1
|
Raviranga NGH, Ramström O. Antimicrobial Delivery Using Metallophore-Responsive Dynamic Nanocarriers. ACS APPLIED BIO MATERIALS 2024; 7:4785-4794. [PMID: 38963757 DOI: 10.1021/acsabm.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.
Collapse
Affiliation(s)
- N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., 01854 Lowell, Massachusetts, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
2
|
Otun SO, Graca R, Achilonu I. Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT. Curr Protein Pept Sci 2024; 25:454-468. [PMID: 38314602 DOI: 10.2174/0113892037278814231226104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.
Collapse
Affiliation(s)
- Sarah Oluwatobi Otun
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Richard Graca
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Suaifan GARY, Abdel Rahman DMA, Abu-Odeh AM, Abu Jbara F, Shehadeh MB, Darwish RM. Antibiotic-Lysobacter enzymogenes proteases combination as a novel virulence attenuating therapy. PLoS One 2023; 18:e0282705. [PMID: 36893145 PMCID: PMC9997937 DOI: 10.1371/journal.pone.0282705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Minimizing antibiotic resistance is a key motivation strategy in designing and developing new and combination therapy. In this study, a combination of the antibiotics (cefixime, levofloxacin and gentamicin) with Lysobacter enzymogenes (L. enzymogenes) bioactive proteases present in the cell- free supernatant (CFS) have been investigated against the Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative Escherichia coli (E. coli O157:H7). Results indicated that L. enzymogenes CFS had maximum proteolytic activity after 11 days of incubation and higher growth inhibitory properties against MSSA and MRSA compared to E. coli (O157:H7). The combination of L. enzymogenes CFS with cefixime, gentamicin and levofloxacin at sub-MIC levels, has potentiated their bacterial inhibition capacity. Interestingly, combining cefixime with L. enzymogenes CFS restored its antibacterial activity against MRSA. The MTT assay revealed that L. enzymogenes CFS has no significant reduction in human normal skin fibroblast (CCD-1064SK) cell viability. In conclusion, L. enzymogenes bioactive proteases are natural potentiators for antimicrobials with different bacterial targets including cefixime, gentamicin and levofloxacin representing the beginning of a modern and efficient era in the battle against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Ghadeer A. R. Y. Suaifan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
- * E-mail: ,
| | - Diana M. A. Abdel Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ala’ M. Abu-Odeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Applied Science Private University, Jordan, Amman
| | | | - Mayadah B. Shehadeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Biotechnology, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Garcia EL, Mojicevic M, Milivojevic D, Aleksic I, Vojnovic S, Stevanovic M, Murray J, Attallah OA, Devine D, Fournet MB. Enhanced Antimicrobial Activity of Biocompatible Bacterial Cellulose Films via Dual Synergistic Action of Curcumin and Triangular Silver Nanoplates. Int J Mol Sci 2022; 23:ijms232012198. [PMID: 36293056 PMCID: PMC9603523 DOI: 10.3390/ijms232012198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin and triangular silver nanoplates (TSNP)-incorporated bacterial cellulose (BC) films present an ideal antimicrobial material for biomedical applications as they afford a complete set of requirements, including a broad range of long-lasting potency and superior efficacy antimicrobial activity, combined with low toxicity. Here, BC was produced by Komagataeibacter medellinensis ID13488 strain in the presence of curcumin in the production medium (2 and 10%). TSNP were incorporated in the produced BC/curcumin films using ex situ method (21.34 ppm) and the antimicrobial activity was evaluated against Escherichia coli ATCC95922 and Staphylococcus aureus ATCC25923 bacterial strains. Biological activity of these natural products was assessed in cytotoxicity assay against lung fibroblasts and in vivo using Caenorhabditis elegans and Danio rerio as model organisms. Derived films have shown excellent antimicrobial performance with growth inhibition up to 67% for E. coli and 95% for S. aureus. In a highly positive synergistic interaction, BC films with 10% curcumin and incorporated TSNP have shown reduced toxicity with 80% MRC5 cells survival rate. It was shown that only 100% concentrations of film extracts induce low toxicity effect on model organisms’ development. The combined and synergistic advanced anti-infective functionalities of the curcumin and TSNP incorporated in BC have a high potential for development for application within the clinical setting.
Collapse
Affiliation(s)
- Eduardo Lanzagorta Garcia
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Marija Mojicevic
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
- Correspondence: ; Tel.: +353-877-772-272
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - James Murray
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Olivia Adly Attallah
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Declan Devine
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Margaret Brennan Fournet
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland
| |
Collapse
|
5
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
6
|
Qian Y, Allegretta G, Janardhanan J, Peng Z, Mahasenan KV, Lastochkin E, Gozun MMN, Tejera S, Schroeder VA, Wolter WR, Feltzer R, Mobashery S, Chang M. Exploration of the Structural Space in 4(3 H)-Quinazolinone Antibacterials. J Med Chem 2020; 63:5287-5296. [PMID: 32343145 DOI: 10.1021/acs.jmedchem.0c00153] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report herein the syntheses of 79 derivatives of the 4(3H)-quinazolinones and their structure-activity relationship (SAR) against methicillin-resistant Staphylococcus aureus (MRSA). Twenty one analogs were further evaluated in in vitro assays. Subsequent investigation of the pharmacokinetic properties singled out compound 73 ((E)-3-(5-carboxy-2-fluorophenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one) for further study. The compound synergized with piperacillin-tazobactam (TZP) both in vitro and in vivo in a clinically relevant mouse model of MRSA infection. The TZP combination lacks activity against MRSA, yet it synergized with compound 73 to kill MRSA in a bactericidal manner. The synergy is rationalized by the ability of the quinazolinones to bind to the allosteric site of penicillin-binding protein (PBP)2a, resulting in opening of the active site, whereby the β-lactam antibiotic now is enabled to bind to the active site in its mechanism of action. The combination effectively treats MRSA infection, for which many antibiotics (including TZP) have faced clinical obsolescence.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Giuseppe Allegretta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Melissa Malia N Gozun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sara Tejera
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Valerie A Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rhona Feltzer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Fisher JF, Mobashery S. Constructing and deconstructing the bacterial cell wall. Protein Sci 2020; 29:629-646. [PMID: 31747090 PMCID: PMC7021008 DOI: 10.1002/pro.3737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell-wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre-eminent class of antibiotics-the β-lactams, exemplified by the penicillins and cephalosporins-from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β-lactams is bacterial cell-wall destruction. In the monoderm (single membrane, Gram-positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β-lactam-unreactive transpeptidase enzyme that functions in cell-wall construction. In the diderm (dual membrane, Gram-negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β-lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell-wall construction and cell-wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β-lactams. This review summarizes how the β-lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndiana
| |
Collapse
|
8
|
Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 2019; 17:141-155. [PMID: 30683887 DOI: 10.1038/s41579-018-0141-x] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
Antimicrobial resistance threatens a resurgence of life-threatening bacterial infections and the potential demise of many aspects of modern medicine. Despite intensive drug discovery efforts, no new classes of antibiotics have been developed into new medicines for decades, in large part owing to the stringent chemical, biological and pharmacological requisites for effective antibiotic drugs. Combinations of antibiotics and of antibiotics with non-antibiotic activity-enhancing compounds offer a productive strategy to address the widespread emergence of antibiotic-resistant strains. In this Review, we outline a theoretical and practical framework for the development of effective antibiotic combinations.
Collapse
|
9
|
Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018; 118:5952-5984. [PMID: 29847102 PMCID: PMC6855303 DOI: 10.1021/acs.chemrev.8b00277] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Collapse
Affiliation(s)
- David A. Dik
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
10
|
Tomoshige S, Dik DA, Akabane-Nakata M, Madukoma CS, Fisher JF, Shrout JD, Mobashery S. Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the β-Lactam Antibiotics. ACS Infect Dis 2018; 4:860-867. [PMID: 29716193 PMCID: PMC5996343 DOI: 10.1021/acsinfecdis.8b00105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/15/2022]
Abstract
The bulgecins are iminosaccharide secondary metabolites of the Gram-negative bacterium Paraburkholderia acidophila and inhibitors of lytic transglycosylases of bacterial cell-wall biosynthesis and remodeling. The activities of the bulgecins are intimately intertwined with the mechanism of a cobiosynthesized β-lactam antibiotic. β-Lactams inhibit the penicillin-binding proteins, enzymes also critical to cell-wall biosynthesis. The simultaneous loss of the lytic transglycosylase (by bulgecin) and penicillin-binding protein (by β-lactams) activities results in deformation of the septal cell wall, observed microscopically as a bulge preceding bacterial cell lysis. We describe a practical synthesis of the three naturally occurring bulgecin iminosaccharides and their mechanistic evaluation in a series of microbiological studies. These studies identify potentiation by the bulgecin at subminimum inhibitory concentrations of the β-lactam against three pathogenic Gram-negative bacteria and establish for the first time that this potentiation results in a significant increase in the bactericidal efficacy of a clinical β-lactam.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - David A. Dik
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Masaaki Akabane-Nakata
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Chinedu S. Madukoma
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Joshua D. Shrout
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|