1
|
Gene expression and epigenetic markers of prion diseases. Cell Tissue Res 2022; 392:285-294. [PMID: 35307791 PMCID: PMC10113299 DOI: 10.1007/s00441-022-03603-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been proposed as biomarkers for diagnosis, classification, or monitoring of responsiveness to treatment in many diseases. In prion diseases, the profound associations with human aging, the effects of cell type and differentiation on in vitro susceptibility, and recently identified human risk factors, all implicate causal epigenetic mechanisms. Here, we review the current state of the art of epigenetics in prion diseases and its interaction with genetic determinants. In particular, we will review recent advances made by several groups in the field profiling DNA methylation and microRNA expression in mammalian prion diseases and the potential for these discoveries to be exploited as biomarkers.
Collapse
|
2
|
Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney JA, Kopp RF, Liu C, Chen C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci 2021; 15:674273. [PMID: 34054421 PMCID: PMC8155631 DOI: 10.3389/fnins.2021.674273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - Richard F. Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
4
|
Eissa MAL, Lerner L, Abdelfatah E, Shankar N, Canner JK, Hasan NM, Yaghoobi V, Huang B, Kerner Z, Takaesu F, Wolfgang C, Kwak R, Ruiz M, Tam M, Pisanic TR, Iacobuzio-Donahue CA, Hruban RH, He J, Wang TH, Wood LD, Sharma A, Ahuja N. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin Epigenetics 2019; 11:59. [PMID: 30953539 PMCID: PMC6451253 DOI: 10.1186/s13148-019-0650-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite improvements in cancer management, most pancreatic cancers are still diagnosed at an advanced stage. We have recently identified promoter DNA methylation of the genes ADAMTS1 and BNC1 as potential blood biomarkers of pancreas cancer. In this study, we validate this biomarker panel in peripheral cell-free tumor DNA of patients with pancreatic cancer. RESULTS Sensitivity and specificity for each gene are as follows: ADAMTS1 87.2% and 95.8% (AUC = 0.91; 95% CI 0.71-0.86) and BNC1 64.1% and 93.7% (AUC = 0.79; 95% CI 0.63-0.78). When using methylation of either gene as a combination panel, sensitivity increases to 97.3% and specificity to 91.6% (AUC = 0.95; 95% CI 0.77-0.90). Adding pre-operative CA 19-9 values to the combined two-gene methylation panel did not improve sensitivity. Methylation of ADAMTS1 was found to be positive in 87.5% (7/8) of stage I, 77.8% (7/9) of stage IIA, and 90% (18/20) of stage IIB disease. Similarly, BNC1 was positive in 62.5% (5/8) of stage I patients, 55.6% (5/9) of stage IIA, and 65% (13/20) of patients with stage IIB disease. The two-gene panel (ADAMTS1 and/or BNC1) was positive in 100% (8/8) of stage I, 88.9% (8/9) of stage IIA, and 100% (20/20) of stage IIB disease. The sensitivity and specificity of the two-gene panel for localized pancreatic cancer (stages I and II), where the cancer is eligible for surgical resection with curative potential, was 94.8% and 91.6% respectively. Additionally, the two-gene panel exhibited an AUC of 0.95 (95% CI 0.90-0.98) compared to 57.1% for CA 19-9 alone. CONCLUSION The methylation status of ADAMTS1 and BNC1 in cfDNA shows promise for detecting pancreatic cancer during the early stages when curative resection of the tumor is still possible. This minimally invasive blood-based biomarker panel could be used as a promising tool for diagnosis and screening in a select subset of high-risk populations.
Collapse
Affiliation(s)
- Maryam A L Eissa
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lane Lerner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eihab Abdelfatah
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nakul Shankar
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph K Canner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nesrin M Hasan
- Department of Surgery, Yale-New Haven Health, Yale University, School of Medicine, P.O. Box 208062, New Haven, CT, 06520-8062, USA
| | - Vesal Yaghoobi
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barry Huang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Kerner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felipe Takaesu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Wolfgang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruby Kwak
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Ruiz
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Tam
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas R Pisanic
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Research Center, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tza-Huei Wang
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Research Center, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Anup Sharma
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Yale-New Haven Health, Yale University, School of Medicine, P.O. Box 208062, New Haven, CT, 06520-8062, USA
| | - Nita Ahuja
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,The Sol Goldman Pancreatic Cancer Research Center, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Yale-New Haven Health, Yale University, School of Medicine, P.O. Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
5
|
Goud Alladi C, Etain B, Bellivier F, Marie-Claire C. DNA Methylation as a Biomarker of Treatment Response Variability in Serious Mental Illnesses: A Systematic Review Focused on Bipolar Disorder, Schizophrenia, and Major Depressive Disorder. Int J Mol Sci 2018; 19:E3026. [PMID: 30287754 PMCID: PMC6213157 DOI: 10.3390/ijms19103026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
So far, genetic studies of treatment response in schizophrenia, bipolar disorder, and major depression have returned results with limited clinical utility. A gene × environment interplay has been proposed as a factor influencing not only pathophysiology but also the treatment response. Therefore, epigenetics has emerged as a major field of research to study the treatment of these three disorders. Among the epigenetic marks that can modify gene expression, DNA methylation is the best studied. We performed a systematic search (PubMed) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines for preclinical and clinical studies focused on genome-wide and gene-specific DNA methylation in the context of schizophrenia, bipolar disorders, and major depressive disorder. Out of the 112 studies initially identified, we selected 31 studies among them, with an emphasis on responses to the gold standard treatments in each disorder. Modulations of DNA methylation levels at specific CpG sites have been documented for all classes of treatments (antipsychotics, mood stabilizers, and antidepressants). The heterogeneity of the models and methodologies used complicate the interpretation of results. Although few studies in each disorder have assessed the potential of DNA methylation as biomarkers of treatment response, data support this hypothesis for antipsychotics, mood stabilizers and antidepressants.
Collapse
Affiliation(s)
- Charanraj Goud Alladi
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India.
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| | - Bruno Etain
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris CEDEX 10, France.
- Fondation Fondamental, 94000 Créteil, France.
| | - Frank Bellivier
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris CEDEX 10, France.
- Fondation Fondamental, 94000 Créteil, France.
| | - Cynthia Marie-Claire
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
6
|
Wang ZL, Gao S, Li XY, Sun FK, Li F, Fan YC, Wang K. Demethylation of tumor necrosis factor-α converting enzyme promoter associated with high hepatitis B e antigen level in chronic hepatitis B. World J Gastroenterol 2015; 21:8382-8388. [PMID: 26217090 PMCID: PMC4507108 DOI: 10.3748/wjg.v21.i27.8382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/19/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate tumor necrosis factor-α converting enzyme (TACE) methylation status in patients with chronic hepatitis B (CHB).
METHODS: Eighty patients with hepatitis B e antigen (HBeAg)-positive CHB, 80 with HBeAg-negative CHB, and 40 healthy controls (HCs) were randomly enrolled in this study. Genomic DNA was extracted from peripheral blood mononuclear cells and methylation status of TACE promoter was determined by methylation-specific polymerase chain reaction. The clinical and laboratory parameters were collected.
RESULTS: One hundred and thirty of 160 patients with CHB (81.25%) and 38 of 40 HCs (95%) displayed TACE promoter methylation. The difference was significant (χ2 = 4.501, P < 0.05). TACE promoter methylation frequency in HBeAg-positive CHB (58/80, 72.5%) was significantly lower than that in HBeAg-negative CHB (72/80, 90%; χ2 = 8.041, P < 0.01) and HCs (χ2 = 8.438, P < 0.01). However, no significant difference was observed in the methylation frequency between HBeAg-negative CHB and HCs (χ2 = 0.873, P > 0.05). In the HBeAg-positive group, TACE methylation frequency was significantly negatively correlated with HBeAg (r = -0.602, P < 0.01), alanine aminotransferase (r = -0.461, P < 0.01) and aspartate aminotransferase (r = -0.329, P < 0.01).
CONCLUSION: Patients with HBeAg-positive CHB have aberrant demethylation of the TACE promoter, which may potentially serve as a biomarker for HBeAg seroconversion.
Collapse
|
7
|
Batra JS, Girdhani S, Hlatky L. A Quest to Identify Prostate Cancer Circulating Biomarkers with a Bench-to-Bedside Potential. J Biomark 2014; 2014:321680. [PMID: 26317031 PMCID: PMC4437363 DOI: 10.1155/2014/321680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCA) is a major health concern in current times. Ever since prostate specific antigen (PSA) was introduced in clinical practice almost three decades ago, the diagnosis and management of PCA have been revolutionized. With time, concerns arose as to the inherent shortcomings of this biomarker and alternatives were actively sought. Over the past decade new PCA biomarkers have been identified in tissue, blood, urine, and other body fluids that offer improved specificity and supplement our knowledge of disease progression. This review focuses on superiority of circulating biomarkers over tissue biomarkers due to the advantages of being more readily accessible, minimally invasive (blood) or noninvasive (urine), accessible for sampling on regular intervals, and easily utilized for follow-up after surgery or other treatment modalities. Some of the circulating biomarkers like PCA3, IL-6, and TMPRSS2-ERG are now detectable by commercially available kits while others like microRNAs (miR-21, -221, -141) and exosomes hold potential to become available as multiplexed assays. In this paper, we will review some of these potential candidate circulating biomarkers that either individually or in combination, once validated with large-scale trials, may eventually get utilized clinically for improved diagnosis, risk stratification, and treatment.
Collapse
Affiliation(s)
- Jaspreet Singh Batra
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| | - Swati Girdhani
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| | - Lynn Hlatky
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University, School of Medicine, 736 Cambridge Street, SEMC-CBR112, Boston, MA 02135, USA
| |
Collapse
|
8
|
Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF, Dou CY, Wang K. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B Virus associated hepatocellular carcinoma. Int J Med Sci 2014; 11:164-71. [PMID: 24465162 PMCID: PMC3894401 DOI: 10.7150/ijms.6745] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a newly identified liver tumor suppressor in carcinogenesis. This present study was therefore to determine the potential value of serum TGR5 promoter methylation in identifying hepatocellular carcinoma (HCC) from chronic hepatitis B (CHB) patients. METHODS The circulating cell-free DNA (cfDNA) was extracted from a retrospective dataset including 160 HCC, 88 CHB and 45 healthy controls (HCs). Methylation status of TGR5 promoter was examined by methylation-specific polymerase chain reaction (MSP). RESULTS Hypermethylation of the TGR5 promoter occurred significantly more frequent in HCC (77/160, 48.13%) than CHB (12/88, 13.64%; p<0.01) and HCs (2/45, 4.44%; p<0.01). The methylation rate of TGR5 in HCC patients ≥60 years old was significantly higher than those <60 years old (p<0.05). Alpha fetoprotein (AFP) had sensitivity of 58.13%, 30.63% and 24.38% at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had sensitivity of 81.25%, 68.13% and 65%. AFP had specificity of 47.73%, 92.05% and 98.86% at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had specificity of 38.64%, 78.41% and 85.23%. AFP had Youden index of 0.06, 0.23 and 0.23 at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had Youden index of 0.20, 0.47 and 0.50. CONCLUSIONS Our findings strongly suggested the combination of serum TGR5 promoter methylation and AFP enhanced the diagnostic value of AFP alone in discriminating HCC from CHB patients.
Collapse
Affiliation(s)
- Li-Yan Han
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China ; 2. Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China ; 2. Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Nan-Nan Mu
- 3. Department of Ultrasound, the General Hospital Jinan Military Region, Jinan 250031, China
| | - Shuai Gao
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Feng Li
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiang-Fen Ji
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cheng-Yun Dou
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kai Wang
- 1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China ; 2. Institute of Hepatology, Shandong University, Jinan 250012, China
| |
Collapse
|
9
|
Combined treatment with low concentrations of decitabine and SAHA causes cell death in leukemic cell lines but not in normal peripheral blood lymphocytes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:659254. [PMID: 24000324 PMCID: PMC3755446 DOI: 10.1155/2013/659254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/28/2013] [Accepted: 07/13/2013] [Indexed: 12/15/2022]
Abstract
Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat) on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.
Collapse
|