1
|
Tsai ET, Tseng HC, Liu YH, Wu YR, Peng SY, Lai WY, Lin YY, Chen SP, Chiou SH, Yang YP, Chien Y. Comparison of the mesodermal differentiation potential between embryonic stem cells and scalable induced pluripotent stem cells. J Chin Med Assoc 2024; 87:488-497. [PMID: 38451105 DOI: 10.1097/jcma.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.
Collapse
Affiliation(s)
- En-Tung Tsai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - You-Ren Wu
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Yuan Peng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
Tseng HC, Hsu TF, Lin YY, Lai WY, Liu YH, Yang YP, Chen CF, Wang CY. Efficient induction of pluripotent stem cells differentiated into mesenchymal stem cell lineages. J Chin Med Assoc 2024; 87:267-272. [PMID: 38277620 DOI: 10.1097/jcma.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have garnered significant attention in the field of cell-based therapy owing to their remarkable capabilities for differentiation and self-renewal. However, primary tissue-derived MSCs are plagued by various limitations, including constrained tissue sources, arduous and invasive retrieval procedures, heterogeneous cell populations, diminished purity, cellular senescence, and a decline in self-renewal and proliferative capacities after extended expansion. Addressing these challenges, our study focuses on establishing a robust differentiation platform to generate mesenchymal stem cells derived from induced pluripotent stem cells (iMSCs). METHODS To achieve this, we used a comprehensive methodology involving the differentiation of induced pluripotent stem cells into MSCss. The process was meticulously designed to ensure the expression of key MSC positive markers (CD73, CD90, and CD105) at elevated levels, coupled with the minimal expression of negative markers (CD34, CD45, CD11b, CD19, and HLA-DR). Moreover, the stability of these characteristics was evaluated across 10th generations. RESULTS Our findings attest to the success of this endeavor. iMSCs exhibited robust expression of positive markers and limited expression of negative markers, confirming their MSC identity. Importantly, these characteristics remained stable even up to the 10th generation, signifying the potential for sustained use in therapeutic applications. Furthermore, our study demonstrated the successful differentiation of iMSCs into osteocytes, chondrocytes, and adipocytes, showcasing their multilineage potential. CONCLUSION In conclusion, the establishment of induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) presents a significant advancement in overcoming the limitations associated with primary tissue-derived MSCs. The remarkable stability and multilineage differentiation potential exhibited by iMSCs offer a strong foundation for their application in regenerative medicine and tissue engineering. This breakthrough paves the way for further research and development in harnessing the full therapeutic potential of iMSCs.
Collapse
Affiliation(s)
- Huan-Chin Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Teh-Fu Hsu
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches. Cells 2023; 12:cells12020211. [PMID: 36672144 PMCID: PMC9856279 DOI: 10.3390/cells12020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.
Collapse
|
4
|
Jiao H, Lee MS, Sivapatham A, Leiferman EM, Li WJ. Epigenetic regulation of BAF60A determines efficiency of miniature swine iPSC generation. Sci Rep 2022; 12:9039. [PMID: 35641537 PMCID: PMC9156668 DOI: 10.1038/s41598-022-12919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
Miniature pigs are an ideal animal model for translational research to evaluate stem cell therapies and regenerative applications. While the derivation of induced pluripotent stem cells (iPSCs) from miniature pigs has been demonstrated, there is still a lack of a reliable method to generate and maintain miniature pig iPSCs. In this study, we derived iPSCs from fibroblasts of Wisconsin miniature swine (WMS), Yucatan miniature swine (YMS), and Göttingen minipigs (GM) using our culture medium. By comparing cells of the different pig breeds, we found that YMS fibroblasts were more efficiently reprogrammed into iPSCs, forming colonies with well-defined borders, than WMS and GM fibroblasts. We also demonstrated that YMS iPSC lines with a normal pig karyotype gave rise to cells of the three germ layers in vitro and in vivo. Mesenchymal stromal cells expressing phenotypic characteristics were derived from established iPSC lines as an example of potential applications. In addition, we found that the expression level of the switch/sucrose nonfermentable component BAF60A regulated by STAT3 signaling determined the efficiency of pig iPSC generation. The findings of this study provide insight into the underlying mechanism controlling the reprogramming efficiency of miniature pig cells to develop a viable strategy to enhance the generation of iPSCs for biomedical research.
Collapse
Affiliation(s)
- Hongli Jiao
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
| | - Ming-Song Lee
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Athillesh Sivapatham
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
| | - Ellen M Leiferman
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA
| | - Wan-Ju Li
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Housman G, Briscoe E, Gilad Y. Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model. PLoS Genet 2022; 18:e1010073. [PMID: 35263340 PMCID: PMC8936463 DOI: 10.1371/journal.pgen.1010073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/21/2022] [Accepted: 02/02/2022] [Indexed: 01/10/2023] Open
Abstract
The evolution of complex skeletal traits in primates was likely influenced by both genetic and environmental factors. Because skeletal tissues are notoriously challenging to study using functional genomic approaches, they remain poorly characterized even in humans, let alone across multiple species. The challenges involved in obtaining functional genomic data from the skeleton, combined with the difficulty of obtaining such tissues from nonhuman apes, motivated us to consider an alternative in vitro system with which to comparatively study gene regulation in skeletal cell types. Specifically, we differentiated six human (Homo sapiens) and six chimpanzee (Pan troglodytes) induced pluripotent stem cell lines (iPSCs) into mesenchymal stem cells (MSCs) and subsequently into osteogenic cells (bone cells). We validated differentiation using standard methods and collected single-cell RNA sequencing data from over 100,000 cells across multiple samples and replicates at each stage of differentiation. While most genes that we examined display conserved patterns of expression across species, hundreds of genes are differentially expressed (DE) between humans and chimpanzees within and across stages of osteogenic differentiation. Some of these interspecific DE genes show functional enrichments relevant in skeletal tissue trait development. Moreover, topic modeling indicates that interspecific gene programs become more pronounced as cells mature. Overall, we propose that this in vitro model can be used to identify interspecific regulatory differences that may have contributed to skeletal trait differences between species. Primates display a range of skeletal morphologies and susceptibilities to skeletal diseases, but the molecular basis of these phenotypic differences is unclear. Studies of gene expression variation in primate skeletal tissues are extremely restricted due to the ethical and practical challenges associated with collecting samples. Nevertheless, the ability to study gene regulation in primate skeletal tissues is crucial for understanding how the primate skeleton has evolved. We therefore developed a comparative primate skeletal cell culture model that allows us to access a spectrum of human and chimpanzee cell types as they differentiate from stem cells into bone cells. While most gene expression patterns are conserved across species, we also identified hundreds of differentially expressed genes between humans and chimpanzees within and across stages of differentiation. We also classified cells by osteogenic stage and identified additional interspecific differentially expressed genes which may contribute to skeletal trait differences. We anticipate that this model will be extremely useful for exploring questions related to gene regulation variation in primate bone biology and development.
Collapse
Affiliation(s)
- Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Emilie Briscoe
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Reiss J, Robertson S, Suzuki M. Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow. Int J Mol Sci 2021; 22:7513. [PMID: 34299132 PMCID: PMC8307620 DOI: 10.3390/ijms22147513] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular agriculture is an emerging scientific discipline that leverages the existing principles behind stem cell biology, tissue engineering, and animal sciences to create agricultural products from cells in vitro. Cultivated meat, also known as clean meat or cultured meat, is a prominent subfield of cellular agriculture that possesses promising potential to alleviate the negative externalities associated with conventional meat production by producing meat in vitro instead of from slaughter. A core consideration when producing cultivated meat is cell sourcing. Specifically, developing livestock cell sources that possess the necessary proliferative capacity and differentiation potential for cultivated meat production is a key technical component that must be optimized to enable scale-up for commercial production of cultivated meat. There are several possible approaches to develop cell sources for cultivated meat production, each possessing certain advantages and disadvantages. This review will discuss the current cell sources used for cultivated meat production and remaining challenges that need to be overcome to achieve scale-up of cultivated meat for commercial production. We will also discuss cell-focused considerations in other components of the cultivated meat production workflow, namely, culture medium composition, bioreactor expansion, and biomaterial tissue scaffolding.
Collapse
Affiliation(s)
- Jacob Reiss
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.R.); (S.R.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Kwon D, Ahn HJ, Han MJ, Ji M, Ahn J, Seo KW, Kang KS. Human Leukocyte Antigen Class I Pseudo-Homozygous Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 16:792-808. [PMID: 32712868 DOI: 10.1007/s12015-020-09990-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSC) are an important type of cell that are highly recognized for their safety and efficacy as a cell therapy agent. In order to obtain MSC, primary tissues (adipose tissue, bone marrow, and umbilical cord blood) must be used; however, these tissues, especially umbilical cord blood, are difficult to obtain due to various reasons, such as the low birth rate trend. In addition, to maximize the safety and efficacy of MSC as allogenic cell therapeutic agents, it is desirable to minimize the possibility of an immune rejection reaction after in vivo transplantation. This study tried to establish a novel method for producing induced pluripotent stem cells (iPSC)-derived MSC in which the human leukocyte antigen (HLA)-class I gene is knocked out. To do so, dermal fibroblast originated iPSC generation using Yamanaka 4-factor, HLA class I gene edited iPSC generation using CRISPR/Cas9, and differentiation from iPSC to MSC using MSC culture medium was utilized. Through this, HLA-A, B, and C pseudo-homozygous iPSC-derived MSC (KO iMSC) were produced by monoallelically knocking out the polymorphic HLA-A, B, and C genes, which are the major causes of immune rejection during allogenic cell transplantation. Produced KO iMSC possesses multipotency and it was safe in vivo to be able to be differentiated to cartilage. In addition, it was not attacked by natural killer cells unlike HLA class I null cells. In conclusion, KO iMSC that do not induce immune rejection during allogenic cell transplantation can be produced. In the future, KO iMSC can be successfully utilized as allogenic cell therapeutic agents for many recipients through HLA screening.
Collapse
Affiliation(s)
- Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Mi-Jung Han
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Minjun Ji
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Jongchan Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Kwang-Won Seo
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea. .,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Vieira CP, McCarrel TM, Grant MB. Novel Methods to Mobilize, Isolate, and Expand Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22115728. [PMID: 34072061 PMCID: PMC8197893 DOI: 10.3390/ijms22115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous studies demonstrate the essential role of mesenchymal stem cells (MSCs) in the treatment of metabolic and inflammatory diseases, as these cells are known to modulate humoral and cellular immune responses. In this manuscript, we efficiently present two novel approaches to obtain MSCs from equine or human sources. In our first approach, we used electro-acupuncture as previously described by our group to mobilize MSCs into the peripheral blood of horses. For equine MSC collection, culture, and expansion, we used the Miltenyi Biotec CliniMACS Prodigy system of automated cell manufacturing. Using this system, we were able to generate appoximately 100 MSC colonies that exhibit surface marker expression of CD105 (92%), CD90 (85%), and CD73 (88%) within seven days of blood collection. Our second approach utilized the iPSC embryoid bodies from healthy or diabetic subjects where the iPSCs were cultured in standard media (endothelial + mesoderm basal media). After 21 days, the cells were FACS sorted and exhibited surface marker expression of CD105, CD90, and CD73. Both the equine cells and the human iPSC-derived MSCs were able to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Both methods described simple and highly efficient methods to produce cells with surface markers phenotypically considered as MSCs and may, in the future, facilitate rapid production of MSCs with therapeutic potential.
Collapse
Affiliation(s)
- Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Taralyn M. McCarrel
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence:
| |
Collapse
|
9
|
Morvan MG, Teque F, Ye L, Moreno ME, Wang J, VandenBerg S, Stoddart CA, Kan YW, Levy JA. Genetically edited CD34 + cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells. Proc Natl Acad Sci U S A 2021; 118:e2102404118. [PMID: 33975958 PMCID: PMC8158014 DOI: 10.1073/pnas.2102404118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic editing of induced pluripotent stem (iPS) cells represents a promising avenue for an HIV cure. However, certain challenges remain before bringing this approach to the clinic. Among them, in vivo engraftment of cells genetically edited in vitro needs to be achieved. In this study, CD34+ cells derived in vitro from iPS cells genetically modified to carry the CCR5Δ32 mutant alleles did not engraft in humanized immunodeficient mice. However, the CD34+ cells isolated from teratomas generated in vivo from these genetically edited iPS cells engrafted in all experiments. These CD34+ cells also gave rise to peripheral blood mononuclear cells in the mice that, when inoculated with HIV in cell culture, were resistant to HIV R5-tropic isolates. This study indicates that teratomas can provide an environment that can help evaluate the engraftment potential of CD34+ cells derived from the genetically modified iPS cells in vitro. The results further confirm the possibility of using genetically engineered iPS cells to derive engraftable hematopoietic stem cells resistant to HIV as an approach toward an HIV cure.
Collapse
Affiliation(s)
- Maelig G Morvan
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143-1270
| | - Fernando Teque
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143-1270
| | - Lin Ye
- Department of Medicine, Institute of Human Genetics, University of California, San Francisco, CA 94143
| | - Mary E Moreno
- Department of Medicine, Division of Experimental Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94110
| | - Jiaming Wang
- Department of Medicine, Institute of Human Genetics, University of California, San Francisco, CA 94143
| | - Scott VandenBerg
- Helen Diller Family Comprehensive Cancer Center, Biorepository and Tissue Biomarker Technology Core, University of California, San Francisco, CA 94143-0875
| | - Cheryl A Stoddart
- Department of Medicine, Division of Experimental Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94110
| | - Yuet Wai Kan
- Department of Medicine, Institute of Human Genetics, University of California, San Francisco, CA 94143;
| | - Jay A Levy
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, CA 94143-1270;
| |
Collapse
|
10
|
Yang G, Mahadik B, Choi JY, Yu JR, Mollot T, Jiang B, He X, Fisher JP. Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomater 2021; 121:204-213. [PMID: 33271356 DOI: 10.1016/j.actbio.2020.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Modular tissue engineering is a promising biofabrication strategy to create engineered bone grafts in a bottom-up manner, in which cell-laden micro-modules are prepared as basic building blocks to assemble macroscopic tissues via different integrating mechanisms. In this study, we prepared collagen microbeads loaded with human bone marrow derived mesenchymal stem cells (BMSCs) using a microfluidic approach. The cell-laden microbeads were characterized for size change, cell activity, osteogenesis, as well as their self-assembly properties to generate centimeter-sized constructs. Moreover, using the cell-laden beads as a supporting medium, induced pluripotent stem cell-derived endothelial cells (iPSC-EC) were patterned inside bead aggregates through extrusion-based 3D printing. This fabrication approach that combines modular tissue engineering and supports 3D printing has the potential to create 3D engineered bone grafts with a pre-existing, customized vasculature.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States; NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, United States
| | - Bhushan Mahadik
- Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States; NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, United States
| | - Ji Young Choi
- Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States; NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, United States
| | - Justine R Yu
- Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States; NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, United States; University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Trevor Mollot
- Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States
| | - Bin Jiang
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States
| | - John P Fisher
- Tissue Engineering & Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States; NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
11
|
Yang G, Mahadik B, Mollot T, Pinsky J, Jones A, Robinson A, Najafali D, Rivkin D, Katsnelson J, Piard C, Fisher JP. Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Eng Part A 2020; 26:1369-1377. [PMID: 33054685 DOI: 10.1089/ten.tea.2020.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Liver disease and the subsequent loss of liver function is an enormous clinical challenge. A severe shortage of donor liver tissue greatly limits patients' options for a timely transplantation. Tissue engineering approaches offer a promising alternative to organ transplantation by engineering artificial implantable tissues. We have established a platform of cell-laden microbeads as basic building blocks to assemble macroscopic tissues via different mechanisms. This modular fabrication strategy possesses great potential for liver tissue engineering in a bottom-up manner. In this study, we encapsulated human hepatocytes into microbeads presenting a favorable microenvironment consisting of collagen and mesenchymal stem cells, and then we perfused the beads in a three-dimensional printed tubular perfusion bioreactor that promoted oxygen and medium diffusion to the impregnated cells. We noted high cell vitality and retention of parenchymal cell functionality for up to 30 days in this culture system. Our engineering-based approach led to the advancement in tissue size and long-term functionality of an artificial liver tissue in vitro.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Trevor Mollot
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Julia Pinsky
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Athenia Jones
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Alexis Robinson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Najafali
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Rivkin
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Jenny Katsnelson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Charlotte Piard
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
12
|
Abdal Dayem A, Lee SB, Kim K, Lim KM, Jeon TI, Seok J, Cho ASG. Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. Int J Mol Sci 2019; 20:ijms20081922. [PMID: 31003536 PMCID: PMC6514654 DOI: 10.3390/ijms20081922] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | | | | | | | | | | | | |
Collapse
|
13
|
Stem Cell-Derived Extracellular Vesicles as Immunomodulatory Therapeutics. Stem Cells Int 2019; 2019:5126156. [PMID: 30936922 PMCID: PMC6413386 DOI: 10.1155/2019/5126156] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been reported to possess regulatory functions on immune cells which make them alternative therapeutics for the treatment of inflammatory and autoimmune diseases. The interaction between MSCs and immune cells through paracrine factors might be crucial for these immunomodulatory effects of MSCs. Extracellular vesicles (EVs) are defined as bilayer membrane structures including exosomes and microvesicles which contain bioactive paracrine molecules affecting the characteristics of target cells. Recently, several studies have revealed that EVs derived from MSCs (MSC-EVs) can reproduce similar therapeutic impacts of parent MSCs; MSC-EVs could regulate proliferation, maturation, polarization, and migration of various immune effector cells and modulate the immune microenvironment depending on the context by delivering inflammatory cytokines, transcription factors, and microRNAs. Therefore, MSC-EVs can be applied as novel and promising tools for the treatment of immune-related disorders to overcome the limitations of conventional cell therapy regarding efficacy and toxicity issues. In this review, we will discuss current insights regarding the major outcomes in the evaluation of MSC-EV function against inflammatory disease models, as well as immune cells.
Collapse
|
14
|
Ohyama M. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm Regen 2019; 39:4. [PMID: 30834027 PMCID: PMC6388497 DOI: 10.1186/s41232-019-0093-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background The hair follicle (HF) is a unique miniorgan, which self-renews for a lifetime. Stem cell populations of multiple lineages reside within human HF and enable its regeneration. In addition to resident HF stem/progenitor cells (HFSPCs), the cells with similar biological properties can be induced from human-induced pluripotent stem cells (hiPSCs). As approaches to regenerate HF by combining HF-derived cells have been established in rodents and a huge demand exists to treat hair loss diseases, attempts have been made to bioengineer human HF using HFSPCs or hiPSCs. Main body of the abstract The aim of this review is to comprehensively summarize the strategies to regenerate human HF using HFSPCs or hiPSCs. HF morphogenesis and regeneration are enabled by well-orchestrated epithelial-mesenchymal interactions (EMIs). In rodents, various combinations of keratinocytes with mesenchymal (dermal) cells with trichogenic capacity, which were transplanted into in vivo environment, have successfully generated HF structures. The regeneration efficiency was higher, when epithelial or dermal HFSPCs were adopted. The success in HF formation most likely depended on high receptivity to trichogenic dermal signals and/or potent hair inductive capacity of HFSPCs. In theory, the use of epithelial HFSPCs in the bulge area and dermal papilla cells, their precursor cells in the dermal sheath, or trichogenic neonatal dermal cells should elicit intense EMI sufficient for HF formation. However, technical hurdles, represented by the limitation in starting materials and the loss of intrinsic properties during in vitro expansion, hamper the stable reconstitution of human HFs with this approach. Several strategies, including the amelioration of culture condition or compartmentalization of cells to strengthen EMI, can be conceived to overcome this obstacle. Obviously, use of hiPSCs can resolve the shortage of the materials once reliable protocols to induce wanted HFSPC subsets have been developed, which is in progress. Taking advantage of their pluripotency, hiPSCs may facilitate previously unthinkable approaches to regenerate human HFs, for instance, via bioengineering of 3D integumentary organ system, which can also be applied for the treatment of other diseases. Short conclusion Further development of methodologies to reproduce bona fide EMI in HF formation is indispensable. However, human HFSPCs and hiPSCs hold promise as materials for human HF regeneration.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611 Japan
| |
Collapse
|
15
|
Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering. Stem Cells Int 2018; 2018:8031718. [PMID: 30210552 PMCID: PMC6120267 DOI: 10.1155/2018/8031718] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023] Open
Abstract
As a result of over five decades of investigation, mesenchymal stromal/stem cells (MSCs) have emerged as a versatile and frequently utilized cell source in the fields of regenerative medicine and tissue engineering. In this review, we summarize the history of MSC research from the initial discovery of their multipotency to the more recent recognition of their perivascular identity in vivo and their extraordinary capacity for immunomodulation and angiogenic signaling. As well, we discuss long-standing questions regarding their developmental origins and their capacity for differentiation toward a range of cell lineages. We also highlight important considerations and potential risks involved with their isolation, ex vivo expansion, and clinical use. Overall, this review aims to serve as an overview of the breadth of research that has demonstrated the utility of MSCs in a wide range of clinical contexts and continues to unravel the mechanisms by which these cells exert their therapeutic effects.
Collapse
Affiliation(s)
- Ross E. B. Fitzsimmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave, Toronto, ON, Canada M5G 1M1
| | - Matthew S. Mazurek
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada T2N 4Z6
| | - Agnes Soos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave, Toronto, ON, Canada M5G 1M1
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave, Toronto, ON, Canada M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada M5S 3G8
| |
Collapse
|
16
|
Potential of iPSC-Derived Mesenchymal Stromal Cells for Treating Periodontal Disease. Stem Cells Int 2018; 2018:2601945. [PMID: 29731776 PMCID: PMC5872653 DOI: 10.1155/2018/2601945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cell-like populations have been derived from mouse-induced pluripotent stem cells (miPSC-MSC) with the capability for tissue regeneration. In this study, murine iPSC underwent differentiation towards an MSC-like immunophenotype. Stable miPSC-MSC cultures expressed the MSC-associated markers, CD73, CD105, and Sca-1, but lacked expression of the pluripotency marker, SSEA1, and hematopoietic markers, CD34 and CD45. Functionally, miPSC-MSC exhibited the potential for trilineage differentiation into osteoblasts, adipocytes, and chondrocytes and the capacity to suppress the proliferation of mitogen-activated splenocytes. The efficacy of miPSC-MSC was assessed in an acute inflammation model following systemic or local delivery into mice with subcutaneous implants containing heat-inactivated P. gingivalis. Histological analysis revealed less inflammatory cellular infiltrate within the sponges in mice treated with miPSC-MSC cells delivered locally rather than systemically. Assessment of proinflammatory cytokines in mouse spleens found that CXCL1 transcripts and protein were reduced in mice treated with miPSC-MSC. In a periodontitis model, mice subjected to oral inoculation with P. gingivalis revealed less bone tissue destruction and inflammation within the jaws when treated with miPSC-MSC compared to PBS alone. Our results demonstrated that miPSC-MSC derived from iPSC have the capacity to control acute and chronic inflammatory responses associated with the destruction of periodontal tissue. Therefore, miPSC-MSC present a promising novel source of stromal cells which could be used in the treatment of periodontal disease and other inflammatory systemic diseases such as rheumatoid arthritis.
Collapse
|
17
|
Veraitch O, Mabuchi Y, Matsuzaki Y, Sasaki T, Okuno H, Tsukashima A, Amagai M, Okano H, Ohyama M. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells. Sci Rep 2017; 7:42777. [PMID: 28220862 PMCID: PMC5318903 DOI: 10.1038/srep42777] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases.
Collapse
Affiliation(s)
- Ophelia Veraitch
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Tumor Biology, Department of Life Sciences, Faculty of Medicine, Shimane University, Shiojicho 89-1, Izumo-shi, Shimane, 693-8501, Japan
| | - Takashi Sasaki
- KOSÉ Endowed Program for Skin Care and Allergy Prevention, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Aki Tsukashima
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| |
Collapse
|
18
|
Zheng YL, Sun YP, Zhang H, Liu WJ, Jiang R, Li WY, Zheng YH, Zhang ZG. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential. PLoS One 2015; 10:e0144226. [PMID: 26649753 PMCID: PMC4674106 DOI: 10.1371/journal.pone.0144226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 11/16/2015] [Indexed: 01/27/2023] Open
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogrammed into iPSCs by transduction with lentivirus-mediated Sox2, Oct-3/4, klf4, and c-Myc. SFMSC-iPSCs were maintained with mTeSR1 medium in Matrigel-coated culture plates. Single dissociated cells were obtained by digesting the SFMSC-iPSCs with trypsin. The dissociated cells were then plated into Matrigel-coated culture plate with alpha minimum essential medium supplemented with 10% fetal bovine serum, 1× Glutamax, and the ROCK inhibitor Y-27632. Cells were then passaged in standard cell culture plates with alpha minimum essential medium supplemented with 10% fetal bovine serum and 1× Glutamax. After passaging in vitro, the cells showed a homogenous spindle-shape similar to their ancestor cells (SFMSCs), but with more robust proliferative activity. Flow cytometric analysis revealed typical MSC surface markers, including expression of CD73, CD90, CD105, and CD44 and lack of CD45, CD34, CD11b, CD19, and HLA-DR. However, these cells were positive for CD146 and stro-1, which the ancestor cells were not. Moreover, the cells could also be induced to differentiate in osteogenic, chondrogenic, and adipogenic lineages in vitro. The differentiation potential was improved compared with the ancestor cells in vitro. The cells were not found to exhibit oncogenicity in vivo. Therefore, the method presented herein facilitated the generation of STRO-1+CD146+ MSCs from SFMSC-iPSCs exhibiting enhanced proliferation and differentiation potential.
Collapse
Affiliation(s)
- Yu-Liang Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, P.R. China
| | - Yang-Peng Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- * E-mail: (ZZ); (YS)
| | - Hong Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
| | - Wen-Jing Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Rui Jiang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Wen-Yu Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - You-Hua Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
| | - Zhi-Guang Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, P.R. China
- * E-mail: (ZZ); (YS)
| |
Collapse
|
19
|
Lepage SI, Nagy K, Sung HK, Kandel RA, Nagy A, Koch TG. Generation, Characterization, and Multilineage Potency of Mesenchymal-Like Progenitors Derived from Equine Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 25:80-9. [PMID: 26414480 DOI: 10.1089/scd.2014.0409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are more and more frequently used to treat orthopedic injuries in horses. However, these cells are limited in their expandability and differentiation capacity. Recently, the first equine-induced pluripotent stem cell (iPSC) lines were reported by us [ 1 ]. In vitro differentiation of iPSCs into MSC-like cells is an attractive alternative to using MSCs derived from other sources, as a much larger quantity of patient-specific cells with broad differentiation potential could be generated. However, the differentiation capacity of iPSCs to MSCs and the potential for use in tissue engineering have yet to be explored. In this study, equine iPSCs were induced to differentiate into an MSC-like population. Upon induction, the iPSCs changed morphology toward spindle-shaped cells similar to MSCs. The ensuing iPSC-MSCs exhibited downregulation of pluripotency-associated genes and an upregulation of MSC-associated genes. In addition, the cells expressed the same surface markers as MSCs derived from equine umbilical cord blood. We then assessed the multilineage differentiation potential of iPSC-MSCs. Although chondrogenesis was not achieved after induction with transforming growth factor-beta 3 (TGFβ3) and/or bone morphogenic protein 4 (BMP-4) in 3D pellet culture, mineralization characteristic of osteogenesis and lipid droplet accumulation characteristic of adipogenesis were observed after chemical induction. We demonstrate a protocol for the derivation of MSC-like progenitor populations from equine iPS cells.
Collapse
Affiliation(s)
- Sarah I Lepage
- 1 Department of Biomedical Sciences, University of Guelph , Guelph, Ontario, Canada
| | - Kristina Nagy
- 2 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- 2 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Rita A Kandel
- 3 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada .,4 Pathology and Experimental Medicine, Mount Sinai Hospital , Toronto, Ontario, Canada
| | - Andras Nagy
- 2 Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada .,5 Department of Obstetrics and Gynecology and Institute of Medical Science, University of Toronto , Toronto, Ontario, Canada
| | - Thomas G Koch
- 1 Department of Biomedical Sciences, University of Guelph , Guelph, Ontario, Canada .,6 Department of Clinical Studies, Orthopedic Research Lab, Aarhus University , Aarhus, Denmark
| |
Collapse
|
20
|
Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, Bünger C, Bolund L, Luo Y. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther 2015; 6:144. [PMID: 26282538 PMCID: PMC4539932 DOI: 10.1186/s13287-015-0137-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/23/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Previously, we established a simple method for deriving mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSC-MSCs). These iPSC-MSCs were capable of forming osteogenic structures in scaffolds and nanofibers. The objective of this study is to systematically characterize the mesenchymal characteristics of the iPSC-MSCs by comparing them to bone marrow-derived MSCs (BM-MSCs). Methods Two iPSC-MSC lines (named as mRNA-iPSC-MSC-YL001 and lenti-iPSC-MSC-A001) and one BM-MSC line were used for the study. Cell proliferation, presence of mesenchymal surface markers, tri-lineage differentiation capability (osteogenesis, chondrogenesis, adipogenesis), and expression of “stemness” genes were analyzed in these MSC lines. Results The iPSC-MSCs were similar to BM-MSCs in terms of cell morphology (fibroblast-like) and surface antigen profile: CD29+, CD44+, CD73+, CD90+, CD105+, CD11b–, CD14–, CD31–, CD34–, CD45– and HLA-DR–. A faster proliferative capability was seen in both iPSC-MSCs lines compared to the BM-MSCs. The iPSC-MSCs showed adequate capacity of osteogenesis and chondrogenesis compared to the BM-MSCs, while less adipogenic potential was found in the iPSC-MSCs. The iPSC-MSCs and the tri-lineage differentiated cells (osteoblasts, chondrocytes, adipocytes) all lack expression of “stemness” genes: OCT4, SOX2, GDF3, CRIPTO, UTF1, DPPA4, DNMT3B, LIN28a, and SAL4. Conclusions The MSCs derived from human iPSCs with our method have advanced proliferation capability and adequate osteogenic and chondrogenic properties compared to BM-MSCs. However, the iPSC-MSCs were less efficient in their adipogenicity, suggesting that further modifications should be applied to our method to derive iPSC-MSCs more closely resembling the naïve BM-MSCs if necessary.
Collapse
Affiliation(s)
- Ran Kang
- Orthopedic Research Lab, Aarhus University, 8000, Aarhus C, Denmark. .,Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, 210028, China.
| | - Yan Zhou
- Department of Biomedicine, the Health Faculty, Aarhus University, 8000, Aarhus C, Denmark.
| | - Shuang Tan
- Department of Biomedicine, the Health Faculty, Aarhus University, 8000, Aarhus C, Denmark. .,Shenzhen Key Laboratory for Anti-aging and Regenerative Medicine, Health Science Center, Shenzhen University, 518060, Shenzhen, China.
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-aging and Regenerative Medicine, Health Science Center, Shenzhen University, 518060, Shenzhen, China.
| | - Lars Aagaard
- Department of Biomedicine, the Health Faculty, Aarhus University, 8000, Aarhus C, Denmark.
| | - Lin Xie
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, 210028, China.
| | - Cody Bünger
- Orthopedic Research Lab, Aarhus University, 8000, Aarhus C, Denmark.
| | - Lars Bolund
- Department of Biomedicine, the Health Faculty, Aarhus University, 8000, Aarhus C, Denmark.
| | - Yonglun Luo
- Department of Biomedicine, the Health Faculty, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|