1
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
2
|
Zhang J, Lv W, Liu Y, Fu W, Chen B, Ma Q, Gao X, Cui X. Nucleoporin 37 promotes the cell proliferation, migration, and invasion of gastric cancer through activating the PI3K/AKT/mTOR signaling pathway. In Vitro Cell Dev Biol Anim 2021; 57:987-997. [PMID: 34888748 DOI: 10.1007/s11626-021-00627-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a kind of malignant tumor in the world. Emerging studies have proved the regulatory role of nucleoporin 37 in the development of several malignant tumors. However, the potential effect of NUP37 in gastric cancer is still unclear. In this study, we searched for the Cancer Genome Atlas analysis to explore the potential correlation between NUP37 and gastric cancer. Then, we analyzed NUP37 expression in gastric cancer tissues and cell lines. After constructing a NUP37-silenced model in NCI-N87 cells and a NUP37-overexpressed model in MKN45 cells, we evaluated the role of NUP37 in cell proliferation, migration, and invasion as well as its underlying mechanism. TCGA analysis showed that NUP37 expression was highly expressed in stomach adenocarcinoma, which showed a lower survival rate than normal samples. Moreover, NUP37 was found to be highly expressed in gastric cancer tissues and cell lines. Functionally, NUP37 deficiency promoted gastric cancer cell apoptosis and inhibited cell proliferation, migration, and invasion, whereas NUP37 overexpression exhibited the opposite results. Mechanically, upregulation of NUP37 activated the PI3K/AKT/mTOR signaling pathway. Furthermore, the rescue assay exhibited that the mTOR inhibitor rapamycin significantly reversed the promoting effect of NUP37 in cell proliferation, migration, and invasion. In conclusion, our study identified that NUP37 promoted malignant behavior of gastric cancer cells including invasion, proliferation, and migration through activating the PI3K and its downregulated signaling pathway, indicating that NUP37 might become a novel prognostic target for further gastric cancer therapy.
Collapse
Affiliation(s)
- Jishui Zhang
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China.
| | - Wenhao Lv
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Yagang Liu
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Baosheng Chen
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Qiutong Ma
- The Second Department of General Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Xin Gao
- Department of Radiotherapy, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| | - Xiuxia Cui
- Department of Nuclear Medicine, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China
| |
Collapse
|
3
|
Jayathilake AG, Veale MF, Luwor RB, Nurgali K, Su XQ. Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression. BMC Complement Med Ther 2020; 20:372. [PMID: 33287803 PMCID: PMC7720407 DOI: 10.1186/s12906-020-03160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth. Our previous studies have shown that the free fatty acid extract (FFAE) of krill oil exhibits anti-proliferative and pro-apoptotic properties. This study determines the effects of krill oil extract on the migration of human CRC cells, and its potential role in modulating EGFR signalling pathway and the expression of programmed death ligand 1 (PD-L1). METHODS Human CRC cells, DLD-1 and HT-29 were treated with FFAE of KO at 0.03 and 0.12 μL/100 μL for 8 or 24 h. Cell migration was determined by Boyden chamber migration assay. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), phosphorylated AKT (pAKT), extracellular signal regulated kinase (ERK1/2), phosphorylated ERK1/2 (pERK1/2) as well as PD-L1 were assessed by western blotting and immunohistochemistry. RESULTS The FFAE of krill oil significantly inhibited cell migration compared to ethanol-treated (vehicle control) cells (P < 0.01 to P < 0.001). At the molecular level, krill oil extract reduced the expression of EGFR, pEGFR (P < 0.001 for both) and their downstream signalling, pERK1/2 and pAKT (P < 0.01 to P < 0.001) without altering total ERK 1/2 and AKT levels. In addition, the expression of PD-L1 was reduced by 67 to 72% (P < 0.001) following the treatment with krill oil extract. CONCLUSION This study has demonstrated that krill oil may be a potential therapeutic/adjunctive agent for CRC attributed to its anti-migratory effects.. The potential anti-cancer properties of krill oil are likely to be associated with the downregulation of EGFR, pEGFR and their downstream pERK/ERK1/2 and pAKT/AKT signalling pathways along with the downregulation of PD-L1.
Collapse
Affiliation(s)
- Abilasha G. Jayathilake
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Margaret F. Veale
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, Australia
| | - Xiao Q. Su
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| |
Collapse
|
4
|
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been considered a promising therapeutic target. Many of the positive regulators of the PI3K/AKT/mTOR axis, including the catalytic (p110α) and regulatory (p85α), of class IA PI3K, AKT, RHEB, mTOR, and eIF4E, possess oncogenic potentials, as demonstrated by transformation assays in vitro and by genetically engineered mouse models in vivo. Genetic evidences also indicate their roles in malignancies induced by activation of the upstream oncoproteins including receptor tyrosine kinases and RAS and those induced by the loss of the negative regulators of the PI3K/AKT/mTOR pathway such as PTEN, TSC1/2, LKB1, and PIPP. Possible mechanisms by which the PI3K/AKT/mTOR axis contributes to oncogenic transformation include stimulation of proliferation, survival, metabolic reprogramming, and invasion/metastasis, as well as suppression of autophagy and senescence. These phenotypic changes are mediated by eIF4E-induced translation of a subset of mRNAs and by other downstream effectors of mTORC1 including S6K, HIF-1α, PGC-1α, SREBP, and ULK1 complex.
Collapse
|
5
|
Arjumand W, Merry CD, Wang C, Saba E, McIntyre JB, Fang S, Kornaga E, Ghatage P, Doll CM, Lees-Miller SP. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells. Oncotarget 2018; 7:82424-82439. [PMID: 27489350 PMCID: PMC5347702 DOI: 10.18632/oncotarget.10955] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signaling pathway is activated in many human cancers. Previously, we reported that patients with early stage cervical cancer whose tumours harbour PIK3CA exon 9 or 20 mutations have worse overall survival in response to treatment with radiation and cisplatin than patients with wild-type PIK3CA. The purpose of this study was to determine whether PIK3CA-E545K mutation renders cervical cancer cells more resistant to cisplatin and/or radiation, and whether PI3K inhibition reverses the phenotype. We found that CaSki cells that are heterozygous for the PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin plus radiation than either HeLa or SiHa cells that express only wild-type PIK3CA. Similarly, HeLa cells engineered to stably express PIK3CA-E545K were more resistant to cisplatin or cisplatin plus radiation than cells expressing only wild-type PIK3CA or with PIK3CA depleted. Cells expressing the PIK3CA-E545K mutation also had constitutive PI3K pathway activation and increased cellular migration and each of these phenotypes was reversed by treatment with the PI3K inhibitor GDC-0941/Pictilisib. Our results suggests that cervical cancer patients whose tumours are positive for the PIK3CA-E545K mutation may benefit from PI3K inhibitor therapy in concert with standard cisplatin and radiation therapy.
Collapse
Affiliation(s)
- Wani Arjumand
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Cole D Merry
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chen Wang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Elias Saba
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - John B McIntyre
- Translational Laboratory, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Kornaga
- Translational Laboratory, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Prafull Ghatage
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Corinne M Doll
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
|
7
|
Yang J, Farren MR, Ahn D, Bekaii-Saab T, Lesinski GB. Signaling pathways as therapeutic targets in biliary tract cancer. Expert Opin Ther Targets 2017; 21:485-498. [PMID: 28282502 DOI: 10.1080/14728222.2017.1306055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incidence of biliary tract cancer (BTC) is increasing, and the disease is frequently diagnosed during advanced stages, leading to poor overall survival. Limited treatment options are currently available and novel therapeutic approaches are needed. A number of completed clinical trials have evaluated the role of chemotherapy for BTC, demonstrating a marginal benefit. Thus, there is increased interest in applying targeted therapies for this disease. Areas covered: This review article summarizes the role of chemotherapeutic regimens for the treatment of BTC, and highlights key signal transduction pathways of interest for targeted inhibition. Of particular interest are the MEK or MAP2K (mitogen-activated protein kinase kinase), phosphatidylinositol-3 kinase (PI3K) and signal transducer and activator of transcription-3 (STAT3) pathways. We discuss the available data on several promising inhibitors of these pathways, both in the pre-clinical and clinical settings. Expert opinion: Future treatment strategies should address targeting of MEK, PI3K and STAT3 for BTC, with a focus on combined therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Yang
- a Molecular Cellular and Developmental Biology Graduate Program , The Ohio State University , Columbus , OH , USA
| | - Matthew R Farren
- b Department of Hematology and Medical Oncology , The Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Daniel Ahn
- c Division of Medical Oncology, Department of Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Tanios Bekaii-Saab
- c Division of Medical Oncology, Department of Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Gregory B Lesinski
- b Department of Hematology and Medical Oncology , The Winship Cancer Institute of Emory University , Atlanta , GA , USA
| |
Collapse
|
8
|
Patel L, Chandrasekhar J, Evarts J, Forseth K, Haran AC, Ip C, Kashishian A, Kim M, Koditek D, Koppenol S, Lad L, Lepist EI, McGrath ME, Perreault S, Puri KD, Villaseñor AG, Somoza JR, Steiner BH, Therrien J, Treiberg J, Phillips G. Discovery of Orally Efficacious Phosphoinositide 3-Kinase δ Inhibitors with Improved Metabolic Stability. J Med Chem 2016; 59:9228-9242. [DOI: 10.1021/acs.jmedchem.6b01169] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Leena Patel
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Jerry Evarts
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Kristen Forseth
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Aaron C. Haran
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Carmen Ip
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Adam Kashishian
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Musong Kim
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - David Koditek
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Sandy Koppenol
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Latesh Lad
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Eve-Irene Lepist
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Mary E. McGrath
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephane Perreault
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Kamal D. Puri
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Armando G. Villaseñor
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - John R. Somoza
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Bart H. Steiner
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Joseph Therrien
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jennifer Treiberg
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gary Phillips
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
9
|
Josephs DH, Sarker D. Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics. TRANSLATIONAL ONCOGENOMICS 2016; 7:33-49. [PMID: 26917948 PMCID: PMC4762492 DOI: 10.4137/tog.s30529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is integral to many essential cell processes, including cell growth, differentiation, proliferation, motility, and metabolism. Somatic mutations and genetic amplifications that result in activation of the pathway are frequently detected in cancer. This has led to the development of rationally designed therapeutics targeting key members of the pathway. Critical to the successful development of these drugs are pharmacodynamic biomarkers that aim to define the degree of target and pathway inhibition. In this review, we discuss the pharmacodynamic biomarkers that have been utilized in early-phase clinical trials of PI3K pathway inhibitors. We focus on the challenges related to development and interpretation of these assays, their optimal integration with pharmacokinetic and predictive biomarkers, and future strategies to ensure successful development of PI3K pathway inhibitors within a personalized medicine paradigm for cancer.
Collapse
Affiliation(s)
- Debra H Josephs
- Department of Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, UK
| | - Debashis Sarker
- Department of Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
10
|
Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 2013; 6:88. [PMID: 24261963 PMCID: PMC3843585 DOI: 10.1186/1756-8722-6-88] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin's lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Delong Liu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.
| |
Collapse
|
11
|
Leslie NR, Dixon MJ, Schenning M, Gray A, Batty IH. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv Biol Regul 2012; 52:205-213. [PMID: 21930147 DOI: 10.1016/j.advenzreg.2011.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | |
Collapse
|