1
|
Khodamoradi M, Müller CP, Ghazvini H, Ghaderi A, Abdoli N, Zarei SA. Targeting retrieval of methamphetamine reward memory in the context of REM sleep deprivation: Age-dependent role of GABA B receptors. Pharmacol Biochem Behav 2024; 245:173900. [PMID: 39490704 DOI: 10.1016/j.pbb.2024.173900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
GABAB receptors play a modulatory role in the mechanisms underlying drug addiction, sleep problems, and aging; however, there are few studies addressing their relationships to each other. Therefore, this study aimed to examine whether blockade of these receptors affects methamphetamine (METH) reward memory in adult and adolescent rapid-eye movement sleep-deprived (RSD) rats. Adolescent and adult male Wistar rats were subjected to RSD for seven days. They were then conditioned to receive methamphetamine (METH; 2 mg/kg, ip) during an eight-day conditioning period. METH reward memory was then reactivated during a retrieval trial and the GABAB receptor agonist baclofen (2.5 or 5 mg/kg, ip) was injected prior to the retrieval trial. Afterward, animals were retested for the expression of conditioned place preference (CPP) and hippocampal expression of GABAB receptors. Baclofen dose-dependently decreased the retrieval of METH reward memory in control and RSD adult and adolescent rats, but its effects were stronger at the higher dose. Moreover, we found stronger effects of baclofen in adolescent animals than in adult ones. In addition, baclofen at its higher dose decreased GABAB overexpression in the hippocampus of adolescent rats, but not in adult rats. These findings shed new light on the mechanisms underlying the role of GABAB receptors in the retrieval of METH reward memory and highlight the importance of considering age and sleep problems in understanding addiction. Further research could potentially lead to the development of therapeutics for individuals struggling with METH addiction.
Collapse
Affiliation(s)
- Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hamed Ghazvini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Abolhassan Ghaderi
- Clinical Research Development Unit, Imam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Nasrin Abdoli
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab Aldin Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, P.R.China
| |
Collapse
|
2
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
3
|
Lan YP, Ding CZ, Xia JX, Yang YZ, Zhao YB. Analysis of the functional role and mRNA expression of GABA B R in the nucleus accumbens of cocaine-addicted rats. J Chin Med Assoc 2024; 87:754-764. [PMID: 38860774 DOI: 10.1097/jcma.0000000000001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Drug addiction is a social and medical problem that must be urgently addressed. The nucleus accumbens (NAc) is closely related to addiction-related learning memory, and γ-aminobutyric acid type B receptor (GABA B R) is a potential target for the treatment of drug addiction. However, the role of GABA B R activity levels in the NAc in cocaine addiction is unclear. METHODS In this study, we established an animal model of cocaine dependence, modulated the level of GABA B R activity, applied a conditioned place preference assay (CPP) to assess the role of the NAc in reconsolidation of addiction memory, evaluated learning and memory functions by behavioral experiments, examined the expression of GB1, GB2, cyclic adenosine monophosphate response element binding protein (CREB), p-CREB, protein kinase A (PKA), protein kinase (ERK), and Brain-derived neurotrophic factor (BDNF) in the NAc by molecular biology experiments, and screened differentially significantly expressed genes by transcriptome sequencing. RESULTS Our study showed that the GABA B receptor agonist baclofen (BLF) had a significant effect on locomotor distance in rats, promoted an increase in GABA levels and significantly inhibited the PKA and ERK1/2/CREB/BDNF signaling pathways. Moreover, transcriptome sequencing showed that GABA B R antagonist intervention identified a total of 21 upregulated mRNAs and 21 downregulated mRNAs. The differentially expressed (DE) mRNA genes were mainly enriched in tyrosine metabolism; however, further study is needed. CONCLUSION GABA B R activity in the NAc is involved in the regulation of cocaine addiction and may play an important role through key mRNA pathways.
Collapse
Affiliation(s)
- Yan-Ping Lan
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chen-Zhe Ding
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jian-Xue Xia
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yun-Zhen Yang
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yan-Bin Zhao
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Maccioni P, Kaczanowska K, Lobina C, Regonini Somenzi L, Bassareo V, Gessa GL, Lawrence HR, McDonald P, Colombo G. Delving into the reducing effects of the GABA B positive allosteric modulator, KK-92A, on alcohol-related behaviors in rats. Alcohol 2023; 112:61-70. [PMID: 37495087 DOI: 10.1016/j.alcohol.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have demonstrated the ability of the positive allosteric modulator (PAM) of the GABAB receptor (GABAB PAM), KK-92A, to suppress operant alcohol self-administration and reinstatement of alcohol seeking in selectively bred Sardinian alcohol-preferring (sP) rats. The present study was designed to scrutinize the suppressing effects of KK-92A on alcohol-related behaviors; to this end, four separate experiments were conducted to address just as many new research questions, some of which bear translational value. Experiment 1 found that 7-day treatment with KK-92A (0, 5, 10, and 20 mg/kg, intraperitoneally [i.p.]) effectively reduced alcohol intake in male sP rats exposed to the home-cage 2-bottle "alcohol (10% v/v) vs. water" choice regimen with 1 hour/day limited access, extending to excessive alcohol drinking the ability of KK-92A to suppress operant alcohol self-administration. Experiment 2 demonstrated that the ability of KK-92A to reduce lever-responding for alcohol was maintained also after acute, intragastric treatment (0, 20, and 40 mg/kg) in female sP rats trained to lever-respond for 15% (v/v) alcohol under the fixed ratio 5 schedule of reinforcement. In Experiment 3, acutely administered KK-92A (0, 5, 10, and 20 mg/kg, i.p.) dampened alcohol-seeking behavior in female sP rats exposed to a single session under the extinction responding schedule. Experiment 4 used a taste reactivity test to demonstrate that acute treatment with KK-92A (0 and 20 mg/kg, i.p.) did not alter either hedonic or aversive reactions to a 15% (v/v) alcohol solution in male sP rats, ruling out that KK-92A-induced reduction of alcohol drinking and self-administration could be due to alterations in alcohol palatability. Together, these results enhance the behavioral pharmacological profile of KK-92A and further strengthen the notion that GABAB PAMs may represent a novel class of ligands with therapeutic potential for treating alcohol use disorder.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | | | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | - Laura Regonini Somenzi
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy.
| |
Collapse
|
5
|
Maccioni P, Mugnaini C, Carai MAM, Gessa GL, Corelli F, Colombo G. Anorectic effect of COR659 in a rat model of overeating. Behav Pharmacol 2023; 34:437-442. [PMID: 37712580 DOI: 10.1097/fbp.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
COR659 is a new compound, the action of which is exerted via a dual mechanism: positive allosteric modulation of the GABAB receptor; antagonism or inverse agonism at the cannabinoid CB1 receptor. Recent lines of experimental evidence have indicated that COR659 potently and effectively reduced operant self-administration of and reinstatement of seeking behaviour for a chocolate-flavoured beverage. The present study was designed to assess whether the ability of COR659 to diminish these addictive-like, food-motivated behaviours extended to a rat model of overeating palatable food. To this end, rats were habituated to feed on a standard rat chow for 3 h/day; every 4 days, the 3-hour chow-feeding session was followed by a 1-hour feeding session with highly palatable, calorie-rich Danish butter cookies. Even though satiated, rats overconsumed cookies. COR659 (0, 2.5, 5, and 10 mg/kg, i.p.) was administered before the start of the cookie-feeding session. Treatment with all 3 doses of COR659 produced a substantial decrease in intake of cookies and calories from cookies. These results extend the anorectic profile of COR659 to overconsumption of a highly palatable food and intake of large amounts of unnecessary calories.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena (SI)
| | | | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena (SI)
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| |
Collapse
|
6
|
Wronikowska-Denysiuk O, Michalak A, Pankowska A, Kurach Ł, Kozioł P, Łazorczyk A, Kochalska K, Targowska-Duda K, Boguszewska-Czubara A, Budzyńska B. Relationship between GABA-Ergic System and the Expression of Mephedrone-Induced Reward in Rats-Behavioral, Chromatographic and In Vivo Imaging Study. Int J Mol Sci 2023; 24:9958. [PMID: 37373105 DOI: 10.3390/ijms24129958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mephedrone is a psychoactive drug that increases dopamine, serotonin and noradrenaline levels in the central nervous system via interaction with transporters or monoamines. The aim of the presented study was to assess the role of the GABA-ergic system in the expression of mephedrone-induced reward. For this purpose, we conducted (a) a behavioral evaluation of the impact of baclofen (a GABAB receptors agonist) and GS39783 (a positive allosteric modulator of GABAB receptors) on the expression of mephedrone-induced conditioned place preference (CPP) in rats, (b) an ex vivo chromatographic determination of the GABA level in the hippocampi of rats subchronically treated with mephedrone and (c) an in vivo evaluation of GABA hippocampal concentration in rats subchronically administered with mephedrone using magnetic resonance spectroscopy (MRS). The results show that GS39783 (but not baclofen) blocked the expression of CPP induced by (20 mg/kg of) mephedrone. The behavioral effect was consistent with chromatographic analysis, which showed that mephedrone (5 and 20 mg/kg) led to a decrease in GABA hippocampal concentration. Altogether, the presented study provides a new insight into the involvement of the GABA-ergic system in the rewarding effects of mephedrone, implying that those effects are at least partially mediated through GABAB receptors, which suggests their potential role as new targets for the pharmacological management of mephedrone use disorder.
Collapse
Affiliation(s)
- Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Katarzyna Kochalska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Katarzyna Targowska-Duda
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Manz KM, Zepeda JC, Zurawski Z, Hamm HE, Grueter BA. SNAP25 differentially contributes to G i/o-coupled receptor function at glutamatergic synapses in the nucleus accumbens. Front Cell Neurosci 2023; 17:1165261. [PMID: 37206665 PMCID: PMC10188356 DOI: 10.3389/fncel.2023.1165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
The nucleus accumbens (NAc) guides reward-related motivated behavior implicated in pathological behavioral states, including addiction and depression. These behaviors depend on the precise neuromodulatory actions of Gi/o-coupled G-protein-coupled receptors (GPCRs) at glutamatergic synapses onto medium spiny projection neurons (MSNs). Previous work has shown that discrete classes of Gi/o-coupled GPCR mobilize Gβγ to inhibit vesicular neurotransmitter release via t-SNARE protein, SNAP25. However, it remains unknown which Gαi/o systems in the NAc utilize Gβγ-SNARE signaling to dampen glutamatergic transmission. Utilizing patch-clamp electrophysiology and pharmacology in a transgenic mouse line with a C-terminal three-residue deletion of SNAP25 (SNAP25Δ3) weaking the Gβγ-SNARE interaction, we surveyed a broad cohort of Gi/o-coupled GPCRs with robust inhibitory actions at glutamatergic synapses in the NAc. We find that basal presynaptic glutamate release probability is reduced in SNAP25Δ3 mice. While κ opioid, CB1, adenosine A1, group II metabotropic glutamate receptors, and histamine H3 receptors inhibit glutamatergic transmission onto MSNs independent of SNAP25, we report that SNAP25 contributes significantly to the actions of GABAB, 5-HT1B/D, and μ opioid receptors. These findings demonstrate that presynaptic Gi/o-coupled GPCRs recruit heterogenous effector mechanisms at glutamatergic synapses in the NAc, with a subset requiring SNA25-dependent Gβγ signaling.
Collapse
Affiliation(s)
- Kevin M. Manz
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C. Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Gatta E, Camussi D, Auta J, Guidotti A, Pandey SC. Neurosteroids (allopregnanolone) and alcohol use disorder: From mechanisms to potential pharmacotherapy. Pharmacol Ther 2022; 240:108299. [PMID: 36323379 PMCID: PMC9810076 DOI: 10.1016/j.pharmthera.2022.108299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Alcohol Use Disorder (AUD) is a multifaceted relapsing disorder that is commonly comorbid with psychiatric disorders, including anxiety. Alcohol exposure produces a plethora of effects on neurobiology. Currently, therapeutic strategies are limited, and only a few treatments - disulfiram, acamprosate, and naltrexone - are available. Given the complexity of this disorder, there is a great need for the identification of novel targets to develop new pharmacotherapy. The GABAergic system, the primary inhibitory system in the brain, is one of the well-known targets for alcohol and is responsible for the anxiolytic effects of alcohol. Interestingly, GABAergic neurotransmission is fine-tuned by neuroactive steroids that exert a regulatory role on several endocrine systems involved in neuropsychiatric disorders including AUD. Mounting evidence indicates that alcohol alters the biosynthesis of neurosteroids, whereas acute alcohol increases and chronic alcohol decreases allopregnanolone levels. Our recent work highlighted that chronic alcohol-induced changes in neurosteroid levels are mediated by epigenetic modifications, e.g., DNA methylation, affecting key enzymes involved in neurosteroid biosynthesis. These changes were associated with changes in GABAA receptor subunit expression, suggesting an imbalance between excitatory and inhibitory signaling in AUD. This review will recapitulate the role of neurosteroids in the regulation of the neuroendocrine system, highlight their role in the observed allostatic load in AUD, and develop a framework from mechanisms to potential pharmacotherapy.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Diletta Camussi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA; Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Maccioni P, Kaczanowska K, McDonald P, Colombo G. Development of Partial Tolerance to the Suppressing Effect of the Positive Allosteric Modulator of the GABAB Receptor, KK-92A, on Alcohol Self-Administration in Rats. Alcohol Alcohol 2022; 57:706-711. [PMID: 35589119 DOI: 10.1093/alcalc/agac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS A recent study reported how acute treatment with KK-92A, a newly synthesized positive allosteric modulator (PAMs) of the GABAB receptor (GABAB PAMs), suppressed a series of alcohol-related behaviors, including operant oral alcohol self-administration, in selectively bred Sardinian alcohol-preferring (sP) rats. These findings lead to the addition of KK-92A to the long list of GABAB PAMs capable of reducing, after acute treatment, alcohol self-administration in rats. As a further step toward a more complete characterization of the anti-addictive properties of KK-92A, the present study was designed to assess the effect of repeated treatment with the compound on alcohol self-administration. METHODS sP rats were trained to lever-respond for oral alcohol (15%, v/v) under the fixed ratio 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, KK-92A (0, 5, 10 and 20 mg/kg, i.p.) was administered 30 min prior to 10 consecutive daily self-administration sessions (likewise occurring under the FR5 schedule). RESULTS The first injection of KK-92A produced a dose-related suppression in number of lever-responses for alcohol and amount of self-administered alcohol. Magnitude of the suppressing effect of KK-92A decreased over the following two self-administration sessions and then tended to stabilize on continuation of treatment. Statistical significance at post hoc analysis was maintained only by the highest dose tested (20 mg/kg). CONCLUSIONS These data suggest the development of partial tolerance to the reducing effect of repeatedly administered KK-92A on alcohol self-administration. The agonistic component of the ago-allosteric profile of KK-92A is discussed as the likely key element underlying the observed tolerance.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, Italy
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato, Italy
| |
Collapse
|
10
|
Reducing effect of the novel positive allosteric modulator of the GABA B receptor, COR659, on binge-like alcohol drinking in male mice and rats. Psychopharmacology (Berl) 2022; 239:201-213. [PMID: 34812900 DOI: 10.1007/s00213-021-06022-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023]
Abstract
RATIONALE Binge drinking (BD) is a widespread drinkingpattern that may contribute to promote the development of alcohol use disorder (AUD). The comprehension of its neurobiological basis and the identification of molecules that may prevent BD are critical. Preclinical studies demonstrated that positive allosteric modulators (PAMs) of the GABAB receptor effectively reduced, and occasionally suppressed, the reinforcing and motivational properties of alcohol in rodents, suggesting their potential use as pharmacotherapy for AUD, including BD. Recently, we demonstrated that COR659, a novel GABAB PAM, effectively reduced (i) alcohol drinking under the 2-bottle choice regimen, (ii) alcohol self-administration under both fixed and progressive ratio schedules of reinforcement, and (iii) cue-induced reinstatement of alcohol-seeking behavior in Sardinian alcohol-preferring (sP) rats. OBJECTIVES The present study investigated whether the "anti-alcohol" properties of COR659 extend to binge-like drinking in rodents. METHODS COR659 was tested on the "drinking in the dark" (DID) paradigm in C57BL/6J mice and the 4-bottle "alcohol [10%, 20%, 30% (v/v)] versus water" choice regimen with limited and unpredictable access to alcohol in sP rats. RESULTS Acute administration of non-sedative doses of COR659 (10, 20, and 40 mg/kg; i.p.) effectively and selectively suppressed the intake of intoxicating amounts of alcohol (> 2 g/kg) consumed by C57BL/6J mice and sP rats exposed to these binge-like drinking experimental procedures. CONCLUSIONS The present data demonstrate the ability of COR659 to suppress binge-like drinking in rodents and strengthen the hypothesis that GABAB PAMs may represent a potentially effective pharmacotherapy for alcohol misuse.
Collapse
|
11
|
Maccioni P, Kaczanowska K, Lawrence H, Yun S, Bratzu J, Gessa GL, McDonald P, Colombo G. The Novel Positive Allosteric Modulator of the GABA B Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats. Front Cell Dev Biol 2021; 9:727576. [PMID: 34778249 PMCID: PMC8585307 DOI: 10.3389/fcell.2021.727576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor (GABAB PAMs) are of interest in the addiction field due to their ability to suppress several behaviors motivated by drugs of abuse. KK-92A is a novel GABAB PAM found to attenuate intravenous self-administration of nicotine and reinstatement of nicotine seeking in rats. This present study was aimed at extending to alcohol the anti-addictive properties of KK-92A. To this end, Sardinian alcohol-preferring rats were trained to lever-respond for oral alcohol (15% v/v) or sucrose (0.7% w/v) under the fixed ratio (FR) 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, rats were exposed to tests with acutely administered KK-92A under FR5 and progressive ratio schedules of reinforcement and cue-induced reinstatement of previously extinguished alcohol seeking. KK-92A effect on spontaneous locomotor activity was also evaluated. Treatment with 10 and 20 mg/kg KK-92A suppressed lever-responding for alcohol, amount of self-administered alcohol, and breakpoint for alcohol. Treatment with 20 mg/kg KK-92A reduced sucrose self-administration. Combination of per se ineffective doses of KK-92A (2.5 mg/kg) and the GABAB receptor agonist, baclofen (1 mg/kg), reduced alcohol self-administration. Treatment with 5, 10, and 20 mg/kg KK-92A suppressed reinstatement of alcohol seeking. Only treatment with 80 mg/kg KK-92A affected spontaneous locomotor activity. These results demonstrate the ability of KK-92A to inhibit alcohol-motivated behaviors in rodents and confirm that these effects are common to the entire class of GABAB PAMs. The remarkable efficacy of KK-92A is discussed in terms of its ago-allosteric properties.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Katarzyna Kaczanowska
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Harshani Lawrence
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Sang Yun
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
12
|
Vlachou S. A Brief History and the Significance of the GABA B Receptor. Curr Top Behav Neurosci 2021; 52:1-17. [PMID: 34595739 DOI: 10.1007/7854_2021_264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABA type B (GABAB) receptors (GABABRs) are the only metabotropic G protein-coupled receptors for GABA and can be found distributed not only in the central nervous system, but also in the periphery. This chapter introduces important, fundamental knowledge related to GABABR function and the various potential therapeutic applications of the development of novel GABABR-active compounds, as documented through extensive studies presented in subsequent chapters of this Current Topic in Behavioral Neurosciences volume on the role of the neurobiology of GABABR function. The compounds that have received increased attention in the last few years compared to GABABR agonists and antagonists - the positive allosteric modulators - exhibit better pharmacological profiles and fewer side effects. As we continue to unveil the mystery of GABABRs at the molecular and cellular levels, we further understand the significance of these receptors. Future directions should aim for developing highly selective GABABR compounds for treating neuropsychiatric disorders and their symptomatology.
Collapse
Affiliation(s)
- Styliani Vlachou
- Neuropsychopharmacology Division, Behavioural Neuroscience Laboratory, School of Psychology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|