1
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
2
|
Lima Cunha D, Sarkar H, Eintracht J, Harding P, Zhou JH, Moosajee M. Restoration of functional PAX6 in aniridia patient iPSC-derived ocular tissue models using repurposed nonsense suppression drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:240-253. [PMID: 37483273 PMCID: PMC10362734 DOI: 10.1016/j.omtn.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Congenital aniridia is a rare, pan-ocular disease causing severe sight loss, with only symptomatic intervention offered to patients. Approximately 40% of aniridia patients present with heterozygous nonsense variants in PAX6, resulting in haploinsufficiency. Translational readthrough-inducing drugs (TRIDs) have the ability to weaken the recognition of in-frame premature termination codons (PTCs), permitting full-length protein to be translated. We established induced pluripotent stem cell (iPSC)-derived 3D optic cups and 2D limbal epithelial stem cell (LESC) models from two aniridia patients with prevalent PAX6 nonsense mutations. Both in vitro models show reduced PAX6 protein levels, mimicking the disease. The repurposed TRIDs amlexanox and 2,6-diaminopurine (DAP) and the positive control compounds ataluren and G418 were tested for their efficiency. Amlexanox was identified as the most promising TRID, increasing full-length PAX6 levels in both models and rescuing the disease phenotype through normalization of VSX2 and cell proliferation in the optic cups and reduction of ABCG2 protein and SOX10 expression in LESCs. This study highlights the significance of patient iPSC-derived cells as a new model system for aniridia and proposes amlexanox as a new putative treatment for nonsense-mediated aniridia.
Collapse
Affiliation(s)
- Dulce Lima Cunha
- UCL Institute of Ophthalmology, London, UK
- Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Hajrah Sarkar
- UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
| | | | | | - Jo Huiqing Zhou
- Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
- Moorfields Eye Hospital, London, UK
| |
Collapse
|
3
|
Ail D, Nava D, Hwang IP, Brazhnikova E, Nouvel-Jaillard C, Dentel A, Joffrois C, Rousseau L, Dégardin J, Bertin S, Sahel JA, Goureau O, Picaud S, Dalkara D. Inducible nonhuman primate models of retinal degeneration for testing end-stage therapies. SCIENCE ADVANCES 2023; 9:eadg8163. [PMID: 37531424 PMCID: PMC10396314 DOI: 10.1126/sciadv.adg8163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Nonhuman primate (NHP) retina is anatomically closest to the human retina. However, there is a lack of relevant NHP models of retinal degeneration (RD) suitable for preclinical studies. To address this unmet need, we generated three distinct inducible cynomolgus macaque models of RD. We developed two genetically targeted strategies using optogenetics and CRISPR-Cas9 to ablate rods and mimic rod-cone dystrophy. In addition, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Among the three models, the CRISPR-Cas9-based approach was the most advantageous model in view of recapitulating disease-specific features and its ease of implementation. The acute model, however, resulted in the fastest degeneration, making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.
Collapse
Affiliation(s)
- Divya Ail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Diane Nava
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - In Pyo Hwang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Elena Brazhnikova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Alexandre Dentel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, F-75013 Paris, France
| | - Corentin Joffrois
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Lionel Rousseau
- ESYCOM, Université Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France
| | - Julie Dégardin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Stephane Bertin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| |
Collapse
|
4
|
Liu X, Hu L, Liu F. Mesenchymal stem cell-derived extracellular vesicles for cell-free therapy of ocular diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:102-117. [PMID: 39698446 PMCID: PMC11648472 DOI: 10.20517/evcna.2022.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2024]
Abstract
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have noticeably attracted clinicians' attention in treating ocular diseases. As the paracrine factor of MSCs and an alternative for cell-free therapies, MSC-EVs can be conveniently dropped over the ocular surface or diffused through the retina upon intravitreal injection, without increasing the risks of cellular rejection and tumor formation. For clinical translation, a standardized and scalable production, as well as reprogramming the MSC-EVs, are highly encouraged. This review aims to assess the potential approaches for EV production and functional modification, in addition to summarizing the worldwide clinical trials initiated for various physiological systems and the specific biochemical effects of MSC-EVs on the therapy of eye diseases. Recent advances in the therapy of ocular diseases based on MSC-EVs are reviewed, and the associated challenges and prospects are discussed as well.
Collapse
Affiliation(s)
- Xiaoling Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Fei Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
5
|
Salbaum KA, Shelton ER, Serwane F. Retina organoids: Window into the biophysics of neuronal systems. BIOPHYSICS REVIEWS 2022; 3:011302. [PMID: 38505227 PMCID: PMC10903499 DOI: 10.1063/5.0077014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 03/21/2024]
Abstract
With a kind of magnetism, the human retina draws the eye of neuroscientist and physicist alike. It is attractive as a self-organizing system, which forms as a part of the central nervous system via biochemical and mechanical cues. The retina is also intriguing as an electro-optical device, converting photons into voltages to perform on-the-fly filtering before the signals are sent to our brain. Here, we consider how the advent of stem cell derived in vitro analogs of the retina, termed retina organoids, opens up an exploration of the interplay between optics, electrics, and mechanics in a complex neuronal network, all in a Petri dish. This review presents state-of-the-art retina organoid protocols by emphasizing links to the biochemical and mechanical signals of in vivo retinogenesis. Electrophysiological recording of active signal processing becomes possible as retina organoids generate light sensitive and synaptically connected photoreceptors. Experimental biophysical tools provide data to steer the development of mathematical models operating at different levels of coarse-graining. In concert, they provide a means to study how mechanical factors guide retina self-assembly. In turn, this understanding informs the engineering of mechanical signals required to tailor the growth of neuronal network morphology. Tackling the complex developmental and computational processes in the retina requires an interdisciplinary endeavor combining experiment and theory, physics, and biology. The reward is enticing: in the next few years, retina organoids could offer a glimpse inside the machinery of simultaneous cellular self-assembly and signal processing, all in an in vitro setting.
Collapse
Affiliation(s)
| | - Elijah R. Shelton
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
6
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
7
|
Kole C, Klipfel L, Yang Y, Ferracane V, Blond F, Reichman S, Millet-Puel G, Clérin E, Aït-Ali N, Pagan D, Camara H, Delyfer MN, Nandrot EF, Sahel JA, Goureau O, Léveillard T. Otx2-Genetically Modified Retinal Pigment Epithelial Cells Rescue Photoreceptors after Transplantation. Mol Ther 2017; 26:219-237. [PMID: 28988713 PMCID: PMC5762984 DOI: 10.1016/j.ymthe.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal degenerations are blinding diseases characterized by the loss of photoreceptors. Their extreme genetic heterogeneity complicates treatment by gene therapy. This has motivated broader strategies for transplantation of healthy retinal pigmented epithelium to protect photoreceptors independently of the gene causing the disease. The limited clinical benefit for visual function reported up to now is mainly due to dedifferentiation of the transplanted cells that undergo an epithelial-mesenchymal transition. We have studied this mechanism in vitro and revealed the role of the homeogene OTX2 in preventing dedifferentiation through the regulation of target genes. We have overexpressed OTX2 in retinal pigmented epithelial cells before their transplantation in the eye of a model of retinitis pigmentosa carrying a mutation in Mertk, a gene specifically expressed by retinal pigmented epithelial cells. OTX2 increases significantly the protection of photoreceptors as seen by histological and functional analyses. We observed that the beneficial effect of OTX2 is non-cell autonomous, and it is at least partly mediated by unidentified trophic factors. Transplantation of OTX2-genetically modified cells may be medically effective for other retinal diseases involving the retinal pigmented epithelium as age-related macular degeneration.
Collapse
Affiliation(s)
- Christo Kole
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Laurence Klipfel
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Ying Yang
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Vanessa Ferracane
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Frederic Blond
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Sacha Reichman
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Géraldine Millet-Puel
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Emmanuelle Clérin
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Najate Aït-Ali
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Delphine Pagan
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Hawa Camara
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Marie-Noëlle Delyfer
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France; Unité Rétine, Uvéite et Neuro-Ophtalmologie, Département d'Ophtalmologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Emeline F Nandrot
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Jose-Alain Sahel
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Olivier Goureau
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Thierry Léveillard
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France.
| |
Collapse
|
8
|
Reichman S, Slembrouck A, Gagliardi G, Chaffiol A, Terray A, Nanteau C, Potey A, Belle M, Rabesandratana O, Duebel J, Orieux G, Nandrot EF, Sahel JA, Goureau O. Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells 2017; 35:1176-1188. [PMID: 28220575 DOI: 10.1002/stem.2586] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/12/2016] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are potentially useful in regenerative therapies for retinal disease. For medical applications, therapeutic retinal cells, such as retinal pigmented epithelial (RPE) cells or photoreceptor precursors, must be generated under completely defined conditions. To this purpose, we have developed a two-step xeno-free/feeder-free (XF/FF) culture system to efficiently differentiate hiPSCs into retinal cells. This simple method, relies only on adherent hiPSCs cultured in chemically defined media, bypassing embryoid body formation. In less than 1 month, adherent hiPSCs are able to generate self-forming neuroretinal-like structures containing retinal progenitor cells (RPCs). Floating cultures of isolated structures enabled the differentiation of RPCs into all types of retinal cells in a sequential overlapping order, with the generation of transplantation-compatible CD73+ photoreceptor precursors in less than 100 days. Our XF/FF culture conditions allow the maintenance of both mature cones and rods in retinal organoids until 280 days with specific photoreceptor ultrastructures. Moreover, both hiPSC-derived retinal organoids and dissociated retinal cells can be easily cryopreserved while retaining their phenotypic characteristics and the preservation of CD73+ photoreceptor precursors. Concomitantly to neural retina, this process allows the generation of RPE cells that can be effortlessly amplified, passaged, and frozen while retaining a proper RPE phenotype. These results demonstrate that simple and efficient retinal differentiation of adherent hiPSCs can be accomplished in XF/FF conditions. This new method is amenable to the development of an in vitro GMP-compliant retinal cell manufacturing protocol allowing large-scale production and banking of hiPSC-derived retinal cells and tissues. Stem Cells 2017;35:1176-1188.
Collapse
Affiliation(s)
- Sacha Reichman
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Amélie Slembrouck
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Giuliana Gagliardi
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Antoine Chaffiol
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Angélique Terray
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Céline Nanteau
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Anais Potey
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Morgane Belle
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Oriane Rabesandratana
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Jens Duebel
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Gael Orieux
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Emeline F Nandrot
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
9
|
Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 2015; 6:161. [PMID: 26364954 PMCID: PMC4568575 DOI: 10.1186/s13287-015-0167-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stem cell transplantation is a potential curative treatment for degenerative diseases of the retina. Among cell injection sites, the subretinal space (SRS) is particularly advantageous as it is maintained as an immune privileged site by the retinal pigment epithelium (RPE) layer. Thus, the success of subretinal transplantation depends on maintenance of RPE integrity. Moreover, both embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have negligible immunogenicity and in fact are immunosuppressive. Indeed, many studies have demonstrated that immunosuppressive drugs are not necessary for subretinal transplantation of stem cells if the blood-retinal barrier is not breached during surgery. The immunogenicity of induced pluripotent stem cells (iPSCs) appears more complex, and requires careful study before clinical application. Despite low rates of graft rejection in animal models, survival rates for ESCs, MSCs, and iPSCs in retina are generally poor, possibly due to resident microglia activated by cell transplantation. To improve graft survival in SRS transplantation, damage to the blood-retinal barrier must be minimized using appropriate surgical techniques. In addition, agents that inhibit microglial activation may be required. Finally, immunosuppressants may be required, at least temporarily, until the blood-retinal barrier heals. We review surgical methods and drug regimens to enhance the likelihood of graft survival after SRS transplantation.
Collapse
Affiliation(s)
- Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|