Partners, Lynchburg, Va
| | - Pedro Pérez-Segura
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Alberto Ocaña
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Department of Medical Oncology, IdSSC, San Carlos University Hospital, and CIBERONC, Madrid, Spain
| | - Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
2
|
Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, Vanoni M, Iozzo RV, Giordano A, Morrione A. Progranulin Oncogenic Network in Solid Tumors. Cancers (Basel) 2023; 15:cancers15061706. [PMID: 36980592 PMCID: PMC10046331 DOI: 10.3390/cancers15061706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| | - Giacomo Ducci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Valentina Ruggiero
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Pharmacological Sciences, Master Program in Pharmaceutical Biotechnologies, University of Padua, 35131 Padua, Italy
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| |
Collapse
|
3
|
Taci Hoca N, Ünsal E, Murat K, Ertürk A, Çapan N. Can serum progranulin level be used as a prognostic biomarker in non-small cell lung cancer? Monaldi Arch Chest Dis 2022. [DOI: 10.4081/monaldi.2022.2373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Progranulin has been considered to be a poor prognostic biomarker for some types of malignancies. However, the clinical significance of serum progranulin level and the prognostic value are still not explored in advanced stages of lung cancer. The current study investigates the prognostic significance of progranulin serum levels in advanced-stage non-small cell lung cancer (NSCLC) patients. This study involved 94 subjects (70 advanced-stage NSCLC patients and 24 healthy controls). Serum progranulin level was measured by enzyme-linked immunosorbent assay (ELISA) and was correlated with patient outcome. The association between circulating progranulin level and clinicopathological parameters was detected. Serum progranulin cut-off level predicting six-month survival was determined. Serum progranulin level was found significantly elevated in NSCLC patients than in the control group (p<0.001). We did not determine a significant difference between stage IIIB and stage IV NSCLC patients for serum progranulin levels (p=0.166). When we evaluated the laboratory parameters, only serum LDH level was found significantly correlated with serum progranulin level (p=0.043), also bone and liver metastasis showed a significant correlation with progranulin level (p=0.008 and p = 0.024, respectively). The cut-off level of serum progranulin in predicting six months of survival was determined as 16.03 ng/ml (AUC = 0.973, 95%Cl: 0.903-0.997, p<0.001) with 97.06% sensitivity and 88.89% specificity. Overall survival was determined shorter in patients with progranulin level ≥16 ng/ml than those with <16 ng/ml (p<0.001). Also, in the multivariate analysis using the Cox regression model serum progranulin level was found as an independent prognostic factor for NSCLC (p=0.001). Serum progranulin level may be a useful biomarker for predicting poor survival in advanced-stage NSCLC patients.
Collapse
|
4
|
Bezel P, Valaperti A, Steiner U, Scholtze D, Wieser S, Vonow-Eisenring M, Widmer A, Kowalski B, Kohler M, Franzen DP. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol Immunother 2021; 70:1867-1876. [PMID: 33394095 PMCID: PMC8195789 DOI: 10.1007/s00262-020-02798-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Lung cancer is the leading cause of death by cancer. In recent years, immunotherapy with checkpoint inhibitors (ICI) emerged as a promising new therapeutic approach. However, a deeper understanding of the immunologic responses adjacent to the tumor known as tumor microenvironment (TME) is needed. Our study investigated TME of lung cancer by analyzing cytokines in bronchoalveolar lavage fluid (BALF). MATERIALS AND METHODS Between January 2018 and June 2019, 119 patients were prospectively enrolled in this study. For each cancer patient, levels of 16 cytokines (fractalkine, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukins (IL): IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, and IL-23) were measured in BALF and serum and compared to healthy individuals and patients with other lung diseases. RESULTS There were several significant differences of cytokine levels of patients with lung cancer compared to healthy individuals. However, none of them remained in the multivariate analysis compared to other lung diseases in either BALF or serum. Furthermore, there were no significant differences between the groups in cell differentiation of either BALF or serum. Cytokine levels in BALF were generally near the lower detection limit and showed almost no correlation with their respective levels measured in serum of the same individual. CONCLUSIONS Cytokines in BALF and serum of lung cancer patients may indicate unspecific inflammation. BAL is not recommendable as a tool to investigate TME of lung cancer. Therefore, cytokines measured in BALF are probably not appropriate as predictors in patients treated with ICIs.
Collapse
Affiliation(s)
- Pascal Bezel
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alan Valaperti
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Urs Steiner
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Dieter Scholtze
- Department of Pulmonology, City Hospital Triemli, Birmensdorferstrasse 497, 8063, Zurich, Switzerland
| | - Stephan Wieser
- Department of Pulmonology, City Hospital Waid, Tièchestrasse 99, 8037, Zurich, Switzerland
| | - Maya Vonow-Eisenring
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Andrea Widmer
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Benedikt Kowalski
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Daniel P Franzen
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
5
|
Maeyama M, Sasayama T, Tanaka K, Nakamizo S, Tanaka H, Nishihara M, Fujita Y, Sekiguchi K, Kohta M, Mizukawa K, Hirose T, Itoh T, Kohmura E. Multi-marker algorithms based on CXCL13, IL-10, sIL-2 receptor, and β2-microglobulin in cerebrospinal fluid to diagnose CNS lymphoma. Cancer Med 2020; 9:4114-4125. [PMID: 32314548 PMCID: PMC7300423 DOI: 10.1002/cam4.3048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor biopsy is essential for the definitive diagnosis of central nervous system (CNS) lymphoma. However, the biopsy procedure carries the risk of complications such as bleeding, convulsions, and infection. Cerebrospinal fluid (CSF) β2‐microglobulin (β2‐MG), soluble IL‐2 receptor (sIL‐2R), and interleukin‐10 (IL‐10) are known to be useful diagnostic biomarkers for CNS lymphoma. The C‐X‐C motif chemokine ligand 13 (CXCL13) was recently reported to be another useful biomarker for CNS lymphoma. The purpose of this study is to establish a diagnostic algorithm that can avoid biopsy by combining these diagnostic biomarkers. In the first, we conducted a case‐control study (n = 248) demonstrating that the CSF CXCL13 concentration was significantly increased in CNS lymphoma patients compared with various other brain diseases (AUC = 0.981). We established a multi‐marker diagnostic model using CSF CXCL13, IL‐10, β2‐MG, and sIL‐2R from the results of the case‐control study and then applied the model to a prospective study (n = 104) to evaluate its utility. The multi‐marker diagnostic algorithms had excellent diagnostic performance: the sensitivity, specificity, positive predictive value, and negative predictive value were 97%, 97%, 94%, and 99%, respectively. In addition, CSF CXCL13 was a prognostic biomarker for CNS lymphoma patients. Our study suggests that multi‐marker algorithms are important diagnostic tools for patients with CNS lymphoma.
Collapse
Affiliation(s)
- Masahiro Maeyama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Nakamizo
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirotomo Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Yuichi Fujita
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaaki Kohta
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsu Mizukawa
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takanori Hirose
- Division of Pathology for Regional Communication, Kobe University School of Medicine, Kobe, Japan.,Department of Diagnostic Pathology, Hyogo Cancer Center, Akashi, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Domagala-Kulawik J. The relevance of bronchoalveolar lavage fluid analysis for lung cancer patients. Expert Rev Respir Med 2019; 14:329-337. [PMID: 31865801 DOI: 10.1080/17476348.2020.1708720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Lung cancer is a serious malignant disease with poor prognosis. The methods for improving early recognition and markers of predictive value are widely investigated. Bronchoalveolar lavage (BAL) is a valuable method of respiratory tract investigation. Currently, BAL is rarely used for tumor diagnosis, but for ruling out differential diagnosis, due to its poor sensitivity. The new indication for BAL fluid analysis is evaluation of local immune reaction in lung cancer patients and description of tumor microenvironment (TME). A literature search was performed in bibliography bases from the time of the introduction of BAL in the diagnosis of lung diseases. We analyzed our prior original studies with the bibliography.Area covered: The usefulness of BAL in the diagnosis of peripheral spread of malignant diseases and in the evaluation of TME in lung cancer, as well as a role of BAL in the diagnosis of checkpoint inhibitor pneumonitis is presented. Commentary concerning methodology of BALF analysis in lung cancer is included.Expert opinion: It seems that in the near future BAL will find an important place in the evaluation of lung cancer TME in two aspects. The first could be characteristic of immune reaction by analysis of immune cells and mediators and the second cancer molecular characteristic by free DNA and exosomes analysis.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|