1
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
2
|
Chabchoubi IB, Bouchhima RA, Louhichi N, Baanannou A, Masmoudi S, Hentati O. Short-term effects of various non-steroidal anti-inflammatory drugs (NSAIDs) on Danio rerio embryos. MethodsX 2023; 10:102215. [PMID: 37251652 PMCID: PMC10209031 DOI: 10.1016/j.mex.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Due to the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs) without a medical prescription and their frequent prevalence in aquatic habitats, there are major health and environmental issues. NSAIDs have been found in surface water and wastewater in concentrations ranging from ng/L to μg/L all over the world. The purpose of this study was to determine the relationship between NSAIDs (diclofenac, ketoprofen, paracetamol and ibuprofen) exposure and associated adverse effects in the assessment of indirect human health risks posed by Danio rerio (zebrafish) and Environmental Risk Assessment (ERA) of these NSAIDs in aquatic environments. Therefore, the objectives of this study were to (i) reveal abnormality endpoints of early developmental stages, after exposure of zebrafish and (ii) perform an ecological risk assessment of aquatic organisms upon exposure to NSAIDs detected in surface waters based on the risk quotients (RQs) method. According to the toxicity data collected, all of the malformations appeared after diclofenac exposure at all concentrations. The most notable malformations were the lack of pigmentation and an increase in yolk sac volume, with EC50 values of 0.6 and 1.03 mg/L, respectively. The results obtained for the ERA revealed RQs higher than 1 for all the four NSAIDs chosen, posing ecotoxicological pressure in aquatic environments. Overall, our findings provide a critical contribution to the formulation of high-priority actions, sustainable strategies and strict regulations that minimize the negative effects of NSAIDs on the aquatic ecosystem.•To determine the LC50, lethal conditions such as coagulation, absence of heartbeat and blood flow, absence of tail separation and development of somites were taken into account.•The EC50 was calculated using sublethal parameters such as blood coagulation, pericardial edema, yolk sac edema or hypertrophy.•The 4 compounds present a high risk individually and in mixture with a RQ >> 1.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir (ISBM), Rue Taher Haddad, 5000, University of Monastir, Monastir, Tunisia
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
| | - Rim Attya Bouchhima
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
| | - Nacim Louhichi
- Unité Cibles pour le Diagnostic et la Thérapie, Route Sidi Mansour, Km 6, 3018, Sfax, Center of Biotechnology of Sfax (CBS), Tunisia
| | - Aissette Baanannou
- Unité Cibles pour le Diagnostic et la Thérapie, Route Sidi Mansour, Km 6, 3018, Sfax, Center of Biotechnology of Sfax (CBS), Tunisia
| | - Saber Masmoudi
- Unité Cibles pour le Diagnostic et la Thérapie, Route Sidi Mansour, Km 6, 3018, Sfax, Center of Biotechnology of Sfax (CBS), Tunisia
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
- Institut Supérieur de Biotechnologie de Sfax (ISBS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Badar Z, Shanableh A, El-Keblawy A, Mosa KA, Semerjian L, Mutery AA, Hussain MI, Bhattacharjee S, Tsombou FM, Ayyaril SS, Ahmady IM, Elnaggar A, Mousa M, Semreen MH. Assessment of Uptake, Accumulation and Degradation of Paracetamol in Spinach ( Spinacia oleracea L.) under Controlled Laboratory Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131626. [PMID: 35807584 PMCID: PMC9269112 DOI: 10.3390/plants11131626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 05/25/2023]
Abstract
The occurrence and persistence of pharmaceuticals in the food chain, particularly edible crops, can adversely affect human and environmental health. In this study, the impacts of the absorption, translocation, accumulation, and degradation of paracetamol in different organs of the leafy vegetable crop spinach (Spinacia oleracea) were assessed under controlled laboratory conditions. Spinach plants were exposed to 50 mg/L, 100 mg/L, and 200 mg/L paracetamol in 20% Hoagland solution at the vegetative phase in a hydroponic system. Exposed plants exhibited pronounced phytotoxic effects during the eight days trial period, with highly significant reductions seen in the plants' morphological parameters. The increasing paracetamol stress levels adversely affected the plants' photosynthetic machinery, altering the chlorophyll fluorescence parameters (Fv/Fm and PSII), photosynthetic pigments (Chl a, Chl b and carotenoid contents), and composition of essential nutrients and elements. The LC-MS results indicated that the spinach organs receiving various paracetamol levels on day four exhibited significant uptake and translocation of the drug from roots to aerial parts, while degradation of the drug was observed after eight days. The VITEK® 2 system identified several bacterial strains (e.g., members of Burkhulderia, Sphingomonas, Pseudomonas, Staphylococcus, Stenotrophomonas and Kocuria) isolated from spinach shoots and roots. These microbes have the potential to biodegrade paracetamol and other organic micro-pollutants. Our findings provide novel insights to mitigate the risks associated with pharmaceutical pollution in the environment and explore the bioremediation potential of edible crops and their associated microbial consortium to remove these pollutants effectively.
Collapse
Affiliation(s)
- Zarreen Badar
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
| | - Abdallah Shanableh
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
- Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Ali El-Keblawy
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Department of Biology, Faculty of Science, Al-Arish University, Al-Arish 45511, Egypt
| | - Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11751, Egypt
| | - Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Molecular Genetics Lab, Biotechnology Lab, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Muhammad Iftikhar Hussain
- Department of Plant Biology and Soil Science, Campus Lagoas Marcosende, Universidad de Vigo, 36310 Vigo, Spain;
| | - Sourjya Bhattacharjee
- Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - François Mitterand Tsombou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Departmento de Biología Vegetal, Universidad de Málaga, 29016 Málaga, Spain
| | - Sefeera Sadik Ayyaril
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
| | - Islam M. Ahmady
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
| | - Attiat Elnaggar
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Muath Mousa
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
4
|
Elizalde-Velázquez GA, Rosas-Ramírez JR, Raldua D, García-Medina S, Orozco-Hernández JM, Rosales-Pérez K, Islas-Flores H, Galar-Martínez M, Guzmán-García X, Gómez-Oliván LM. Low concentrations of ciprofloxacin alone and in combination with paracetamol induce oxidative stress, upregulation of apoptotic-related genes, histological alterations in the liver, and genotoxicity in Danio rerio. CHEMOSPHERE 2022; 294:133667. [PMID: 35077737 DOI: 10.1016/j.chemosphere.2022.133667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, there are countless articles about the harmful effects of paracetamol (PCM) in non-target organisms. Nonetheless, information regarding the toxicity of ciprofloxacin (CPX) and the CPX-PCM mixture is still limited. Herein, we aimed to evaluate the hepatotoxic and genotoxic effects that ciprofloxacin alone and in combination with paracetamol may induce in Danio rerio adults. For this purpose, we exposed several D. rerio adults to three environmentally relevant concentrations of PCM (0.125, 0.250, and 0.500 μg/L), CPX (0.250, 0.500, and 1 μg/L), and their mixture (0.125 + 0.250, 0.250 + 0.500, and 0.500 + 1 μg/L) for 96 h. The blood samples showed CPX alone and in combination with PCM damaged the liver function of fish by increasing the serum levels of liver enzymes alanine aminotransferase and alkaline phosphatase. Moreover, our histopathological study demonstrated liver of fish suffered several tissue alterations, such as congestion, hyperemia, infiltration, sinusoidal dilatation, macrovascular fatty degeneration, and pyknotic nuclei after exposure to CPX alone and in combination with PCM. Concerning oxidative stress biomarkers and the expression of genes, we demonstrated that CPX and its mixture, with PCM, increased the levels of antioxidant enzymes and oxidative damage biomarkers and altered the expression of Nrf1, Nrf2, BAX, and CASP3, 6, 8, and 9 in the liver of fish. Last but not least, we demonstrated CPX alone and with PCM induced DNA damage via comet assay and increased the frequency of micronuclei in a concentration-dependent manner in fish. Overall, our results let us point out CPX, even at low concentrations, induces hepatotoxic effects in fish and that its combination with PCM has a negative synergic effect in the liver of this organism.
Collapse
Affiliation(s)
| | | | - Demetrio Raldua
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | | | - Karina Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Mexico
| | | | - Xochitl Guzmán-García
- Laboratorio de Ecotoxicología. Departamento de Hidrobiología. Div. CBS. Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | | |
Collapse
|
5
|
Adekeye AO, Fafure AA. Assessment of the cellular integrity and expression of melatonin receptor (MTNR1A) in the retina assaulted by ethanol and acetaminophen. Hum Exp Toxicol 2022; 41:9603271221149010. [PMID: 36572547 DOI: 10.1177/09603271221149010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ethanol exposures have been reported to disrupt the development of the retina and optic nerve which can be considered as part of underlying mechanisms of visual pathway impairments. This study aims to investigate the cellular integrity of the retina and the expression of melatonin receptor (MTNR1A) in the retina when assaulted chronically and simultaneously by ethanol and acetaminophen. Animals were randomly grouped into five groups. Control (normal saline), Alcohol group (25% alcohol in 2% sucrose solution), Acetaminophen group, (100 mg/kg BW for 14 days), Acetaminophen + Alcohol group (25% alcohol in 2% sucrose solution + 100 mg/kg BW of paracetamol). Withdrawal group (25% alcohol in 2% sucrose solution + 100 mg/kg BW of paracetamol). The body weight and rectal temperature of the animals were taking every 2 days and a post mortem study was conducted by quantitatively assessing the markers of oxidative stress. Melatonin level was quantified in the retina tissue and Immunohistochemistry was done via MTNR1A to study the expression of melatonin receptor type 1A in the retina. These results demonstrate that alcohol and acetaminophen significantly reduced the activity of retina rat melatonin (MTNR1A) levels, lowers the SOD and MDA activity. Expression of MTNR1A was reduced in the ganglionic cell layer of Alcohol and acetaminophen group as compared to the control and withdrawal group. It can be inferred that chronic simultaneous intake/consumption of alcohol and acetaminophen altered the melatonin level in the retina and this may implicate the circadian clock and melatonin in Wistar rat visual system.
Collapse
Affiliation(s)
- A O Adekeye
- Department of Anatomy, College of Medicine and Health Sciences, 473846Afe Babalola University, Ado Ekiti, Nigeria
| | - A A Fafure
- Department of Anatomy, College of Medicine and Health Sciences, 473846Afe Babalola University, Ado Ekiti, Nigeria
| |
Collapse
|
6
|
Environmental protection by the adsorptive elimination of acetaminophen from water: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Bernal V, Giraldo L, Moreno-Piraján JC. Understanding the solid-liquid equilibria between paracetamol and activated carbon: Thermodynamic approach of the interactions adsorbent-adsorbate using equilibrium, kinetic and calorimetry data. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126432. [PMID: 34174624 DOI: 10.1016/j.jhazmat.2021.126432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
In this work, we presented the paracetamol-activated carbon interactions and their effect on the adsorption capacity. We evaluated kinetic, equilibrium, and calorimetric data using different solvents (water, HCl 0.1 M, and NaCl 0.1 M) to evaluate the changes in the adsorbent-adsorbate interaction. In addition, the commercial activated carbon (AC) was modified through thermal (ACTT) and chemical (ACNA) methods to change the physicochemical properties of the adsorbents. The relative kinetic constants decrease with the content of basic groups on the activated carbon, indicating a lower influence of diffusion on the adsorption rate when the chemical interactions increase (0.1 ACNA >0.09 AC >0.03 ACTT mmol g-1). The adsorption capacity for AC at acidic pH increases slightly compared to tests carried out in the water. Under this condition, the adsorbed amount of paracetamol was 1.31 mmol g-1. However, the maximum adsorption capacity was achieved on ACTT using water as solvent (1.57 mmol g-1). The paracetamol adsorbed decreases in NaCl (osmotic, ionic strength) on all activated carbons by around 20%. The interaction enthalpy of the paracetamol-activated carbon interaction presents values between - 18.0 and 2.3 J per molecule adsorbed. The Gibbs energy released during the adsorption process is between - 33.1 and - 29.8 kJ mol-1.
Collapse
Affiliation(s)
- Valentina Bernal
- Departamento de Química, Universidad de los Andes, Cra. 1a No. 18A, 10, Bogotá, D. C., Colombia.
| | - Liliana Giraldo
- Departamento de Química, Universidad Nacional de Colombia, Cra 30 No. 45-03, Bogotá, D. C., Colombia.
| | | |
Collapse
|