1
|
Schwan S, Ludtka C, Friedmann A, Cismak A, Berthold L, Goehre F, Kiesow A, Heilmann A. Morphological Characterization of the Self-Assembly of Virus Movement Proteins into Nanotubes in the Absence of Virus Particles. ACTA ACUST UNITED AC 2017; 1:e1700113. [PMID: 32646158 DOI: 10.1002/adbi.201700113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/02/2017] [Indexed: 11/11/2022]
Abstract
One infection mechanism of plant viruses is the generation of nanotubes by viral movement proteins, allowing cell-to-cell virus particle transport. Previously, it was assumed that viral nanotubes extend directly from the host-cell plasma membrane. In virus-infected plants, these nanotubes reach an extraordinary diameter:length ratio (≈100 nm:µm or mm range). Here, viral nanotubes are produced in a transient protoplast system; the coding sequence for alfalfa mosaic virus movement protein is translationally fused to green fluorescent protein. The maximum extension of viral nanotubes into the culture medium is achieved 24-48 h posttransfection, with lengths in the micro- and millimeter ranges. Scanning electron microscopy and transmission electron microscopy show that strong inhomogeneous viral nanotubes are formed compared to particle-filled systems. The nanotubes have similar length, but fluctuating wall thickness and diameter and are susceptible to entanglement and recombination. Indirect methods demonstrate that movement proteins assemble independently at the top of the nanotube. These viral nanotubes grow distinctly from previously known natural particle-filled systems and are a unique biological tubular nanomaterial that has the potential for micro- or nanoapplications as a mechanically stable structural component.
Collapse
Affiliation(s)
- Stefan Schwan
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany.,Karlsruhe Institute of Technology, Institute for Applied Materials Computational Materials Science IAM-CMS, 76131, Karlsruhe, Germany
| | - Christopher Ludtka
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany.,Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Andrea Friedmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Andreas Cismak
- Center for Applied Microstructure Diagnostics, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Lutz Berthold
- Center for Applied Microstructure Diagnostics, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Felix Goehre
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, 00260, Finland
| | - Andreas Kiesow
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| | - Andreas Heilmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, 06120, Germany
| |
Collapse
|
2
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
3
|
Rodrigues KB, Orílio AF, Blawid R, Melo FL, Nagata T. Subcellular localization of p29, a putative movement protein of pepper ringspot virus. Arch Virol 2015; 160:359-64. [PMID: 25267177 DOI: 10.1007/s00705-014-2237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023]
Abstract
Pepper ringspot virus (PepRSV) is a member of the genus Tobravirus. It possesses a bipartite single-strand RNA genome in a positive-sense polarity. The p29 protein is encoded by RNA 1 and is presumed to be the movement protein (MP) of this virus. In this study, the intracellular distribution of the p29 protein was analyzed by confocal microscopy. Transient expression of the PepRSV p29 protein fused to green fluorescent protein was observed as punctate spots localized next to the cell wall. This protein partially co-localized with the eCFP-tagged tobacco mosaic virus 30K MP, which is known to associate with plasmodesmata. This result suggests that the p29 protein is most probably the movement protein for PepRSV.
Collapse
Affiliation(s)
- Kelly B Rodrigues
- Department of Cellular Biology, Post-graduation course of Molecular Biology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | | | | | | | | |
Collapse
|
4
|
Niehl A, Peña EJ, Amari K, Heinlein M. Microtubules in viral replication and transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:290-308. [PMID: 23379770 DOI: 10.1111/tpj.12134] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/05/2023]
Abstract
Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.
Collapse
Affiliation(s)
- Annette Niehl
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
5
|
Nick P. Microtubules and the tax payer. PROTOPLASMA 2012; 249 Suppl 2:S81-94. [PMID: 22006077 DOI: 10.1007/s00709-011-0339-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/10/2011] [Indexed: 05/14/2023]
Abstract
Plant microtubules have evolved into a versatile tool to link environmental signals into flexible morphogenesis. Cortical microtubules define the axiality of cell expansion by control of cellulose orientation. Plant-specific microtubule structures such as preprophase band and phragmoplast determine symmetry and axiality of cell divisions. In addition, microtubules act as sensors and integrators for stimuli such as mechanic load, gravity, but also osmotic stress, cold and pathogen attack. Many of these functions are specific for plants and involve specific proteins or the recruitment of proteins to new functions. The review aims to ventilate the potential of microtubule-based strategies for biotechnological application by highlighting representative case studies. These include reorientation of cortical microtubules to increase lodging resistance, control of microtubule dynamics to alter the gravity-dependent orientation of leaves, the use of microtubules as sensitive thermometers to improve adaptive cold tolerance of chilling and freezing sensitive plants, the reduction of microtubule treadmilling to inhibit cell-to-cell transport of plant viruses, or the modulation of plant defence genes by pharmacological manipulation of microtubules. The specificity of these responses is controlled by a great variety of specific associated proteins opening a wide field for biotechnological manipulation of plant architecture and stress tolerance.
Collapse
Affiliation(s)
- Peter Nick
- Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstr 2, 76128 Karlsruhe, Germany.
| |
Collapse
|
6
|
Ouko MO, Sambade A, Brandner K, Niehl A, Peña E, Ahad A, Heinlein M, Nick P. Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:829-39. [PMID: 20230489 DOI: 10.1111/j.1365-313x.2010.04195.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T-DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, alpha-tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus-end marker GFP-EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell-to-cell movement of TMV encoding GFP-tagged movement protein (MP-GFP) is reduced in ATER2 accompanied by a reduced association of MP-GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.
Collapse
Affiliation(s)
- Maurice O Ouko
- Botanical Institute 1, University of Karlsruhe, Kaiserstrasse 2, D-76128 Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|