1
|
Pranzini E, Leo A, Rapizzi E, Ramazzotti M, Magherini F, Giovannelli L, Caselli A, Cirri P, Taddei ML, Paoli P. miR-210-3p mediates metabolic adaptation and sustains DNA damage repair of resistant colon cancer cells to treatment with 5-fluorouracil. Mol Carcinog 2019; 58:2181-2192. [PMID: 31468617 DOI: 10.1002/mc.23107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
Chemoresistance is the primary cause of chemotherapy failure. Compelling evidence shows that micro RNAs (miRNAs) contribute to reprogram cancer cells toward a resistant phenotype. We investigate the role of miRNAs in the response to acute treatment with 5-FU in colon cancer-resistant cells. We performed a global gene expression profile for the entire miRNA genome and found a change in the expression of four miRNAs following acute treatment with 5-FU. Among them, we focused on miR-210-3p, previously described as a key regulator of DNA damage repair mechanisms and mitochondrial metabolism. We show that miR-210-3p downregulation enables resistant cells to counteract the toxic effect of the drug increasing the expression of RAD-52 protein, responsible for DNA damage repair. Moreover, miR-210-3p downregulation enhances oxidative phosphorylation (OXPHOS), increasing the expression levels of succinate dehydrogenase subunits D, decreasing intracellular succinate levels and inhibiting HIF-1α expression. Altogether, these adaptations lead to increased cells survival following drug exposure. These evidence suggest that miR-210-3p downregulation following 5-FU sustains DNA damage repair and metabolic adaptation to counteract drug treatment.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Section of Pharmacology and Toxicology, Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Leng Q, Lin Y, Jiang F, Lee CJ, Zhan M, Fang H, Wang Y, Jiang F. A plasma miRNA signature for lung cancer early detection. Oncotarget 2017; 8:111902-111911. [PMID: 29340099 PMCID: PMC5762367 DOI: 10.18632/oncotarget.22950] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
Abstract
The early detection of lung cancer continues to be a major clinical challenge. Using whole-transcriptome next-generation sequencing to analyze lung tumor and the matched noncancerous tissues, we previously identified 54 lung cancer-associated microRNAs (miRNAs). The objective of this study was to investigate whether the miRNAs could be used as plasma biomarkers for lung cancer. We determined expressions of the lung tumor-miRNAs in plasma of a development cohort of 180 subjects by using reverse transcription PCR to develop biomarkers. The development cohort included 92 lung cancer patients and 88 cancer-free smokers. We validated the biomarkers in a validation cohort of 64 individuals comprising 34 lung cancer patients and 30 cancer-free smokers. Of the 54 miRNAs, 30 displayed a significant different expression level in plasma of the lung cancer patients vs. cancer-free controls (all P < 0.05). A plasma miRNA signature (miRs-126, 145, 210, and 205-5p) with the best prediction was developed, producing 91.5% sensitivity and 96.2% specificity for lung cancer detection. Diagnostic performance of the plasma miRNA signature had no association with stage and histological type of lung tumor, and patients' age, sex, and ethnicity (all p > 0.05). The plasma miRNA signature was reproducibly confirmed in the validation cohort. The plasma miRNA signature may provide a blood-based assay for diagnosing lung cancer at the early stage, and thereby reduce the associated mortality and cost.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanli Lin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fangran Jiang
- Departments of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Cheng-Ju Lee
- Departments of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Min Zhan
- Departments of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - HongBin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yue Wang
- Department of Mathematics & Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
4
|
Abstract
Activation of hypoxia pathways is both associated with and contributes to an aggressive phenotype across multiple types of solid cancers. The regulation of gene transcription by hypoxia-inducible factor (HIF) is a key element in this response. HIF directly upregulates the expression of many hundreds of protein-coding genes, which act to both improve oxygen delivery and to reduce oxygen demand. However, it is now becoming apparent that many classes of noncoding RNAs are also regulated by hypoxia, with several (e.g. micro RNAs, long noncoding RNAs and antisense RNAs) under direct transcriptional regulation by HIF. These hypoxia-regulated, noncoding RNAs may act as effectors of the indirect response to HIF by acting on specific coding transcripts or by affecting generic RNA-processing pathways. In addition, noncoding RNAs may also act as modulators of the HIF pathway, either by integrating other physiological responses or, in the case of HIF-regulated, noncoding RNAs, by providing negative or positive feedback and feedforward loops that affect upstream or downstream components of the HIF cascade. These hypoxia-regulated, noncoding transcripts play important roles in the aggressive hypoxic phenotype observed in cancer.
Collapse
|
5
|
Ma T, Schreiber CA, Knutson GJ, Khattouti AE, Sakiyama MJ, Hassan M, Charlesworth MC, Madden BJ, Zhou X, Vuk-Pavlović S, Gomez CR. Effects of oxygen on the antigenic landscape of prostate cancer cells. BMC Res Notes 2015; 8:687. [PMID: 26581192 PMCID: PMC4652345 DOI: 10.1186/s13104-015-1633-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Background Use of allogeneic cancer cells-based immunotherapy for treatment of established prostate cancer (PCa) has only been marginally effective. One reason for failure could stem from the mismatch of antigenic signatures of vaccine cells and cancer in situ. Hence, it is possible that vaccine cells expressed antigens differently than tumor cells in situ. We hypothesized that cells grown in vitro at low oxygen tension (pO2) provide a better antigen match to tumors in situ and could reveal a more relevant antigenic landscape than cells grown in atmospheric pO2. Methods We tested this hypothesis by comparing PCa cells propagated at pO2 = 2 kPa and 20 kPa. To identify potential tumor-associated antigens (TAAs), we prepared PCa cell lysates, resolved them by two-dimensional electrophoresis and immunoblotting using spontaneous antibodies from plasma derived from PCa patients and control subjects. Antibody-labeled spots were analyzed by MALDI-TOF mass spectrometry and validated by ELISA. We selected hypoxia-regulated HSP70 and hnRNP L and hypoxia-independent HSP60 and determined the frequency of plasma samples reacting with these molecules. Results Frequency of HSP60-reactive plasma was low in healthy controls [1.3 % (1/76)], while it was elevated in PCa patients [13.0 % (7/54); p < 0.05]. These data suggest a humoral immune response to HSP60 in PCa. Levels of autoantibodies to HSP70 did not differ from healthy controls [3.7 % (2/54)] in PCa patients [5.3 % (2/38)]. Similarly, hnRNP L autoantibodies did no differ between healthy controls [6.1 % (3/49)] and PCa patients [5.3 % (2/38)]. Conclusions Overall our results suggest the value of hypoxia as a modifier of the cellular and antigenic landscape of PCa cells. By modifying the immune reactivity of PCa cells in culture, manipulation of pO2 can be proposed as a new avenue for improving diagnosis, prognosis and immunotherapy for PCa.
Collapse
Affiliation(s)
- Tangeng Ma
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Claire A Schreiber
- Stem Cell Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Gaylord J Knutson
- Stem Cell Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Abdelouahid El Khattouti
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Marcelo J Sakiyama
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | | | - Benjamin J Madden
- Proteomics Research Center, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Stanimir Vuk-Pavlović
- Stem Cell Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. .,Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. .,Division of Preventive and Occupational Medicine, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Department of Radiation Oncology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Stem Cell Laboratory, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. .,Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. .,Division of Preventive and Occupational Medicine, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Rosenberg T, Thomassen M, Jensen SS, Larsen MJ, Sørensen KP, Hermansen SK, Kruse TA, Kristensen BW. Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids. CNS Oncol 2015; 4:25-35. [PMID: 25586423 DOI: 10.2217/cns.14.48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM Tumor hypoxia and presence of tumor stem cells are related to therapeutic resistance and tumorigenicity in glioblastomas. The aim of the present study was therefore to identify microRNAs deregulated in acute hypoxia and to identify possible associated changes in stem cell markers. MATERIALS & METHODS Glioblastoma spheroid cultures were grown in either 2 or 21% oxygen. Subsequently, miRNA profiling was performed and expression of ten stem cell markers was examined. RESULTS MiRNA-210 was significantly upregulated in hypoxia in patient-derived spheroids. The stem cell markers displayed a complex regulatory pattern. CONCLUSION MiRNA-210 appears to be upregulated in hypoxia in immature glioblastoma cells. This miRNA may represent a therapeutic target although it is not clear from the results whether this miRNA may be related to specific cancer stem cell functions.
Collapse
Affiliation(s)
- T Rosenberg
- Department of Pathology, Odense University Hospital, Winsløwparken 15, 5000 Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Song H, Oh B, Choi M, Oh J, Lee M. Delivery of anti-microRNA-21 antisense-oligodeoxynucleotide using amphiphilic peptides for glioblastoma gene therapy. J Drug Target 2015; 23:360-70. [PMID: 25572456 DOI: 10.3109/1061186x.2014.1000336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inhibition of microRNA-21 (miR-21) has been shown to promote apoptosis of cancer cells and to reduce tumor size in glioblastoma. However, efficient carriers for antisense-oligodeoxynucleotide (antisense-ODN) against miR-21 have not yet been developed. In this study, the R3V6 peptide (R3V6) was evaluated as a carrier of antisense-ODN. In a gel retardation assay, R3V6 formed a complex with an antisense-ODN. The serum stability assay showed that R3V6 protected it from nucleases more efficiently than polyethylenimine (PEI; 25 kDa, PEI25k). A Renilla luciferase gene with a 3'-untranslated region (3'-UTR) recognizable by miR-21 (psiCHECK2-miR-21-UTR) was constructed for the antisense-ODN assay. psiCHECK2-miR-21-UTR expressed less Renilla luciferase in the cells with a higher level of miR-21 due to the effect of miR-21. In an in vitro transfection assay, the R3V6 peptide delivered anti-miR-21 antisense-ODN into cells more efficiently than PEI (25 kDa, PEI25k) and lipofectamine. As a result, antisense-ODN/R3V6 complex inhibited miR-21 and increased Renilla luciferase expression more efficiently than antisense-ODN/PEI25k or antisense-ODN/Lipofectamine complexes in both C6 and A172 glioblastoma cells. Furthermore, the antisense-ODN/R3V6 complexes reduced the level of miR-21 and induced apoptosis of glioblastoma cells. These results suggest that the R3V6 peptide may be a useful carrier of antisense-ODN for glioblastoma gene therapy.
Collapse
Affiliation(s)
- Hojung Song
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University , Seoul , Korea
| | | | | | | | | |
Collapse
|
8
|
Zhang XJ, Feng XL, Huang Y, Gao Y, Cao ZY, Huang WL, Zhang Y, Jian QH, Zhong JC, Yang MT, Fan XM, Jin Z. Expression of miRNA-210 in gastric cancer cell lines and its function prediction. Shijie Huaren Xiaohua Zazhi 2015; 23:78-84. [DOI: 10.11569/wcjd.v23.i1.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen microRNAs (miRNAs) associated with metastasis of gastric cancer (GC) by miRNA microarray and to explore the possible role of miRNA-210 in GC metastasis by bioinformatics.
METHODS: GC cell lines with low (RF1) or high metastatic potential (RF48) were used for miRNA expression profiling using human miRNA microarray. Expression of miRNA-210 in 7 GC cell lines was detected by RT-PCR. MiRNA-210 targets were obtained using miRWalk, and functions of these targets in GC were predicted with David online.
RESULTS: Compared with RF1 cells, 21 and 15 miRNAs were up-regulated and down-regulated in RF48 cells, respectively. Expression of miRNA-210 was further validated by real-time quantitative RT-PCR in multiple GC cell lines with different metastatic potential, which showed that miRNA-210 was overexpressed in GC cell lines with high metastatic potential. Bioinformatics analysis suggested that miRNA-210 was related with tumorgenesis and metastasis.
CONCLUSION: Screening miRNAs associated with metastasis lays a foundation for identifying early diagnostic markers and new therapeutic targets for GC metastasis. Expression profile of miRNAs associated with metastasis was obtained by miRNA microarray; dysregulated expression of miRNA-210 may be related with GC metastasis, and may serve as an early diagnostic biomarker and new treatment target.
Collapse
|
9
|
Abstract
INTRODUCTION Computed tomography (CT) plays a central role in lung cancer diagnosis. However, CT has relatively low specificity, presenting a challenge in clinical settings. We previously identified 12 microRNAs (miRNAs) whose expressions in tumor tissues were associated with lung cancer. METHODS Using quantitative reverse transcriptase polymerase chain reaction, we aimed to identify miRNA biomarkers in sputum that could complement CT for diagnosis of lung cancer. RESULTS In a training set consisting of 66 lung cancer patients and 68 cancer-free smokers, 10 of the 12 miRNAs were differentially expressed between the cases and controls (p ≤ 0.01). From the miRNAs, a logistic regression model was built on the basis of miR-31 and miR-210, both of which had the best prediction for lung cancer, producing an area under receiver operating characteristic curve of 0.83. Combined use of the two miRNAs yielded 65.2% sensitivity and 89.7% specificity, CT had 93.9% sensitivity and 83.8% specificity for lung cancer diagnosis. Notably, combined analysis of the miRNA biomarkers and CT produced a higher specificity than does CT used alone (91.2% versus 83.8%; p < 0.05). The diagnostic performance of the biomarkers was confirmed in a testing set comprising 64 lung cancer patients and 73 cancer-free smokers. CONCLUSION The sputum miRNA biomarkers might be useful in improving CT for diagnosis of lung cancer, but further independent validation on an external and prospective cohort of patients is required.
Collapse
|
10
|
Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:50. [PMID: 24909053 PMCID: PMC4060094 DOI: 10.1186/1756-9966-33-50] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. miRNAs can be induced by a variety of stresses such as hypoxia, and are involved in diverse biological processes including differentiation, cell proliferation, cell death, and tumorigenesis. Hypoxia, a common feature of tumor microenvironment, can induce a number of miRNAs expression. miRNA-210 (miR-210) is one of the hypoxia-regulated-miRNAs, which has been investigated extensively in cancer. However, paradoxically opposing results were documented regarding whether it is an oncogene or a tumor suppressor, and whether it is a positive or negative prognostic biomarker. In the present review, we focus on the following investigations of miR-210: 1) its functions of as an oncogene, 2) its functions as a tumor suppressor, 3) its functions in mitochondrial metabolism, and finally, the diagnostic and prognostic value of miR-210 in cancer researches.
Collapse
Affiliation(s)
| | | | - Li Baosheng
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jiyan Road 440, Jinan 250117, P,R, China.
| |
Collapse
|
11
|
Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, Ratcliffe PJ, Ragoussis J, Mole DR. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep 2014; 15:70-6. [PMID: 24363272 PMCID: PMC3983684 DOI: 10.1002/embr.201337642] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023] Open
Abstract
Hypoxia is central to both ischaemic and neoplastic diseases. However, the non-coding transcriptional response to hypoxia is largely uncharacterized. We undertook integrated genomic analyses of both non-coding and coding transcripts using massively parallel sequencing and interfaced this data with pan-genomic analyses of hypoxia-inducible factor (HIF) and RNApol2 binding in hypoxic cells. These analyses revealed that all classes of RNA are profoundly regulated by hypoxia and implicated HIF as a major direct regulator of both the non-coding and coding transcriptome, acting predominantly through release of pre-bound promoter-paused RNApol2. These findings indicate that the transcriptional response to hypoxia is substantially more extensive than previously considered.
Collapse
Affiliation(s)
- Hani Choudhry
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, UK
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Johannes Schödel
- The Henry Wellcome Building for Molecular Physiology, University of OxfordOxford, UK
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen- NurembergErlangen, Germany
| | | | - Carme Camps
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, UK
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen- NurembergErlangen, Germany
| | - Adrian L Harris
- The Weatherall Institute of Molecular Medicine, University of OxfordOxford, UK
| | - Peter J Ratcliffe
- The Henry Wellcome Building for Molecular Physiology, University of OxfordOxford, UK
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, UK
- McGill University and Genome Quebec Innovation CentreMontreal, Canada
- BSRC Alexander FlemingAthens, Greece
| | - David R Mole
- The Henry Wellcome Building for Molecular Physiology, University of OxfordOxford, UK
| |
Collapse
|
12
|
McCormick RI, Blick C, Ragoussis J, Schoedel J, Mole DR, Young AC, Selby PJ, Banks RE, Harris AL. miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br J Cancer 2013; 108:1133-42. [PMID: 23449350 PMCID: PMC3619073 DOI: 10.1038/bjc.2013.56] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clear cell renal cancer frequently harbours von Hippel-Lindau (VHL) gene mutations, leading to stabilisation of the hypoxia-inducible factors (HIFs) and expression of their target genes. We investigated HIF-1 and HIF-2 in the regulation of microRNA-210 (miR-210), and its clinical relevance in renal tumours. METHODS RCC4 and 786-O renal cancer cell lines transfected with either an empty vector or functional VHL and incubated in normoxia or hypoxia were examined for miR-210 expression. Hypoxia-inducible factor siRNAs were used to examine their regulation of miR-210. Seventy-one clear cell renal tumours were sequenced for VHL mutations. Expression of miR-210, VHL, CA9, ISCU and Ki-67 were determined by immunohistochemistry and qRT-PCR. RESULTS In addition to HIF-1 regulating miR-210 in renal cancer, HIF-2 can regulate this microRNA in the absence of HIF-1. MicroRNA-210 is upregulated in renal cancer compared with normal renal cortex tissue. MicroRNA-210 correlates negatively with its gene target ISCU at the protein and mRNA level. MicroRNA-210 correlated with positive outcome variables and negatively with Ki-67. CONCLUSION We provide further evidence of miR-210 activity in vivo, and show that high miR-210 expression is associated with better clinico-pathological prognostic factors.
Collapse
Affiliation(s)
- R I McCormick
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - C Blick
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - J Ragoussis
- Genomic Research Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - J Schoedel
- Oxygen Sensing Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - D R Mole
- Oxygen Sensing Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A C Young
- Oxygen Sensing Group, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - P J Selby
- Cancer Research UK Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - R E Banks
- Cancer Research UK Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - A L Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
13
|
Kucharzewska P, Belting M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles 2013; 2:20304. [PMID: 24009895 PMCID: PMC3760648 DOI: 10.3402/jev.v2i0.20304] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly subjected to various types of endogenous and exogenous stressful stimuli, which can cause serious and even permanent damage. The ability of a cell to sense and adapt to environmental alterations is thus vital to maintain tissue homeostasis during development and adult life. Here, we review some of the major phenotypic characteristics of the hostile tumour microenvironment and the emerging roles of extracellular vesicles in these events.
Collapse
Affiliation(s)
- Paulina Kucharzewska
- Section of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
14
|
Sen CK, Roy S. OxymiRs in cutaneous development, wound repair and regeneration. Semin Cell Dev Biol 2012; 23:971-80. [PMID: 23063665 PMCID: PMC3762568 DOI: 10.1016/j.semcdb.2012.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/27/2012] [Indexed: 01/08/2023]
Abstract
The state of tissue oxygenation is widely recognized as a major microenvironmental cue that is known to regulate the expression of coding genes. Recent works have extended that knowledge to demonstrate that the state of tissue oxygenation may potently regulate the expression of microRNAs (miRs). Collectively, such miRs that are implicated in defining biological outcomes in response to a change in the state of tissue oxygenation may be referred to as oxymiRs. Broadly, oxymiRs may be categorized into three groups: (A) the existence (expression and/or turnover) of which is directly influenced by changes in the state of tissue oxygenation; (B) the existence of which is indirectly (e.g. oxygen-sensitive proteins, metabolites, pH, etc.) influenced by changes in the state of tissue oxygenation; and (C) those that modify biological outcomes to changes in the state of tissue oxygenation by targeting oxygen sensing pathways. This work represents the first review of how oxymiRs may regulate development, repair and regeneration. Currently known oxymiRs may affect the functioning of a large number of coding genes which have hitherto fore never been linked to oxygen sensing. Many of such target genes have been validated and that number is steadily growing. Taken together, our understanding of oxymiRs has vastly expanded the implications of changes in the state of tissue oxygenation. This emerging paradigm has major implications in untangling the complexities underlying diseases associated with ischemia and related hypoxic insult such as chronic wounds.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies, Comprehensive Wound Center and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
15
|
Crossin KL. Oxygen levels and the regulation of cell adhesion in the nervous system: a control point for morphogenesis in development, disease and evolution? Cell Adh Migr 2012; 6:49-58. [PMID: 22647940 DOI: 10.4161/cam.19582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this article, I discuss the hallmarks of hypoxia in vitro and in vivo and review work showing that many types of stem cell proliferate more robustly in lowered oxygen. I then discuss recent studies showing that alterations in the levels and the types of cell and substrate adhesion molecules are a notable response to reduced O(2) levels in both cultured primary neural stem cells and brain tissues in response to hypoxia in vivo. The ability of O(2) levels to regulate adhesion molecule expression is linked to the Wnt signaling pathway, which can control and be controlled by adhesion events. The ability of O(2) levels to influence cell adhesion also has far-reaching implications for development, ischemic trauma and neural regeneration, as well as for cancer and other diseases. Finally I discuss the possibility that the fluctuations in O(2) levels known to have occurred over evolutionary time could, by influencing adhesion systems, have contributed to early symbiotic events in unicellular organisms and to the emergence of multicellularity. It is not my intention to be exhaustive in these domains, which are far from my own field of study. Rather this article is meant to provoke and stimulate thinking about molecular evolution involving O(2) sensing and signaling during eras of geologic and atmospheric change that might inform modern studies on development and disease.
Collapse
Affiliation(s)
- Kathryn L Crossin
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Harada M, Pokrovskaja-Tamm K, Söderhäll S, Heyman M, Grander D, Corcoran M. Involvement of miR17 pathway in glucocorticoid-induced cell death in pediatric acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53:2041-50. [PMID: 22475310 DOI: 10.3109/10428194.2012.678004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Analysis of the microRNA transcriptome following dexa- methasone treatment of the acute lymphocytic leukemia (ALL) cell line RS4;11 showed a global down-regulation of microRNA levels. MIR17HG was rapidly down-regulated following treatment, with chromatin immunoprecipitation (ChIP) analysis demonstrating the promoter to be a direct target of glucocorticoid (GC)-transcriptional repression and revealing the miR17-92 cluster as a prime target for dexamethasone-induced repression. The loss of miR17 family expression and concomitant increases in the miR17 target Bim occurred in an additional ALL cell line SUP-B15 but not in the dexamethasone-resistant REH. Alteration of miR17 levels through up-regulation or inhibition resulted in an decrease and increase, respectively, in Bim protein levels and dexamethasone-induced cell death. Primary ex vivo ALL cells that underwent apoptosis induced by dexamethasone also down-regulated miR17 levels. Thus, down-regulation of miR17 plays an important role in glucocorticoid-induced cell death suggesting that targeting miR17 may improve the current ALL combination therapy.
Collapse
Affiliation(s)
- Masako Harada
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Fernández-Barral A, Orgaz JL, Gomez V, del Peso L, Calzada MJ, Jiménez B. Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism. PLoS One 2012; 7:e32989. [PMID: 22457728 PMCID: PMC3311626 DOI: 10.1371/journal.pone.0032989] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/07/2012] [Indexed: 11/26/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.
Collapse
Affiliation(s)
- Asunción Fernández-Barral
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - José Luis Orgaz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Valentí Gomez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Luis del Peso
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María José Calzada
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Servicio de Inmunologia, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa and Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Benilde Jiménez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Voellenkle C, van Rooij J, Guffanti A, Brini E, Fasanaro P, Isaia E, Croft L, David M, Capogrossi MC, Moles A, Felsani A, Martelli F. Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA (NEW YORK, N.Y.) 2012; 18:472-84. [PMID: 22282338 PMCID: PMC3285935 DOI: 10.1261/rna.027615.111] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 12/07/2011] [Indexed: 05/24/2023]
Abstract
In order to understand the role of microRNAs (miRNAs) in vascular physiopathology, we took advantage of deep-sequencing techniques to accurately and comprehensively profile the entire miRNA population expressed by endothelial cells exposed to hypoxia. SOLiD sequencing of small RNAs derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O₂ or normoxia for 24 h yielded more than 22 million reads per library. A customized bioinformatic pipeline identified more than 400 annotated microRNA/microRNA* species with a broad abundance range: miR-21 and miR-126 totaled almost 40% of all miRNAs. A complex repertoire of isomiRs was found, displaying also 5' variations, potentially affecting target recognition. High-stringency bioinformatic analysis identified microRNA candidates, whose predicted pre-miRNAs folded into a stable hairpin. Validation of a subset by qPCR identified 18 high-confidence novel miRNAs as detectable in independent HUVEC cultures and associated to the RISC complex. The expression of two novel miRNAs was significantly down-modulated by hypoxia, while miR-210 was significantly induced. Gene ontology analysis of their predicted targets revealed a significant association to hypoxia-inducible factor signaling, cardiovascular diseases, and cancer. Overexpression of the novel miRNAs in hypoxic endothelial cells affected cell growth and confirmed the biological relevance of their down-modulation. In conclusion, deep-sequencing accurately profiled known, variant, and novel microRNAs expressed by endothelial cells in normoxia and hypoxia.
Collapse
Affiliation(s)
- Christine Voellenkle
- Laboratorio di Cardiologia Molecolare, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Jeroen van Rooij
- Laboratorio di Cardiologia Molecolare, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | | | | | - Pasquale Fasanaro
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata-IRCCS, 00167 Rome, Italy
| | - Eleonora Isaia
- Laboratorio di Cardiologia Molecolare, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Larry Croft
- Institute for Molecular Bioscience, University of Queensland, 4072 Brisbane, Australia
| | - Matei David
- Computational Biology Laboratory, University of Toronto, M5S 3G4 Toronto, Canada
| | - Maurizio C. Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata-IRCCS, 00167 Rome, Italy
| | - Anna Moles
- Genomnia srl, Lainate, 20020 Milan, Italy
| | | | - Fabio Martelli
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata-IRCCS, 00167 Rome, Italy
| |
Collapse
|
19
|
Budhu A, Wang XW. MicroRNAs and Gastroenterological Cancers. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2011; 8:e95-e102. [PMID: 22582080 PMCID: PMC3349158 DOI: 10.1016/j.ddmec.2011.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MicroRNAs are small noncoding RNAs that control gene expression. In doing so, they functionally contribute to the maintenance of cellular processes as well as several important features related to cancer development and progression such as cell growth control, differentiation and apoptosis. In fact, recent studies have shown that microRNAs are suitable and effective cancer-related biomarkers since they display altered expression profiles in cancers versus normal tissue. In addition, microRNAs have been associated with cancer progression and outcome. In this review, the current state of knowledge microRNA expression and function in relation to gastroenterological cancers will be addressed. Moreover, the mechanisms to alter their expression and the potential application of microRNAs in clinical settings will also be highlighted. Finally, the challenges involved in translating microRNA research to the clinic will be discussed.
Collapse
Affiliation(s)
- Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Xin W Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| |
Collapse
|
20
|
Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory Effects of microRNA-92 (miR-92) on VHL Gene Expression and the Hypoxic Activation of miR-210 in Clear Cell Renal Cell Carcinoma. J Cancer 2011; 2:515-26. [PMID: 22043236 PMCID: PMC3204400 DOI: 10.7150/jca.2.515] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022] Open
Abstract
Background & Aims: In order to understand the role of miRNAs in renal tumorigenesis, we undertook a stepwise approach that included a comprehensive differential miRNA expression analysis for the most common histological subtypes of human renal neoplasms appearing in either sporadic or hereditary forms. We also aimed to test the hypothesis that microRNAs can act as an alternative mechanism of VHL gene inactivation and therefore might be correlated with tumorigenesis in ccRCC. Finally, we wanted to explore whether the well-known hypoxic activation of ccRCC is followed by a specific pattern of miRNA expression. Methods: Tumor and normal adjacent kidney parenchyma from patients with RCC were tested for microRNA expression. Twenty cases of different histologies were used for profiling by PCR miRNA arrays. For validation, a separate cohort of samples used to test specifically miR92a expression and its involvement in VHL gene mRNA silencing. Finally, miR210 as a marker of hypoxia was evaluated. Expression values were correlated with important clinicopathologic features from the patients. Results: We identified unique miRNA expression signatures for each histologic subtype of kidney tumors. Expression values for downregulated miRNAs ranged from 0.3-fold (in VHL-clear cell RCC) up to 0.393 fold (in papillary type II (HLRCC) tumors). For the upregulated miRNAs, fold-changes ranged from 2.1 up to 290-fold. Specific patterns together with type-specific profiles were observed. Twenty-three miRNAs were found to be differentially expressed in both sporadic and VHL-dependent ccRCC. Sporadic clear cell tumors showed a unique pattern of 14-miRNA that were absent from the VHL-dependent tumors. These also showed 15 miRNAs specific to the hereditary type. Common miRNAs to both sporadic and hereditary forms included miR-92a and miR-210. For miR-92a, and a striking inverse correlation with VHL mRNA levels was found. For the hypoxia-regulated miR-210, clear cell tumors showed significantly higher expression levels when compared to tumor of non-clear cell histology (9.90-fold vs. 1.36, p<0.001). Conclusions: microRNA expression seems to be involved in every step of RCC pathogenesis: both as an element for tumor development as well as a consequence of or in response to the initial malignant transformation and part of tumor progression. Our data show consistent disregulation of miRNAs in human kidney cancer, some of which are potentially involved in critical gene silencing in RCC and others that are activated as part of the pathophysiological response in these tumors.
Collapse
Affiliation(s)
- Vladimir A Valera
- 1. Translational Surgical Pathology Section, Laboratory of Pathology
| | | | | | | |
Collapse
|
21
|
Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N, Brognara E, Finotti A, Breveglieri G, Borgatti M, Corradini R, Marchelli R, Gambari R. Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 2011; 6:2192-202. [PMID: 22012891 DOI: 10.1002/cmdc.201100270] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/28/2011] [Indexed: 12/13/2022]
Abstract
Herein we describe the activity of a peptide nucleic acid (PNA) that targets microRNA-210 (miR-210), which is associated with hypoxia and is modulated during erythroid differentiation. PNAs directed against miR-210 were designed to bind with high affinity to the target RNA strand and to undergo efficient uptake in target cells. A polyarginine-PNA conjugate directed against miR-210 (Rpep-PNA-a210) showed both very high affinity for RNA and efficient uptake into target cells without the need for transfection reagents. An unmodified PNA of the same sequence displayed the ability to bind RNA, but cellular uptake was very poor. Consistent with this, only Rpep-PNA-a210 strongly inhibited miR-210 activity, as evaluated by assays on undifferentiated K562 cells and on cells treated with mithramycin, which was found to induce erythroid differentiation and miR-210 overexpression. Targeting miR-210 by Rpep-PNA-a210 resulted in: 1) a decrease in miR-210 levels as measured by RT-PCR, 2) up-regulation of raptor mRNA, 3) a decrease in γ-globin mRNA, and 4) decreased expression of differentiated functions (i.e., proportion of benzidine-positive cells, content of embryo-fetal hemoglobins). The efficient delivery of anti-miR PNAs through a suitable peptide carrier (Rpep-PNA-a210) leads to the inhibition of miR-210 activity, altering the expression of miR-210-regulated erythroid functions.
Collapse
Affiliation(s)
- Enrica Fabbri
- BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim HA, Rhim T, Lee M. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy. Adv Drug Deliv Rev 2011; 63:678-87. [PMID: 21241757 DOI: 10.1016/j.addr.2011.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/29/2010] [Accepted: 01/05/2011] [Indexed: 12/30/2022]
Abstract
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed.
Collapse
|
23
|
Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 2011; 300:F602-10. [PMID: 21228106 DOI: 10.1152/ajprenal.00727.2010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNA) are endogenously produced, short RNAs that repress and thus regulate the expression of almost half of known protein-coding genes. miRNA-mediated gene repression is an important regulatory mechanism to modulate fundamental cellular processes such as the cell cycle, growth, proliferation, phenotype, and death, which in turn have major influences on pathophysiological outcomes. In kidneys, miRNAs are indispensable for renal development and homeostasis. Emerging evidence has further pinpointed the pathogenic roles played by miRNAs in major renal diseases, including diabetic nephropathy, acute kidney injury, renal carcinoma, polycystic kidney disease, and others. Although the field of renal miRNA research is still in its infancy and important questions remain, future investigation on miRNA regulation in kidneys has the potential to revolutionize both the diagnosis and treatment of major renal diseases.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, USA
| | | | | |
Collapse
|
24
|
Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol 2010; 3:37. [PMID: 20925959 PMCID: PMC2958878 DOI: 10.1186/1756-8722-3-37] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/06/2010] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that function to control gene expression. These small RNAs have been shown to contribute to the control of cell growth, differentiation and apoptosis, important features related to cancer development and progression. In fact, recent studies have shown the utility of microRNAs as cancer-related biomarkers. This is due to the finding that microRNAs display altered expression profiles in cancers versus normal tissue. In addition, microRNAs have been associated with cancer progression. In this review, the mechanisms to alter microRNA expression and their relation to cancer will be addressed. Moreover, the potential application of microRNAs in clinical settings will also be highlighted. Finally, the challenges regarding the translation of research involving microRNAs to the clinical realm will be discussed.
Collapse
Affiliation(s)
- Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | |
Collapse
|