1
|
Shimizu Y, Ntege EH, Azuma C, Uehara F, Toma T, Higa K, Yabiku H, Matsuura N, Inoue Y, Sunami H. Management of Rheumatoid Arthritis: Possibilities and Challenges of Mesenchymal Stromal/Stem Cell-Based Therapies. Cells 2023; 12:1905. [PMID: 37508569 PMCID: PMC10378234 DOI: 10.3390/cells12141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent, chronic, and progressive autoimmune disorder primarily affecting joints and muscles. The associated inflammation, pain, and motor restriction negatively impact patient quality of life (QOL) and can even contribute to premature mortality. Further, conventional treatments such as antiinflammatory drugs are only symptomatic. Substantial progress has been made on elucidating the etiopathology of overt RA, in particular the contributions of innate and adaptive immune system dysfunction to chronic inflammation. Although the precise mechanisms underlying onset and progression remain elusive, the discovery of new drug targets, early diagnosis, and new targeted treatments have greatly improved the prognosis and QOL of patients with RA. However, a sizable proportion of patients develop severe adverse effects, exhibit poor responses, or cannot tolerate long-term use of these drugs, necessitating more effective and safer therapeutic alternatives. Mounting preclinical and clinical evidence suggests that the transplantation of multipotent adult stem cells such as mesenchymal stromal/stem cells is a safe and effective treatment strategy for controlling chronic inflammation and promoting tissue regeneration in patients with intractable diseases, including RA. This review describes the current status of MSC-based therapies for RA as well as the opportunities and challenges to broader clinical application.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Chinatsu Azuma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Fuminari Uehara
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Takashi Toma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Kotaro Higa
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Hiroki Yabiku
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| |
Collapse
|
2
|
Arjmand B, Alavi-Moghadam S, Aghayan HR, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Biglar M, Rajaeinejad M, Shouroki FF, Larijani B. How to establish infrastructures to achieve more efficient regenerative medicine? Cell Tissue Bank 2023; 24:1-9. [PMID: 35871425 DOI: 10.1007/s10561-022-10028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The field of regenerative medicine (RM) as an innovative technology has the ability to affect the healthcare system. It develops a variety of techniques through stem cell biology, genetics, bioengineering, biomaterial science, and tissue engineering to replace or restore the role of lost, disabled, or aging cells in the human body. However, the field's proficiency has still been underwhelming at the clinical trial level. This could be due to the innovation of such technologies, as well as their incredible nature. Therefore, managing the infrastructure framework for the safe and efficient application of the aforementioned field of science would help in the process of progress. In this context, the current review focuses on how to establish infrastructures for more effective RM.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
4
|
Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-Beik A, Rahim F, Aghayan HR, Larijani B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front Neurol 2022; 12:788462. [PMID: 35111126 PMCID: PMC8802668 DOI: 10.3389/fneur.2021.788462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis is a pernicious neurodegenerative disorder that is associated with the progressive degeneration of motor neurons, the disruption of impulse transmission from motor neurons to muscle cells, and the development of mobility impairments. Clinically, muscle paralysis can spread to other parts of the body. Hence it may have adverse effects on swallowing, speaking, and even breathing, which serves as major problems facing these patients. According to the available evidence, no definite treatment has been found for amyotrophic lateral sclerosis (ALS) that results in a significant outcome, although some pharmacological and non-pharmacological treatments are currently applied that are accompanied by some positive effects. In other words, available therapies are only used to relieve symptoms without any significant treatment effects that highlight the importance of seeking more novel therapies. Unfortunately, the process of discovering new drugs with high therapeutic potential for ALS treatment is fraught with challenges. The lack of a broad view of the disease process from early to late-stage and insufficiency of preclinical studies for providing validated results prior to conducting clinical trials are other reasons for the ALS drug discovery failure. However, increasing the combined application of different fields of regenerative medicine, especially tissue engineering and stem cell therapy can be considered as a step forward to develop more novel technologies. For instance, organ on a chip is one of these technologies that can provide a platform to promote a comprehensive understanding of neuromuscular junction biology and screen candidate drugs for ALS in combination with pluripotent stem cells (PSCs). The structure of this technology is based on the use of essential components such as iPSC- derived motor neurons and iPSC-derived skeletal muscle cells on a single miniaturized chip for ALS modeling. Accordingly, an organ on a chip not only can mimic ALS complexities but also can be considered as a more cost-effective and time-saving disease modeling platform in comparison with others. Hence, it can be concluded that lab on a chip can make a major contribution as a biomimetic micro-physiological system in the treatment of neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rabbani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia, and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Bagher Larijani
| |
Collapse
|
5
|
The Fingerprints of Biomedical Science in Internal Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:173-189. [DOI: 10.1007/5584_2022_729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
An Overview of Zebrafish Modeling Methods in Drug Discovery and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:145-169. [PMID: 34961915 DOI: 10.1007/5584_2021_684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal studies are recognized as a significant step forward in the bridging between drug discovery and clinical applications. Animal models, due to their relative genetic, molecular, physiological, and even anatomical similarities to humans, can provide a suitable platform for unraveling the mechanisms underlying human diseases and discovering new therapeutic approaches as well. Recently, zebrafish has attracted attention as a valuable experimental and pharmacological model in drug discovery and development studies due to its prominent characteristics such as the high degree of genetic similarity with humans, genetic manipulability, and prominent clinical features. Since advancing a theory to a valid and reliable observation requires the manipulation of animals, it is, therefore, essential to use efficient modeling methods appropriate to the different aspects of experimental conditions. In this context, applying several various approaches such as using chemicals, pathogens, and genetic manipulation approaches allows zebrafish development into a preferable model that mimics some human disease pathophysiology. Thus, such modeling approaches not only can provide a framework for a comprehensive understanding of the human disease mechanisms that have a counterpart in zebrafish but also can pave the way for discovering new drugs that are accompanied by higher amelioration effects on different human diseases.
Collapse
|
7
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|