1
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Quality criteria for in vitro human pluripotent stem cell-derived models of tissue-based cells. Reprod Toxicol 2022; 112:36-50. [PMID: 35697279 DOI: 10.1016/j.reprotox.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The advent of the technology to isolate or generate human pluripotent stem cells provided the potential to develop a wide range of human models that could enhance understanding of mechanisms underlying human development and disease. These systems are now beginning to mature and provide the basis for the development of in vitro assays suitable to understand the biological processes involved in the multi-organ systems of the human body, and will improve strategies for diagnosis, prevention, therapies and precision medicine. Induced pluripotent stem cell lines are prone to phenotypic and genotypic changes and donor/clone dependent variability, which means that it is important to identify the most appropriate characterization markers and quality control measures when sourcing new cell lines and assessing differentiated cell and tissue culture preparations for experimental work. This paper considers those core quality control measures for human pluripotent stem cell lines and evaluates the state of play in the development of key functional markers for their differentiated cell derivatives to promote assurance of reproducibility of scientific data derived from pluripotent stem cell-based systems.
Collapse
|
4
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Kamand M, Forsberg SL, Thomassen M, Ilieva M, Meyer M, Svenningsen ÅF, Michel TM. Establishment of an induced pluripotent stem (iPS) cell line (SDUKIi006-A) from a 21-year old male patient diagnosed with atypical autism disorder. Stem Cell Res 2021; 51:102185. [PMID: 33524673 DOI: 10.1016/j.scr.2021.102185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Autism is a complex neuropsychiatric disorder defined by significant challenges in communication skills and social behavior as well as repetitive conduct and interests. Recent advances in stem cell technologies allow in vitro modeling of the underlying molecular disease mechanisms. Using integration-free episomal plasmids, we have generated a novel iPS cell line (SDUKIi006-A) from a patient diagnosed with atypical autism ("FYNEN cohort" of Southern Denmark). Characterization of the established cell line validated its expression of pluripotency markers, differentiation into the three germ layers, and the absence of chromosomal abnormalities.
Collapse
Affiliation(s)
- Morad Kamand
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark.
| | - Sheena Louise Forsberg
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| | - Mads Thomassen
- Department of Clinical Research, Department of Human Genetics, Odense University Hospital, Denmark
| | - Mirolyuba Ilieva
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark; Department of Neurology, Odense University Hospital, Denmark
| | - Åsa Fex Svenningsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Tanja Maria Michel
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| |
Collapse
|
7
|
Kamand M, Ilieva M, Forsberg SL, Thomassen M, Svenningsen ÅF, Meyer M, Michel TM. Generation of autism spectrum disorder patient-derived iPSC line SDUKIi004-A. Stem Cell Res 2020; 49:102038. [PMID: 33068890 DOI: 10.1016/j.scr.2020.102038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022] Open
Abstract
Autism is a heterogeneous neurodevelopmental disorder defined by deficits in socialization, communication, and patterns of behavior. Using stem cells to model brain disordersmay yield new understanding about the underlying neuropathological processes and could prove essential for drug development. We present here a newhuman inducedpluripotentstem cell (iPSC) line (SDUKIi004-A) generated from skin fibroblasts derived from a 21-year old male patient diagnosed with Pervasive DevelopmentalDisorder-Not Otherwise Specified (PDD-NOS)("FYNEN-cohort"). Reprogramming of the fibroblasts was accomplished using integration-free episomal plasmids. Characterization validated the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.
Collapse
Affiliation(s)
- Morad Kamand
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark.
| | - Mirolyuba Ilieva
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| | - Sheena Louise Forsberg
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| | - Mads Thomassen
- Department of Clinical Research, Department of Human Genetics, Odense University Hospital, Denmark
| | - Åsa Fex Svenningsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark; Department of Neurology, Odense University Hospital, Denmark
| | - Tanja Maria Michel
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark.
| |
Collapse
|
8
|
Kamand M, Ilieva M, Louise Forsberg S, Thomassen M, Meyer M, Fex Svenningsen Å, Maria Michel T. Derivation of induced pluripotent stem cells (SDUKIi003-A) from a 20-year-old male patient diagnosed with Asperger syndrome. Stem Cell Res 2020; 48:101974. [PMID: 32916638 DOI: 10.1016/j.scr.2020.101974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 12/01/2022] Open
Abstract
Autism spectrum disorder is a heterogenous neurodevelopmental disorder. The patients experience challenges in social interaction and communication skills as well as restricted and/or repetitive behaviors. To understand the molecular mechanisms underlying developmental brain disorders, patient-derived cellular models represent a useful tool. We have generated a human induced pluripotent stem cell line (SDUKIi003-A) from skin fibroblasts derived from a 20-year old male patient diagnosed with Asperger syndrome ("FYNEN-cohort" of Southern Denmark). The reprogramming of the fibroblasts was accomplished using integration-free episomal plasmids. Characterization validated the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.
Collapse
Affiliation(s)
- Morad Kamand
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark.
| | - Mirolyuba Ilieva
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| | - Sheena Louise Forsberg
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark
| | - Mads Thomassen
- Department of Clinical Research, Department of Human Genetics, Odense University Hospital, Denmark
| | - Morten Meyer
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark; Department of Neurology, Odense University Hospital, Denmark
| | - Åsa Fex Svenningsen
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Tanja Maria Michel
- Department of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Denmark.
| |
Collapse
|
9
|
Kamand M, Ilieva M, Forsberg SL, Thomassen M, Fex Svenningsen Å, Holst B, Meyer M, Michel TM. Generation of human induced pluripotent stem cells (SDUKIi002-A) from a 22-year-old male diagnosed with autism spectrum disorder. Stem Cell Res 2020; 46:101834. [DOI: 10.1016/j.scr.2020.101834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/01/2022] Open
|