1
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
de la Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the Relevance of DNA Methylation Changes in Immune Differentiation and Disease. Genes (Basel) 2020; 11:E110. [PMID: 31963661 PMCID: PMC7017047 DOI: 10.3390/genes11010110] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Immune cells are one of the most complex and diverse systems in the human organism. Such diversity implies an intricate network of different cell types and interactions that are dependently interconnected. The processes by which different cell types differentiate from progenitors, mature, and finally exert their function requires an orchestrated succession of molecular processes that determine cell phenotype and function. The acquisition of these phenotypes is highly dependent on the establishment of unique epigenetic profiles that confer identity and function on the various types of effector cells. These epigenetic mechanisms integrate microenvironmental cues into the genome to establish specific transcriptional programs. Epigenetic modifications bridge environment and genome regulation and play a role in human diseases by their ability to modulate physiological programs through external stimuli. DNA methylation is one of the most ubiquitous, stable, and widely studied epigenetic modifications. Recent technological advances have facilitated the generation of a vast amount of genome-wide DNA methylation data, providing profound insights into the roles of DNA methylation in health and disease. This review considers the relevance of DNA methylation to immune system cellular development and function, as well as the participation of DNA methylation defects in immune-mediated pathologies, illustrated by selected paradigmatic diseases.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; (C.d.l.C.-F.); (O.M.-P.)
| |
Collapse
|
3
|
Gao R, Fang Q, Zhang X, Xu Q, Ye H, Guo W, He J, Chen Y, Wang R, Wu Z, Yu J. R5 HIV-1 gp120 Activates p38 MAPK to Induce Rat Cardiomyocyte Injury by the CCR5 Coreceptor. Pathobiology 2019; 86:274-284. [PMID: 31574524 DOI: 10.1159/000502238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Effective antiretroviral therapy extends the survival of patients with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome, but these patients remain at higher risk for heart diseases compared with the general population. Previous studies have suggested that HIV-1 glycoprotein 120 (gp120) may be associated with heart disease. However, the underlying mechanisms by which HIV-1 gp120-mediated myocardial injury occurs remain unknown. OBJECTIVE The current study aimed to uncover the mechanism of C-C chemokine receptor 5 (CCR5) coreceptor (R5) HIV-1 gp120-induced myocardial injury. METHODS Morphology analysis, determination of the percentage of cell apoptosis, as well as lactate dehydrogenase (LDH) and creatine kinase (CK) assays were used to analyze whether R5 HIV-1 gp120 induced myocardial cell injury. We analyzed the phosphorylation of p38 mitogen-activated protein kinase (MAPK) with the CCR5 antagonist D-Ala-peptide T-amide (DAPTA) and NMDA receptor antagonist MK801, detected LDH and CK assays with p38 MAPK antagonist SB203580 (SB), and detected the percentage of cell apoptosis and death with DAPTA to investigate the mechanism of R5 HIV-1 gp120-induced myocardial cell injury. RESULTS R5 HIV-1 gp120 damaged myocardial cells and induced p38 MAPK phosphorylation. SB blocked R5 HIV-1 gp120-induced myocardial cell injury. DAPTA blocked R5 HIV-1 gp120-mediated p38 MAPK phosphorylation, while MK801 did not. DAPTA inhibited R5 HIV-1 gp120-induced myocardial cell injury. CONCLUSION Our data indicate that R5 HIV-1 gp120 activated p38 MAPK to trigger myocardial cell injury by the CCR5 coreceptor.
Collapse
Affiliation(s)
- Rui Gao
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qiujuan Fang
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China,
| | - Xi Zhang
- Department of Nursing, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qin Xu
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hanhui Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wenyan Guo
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiao He
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yahong Chen
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ruixing Wang
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhijuan Wu
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jing Yu
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Carpenter AC, Wohlfert E, Chopp LB, Vacchio MS, Nie J, Zhao Y, Shetty J, Xiao Q, Deng C, Tran B, Cam M, Gaida MM, Belkaid Y, Bosselut R. Control of Regulatory T Cell Differentiation by the Transcription Factors Thpok and LRF. THE JOURNAL OF IMMUNOLOGY 2017; 199:1716-1728. [PMID: 28754678 DOI: 10.4049/jimmunol.1700181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023]
Abstract
The CD4+ lineage-specific transcription factor Thpok is required for intrathymic CD4+ T cell differentiation and, together with its homolog LRF, supports CD4+ T cell helper effector responses. However, it is not known whether these factors are needed for the regulatory T cell (Treg) arm of MHC class II responses. In this study, by inactivating in mice the genes encoding both factors in differentiated Tregs, we show that Thpok and LRF are redundantly required to maintain the size and functions of the postthymic Treg pool. They support IL-2-mediated gene expression and the functions of the Treg-specific factor Foxp3. Accordingly, Treg-specific disruption of Thpok and Lrf causes a lethal inflammatory syndrome similar to that resulting from Treg deficiency. Unlike in conventional T cells, Thpok and LRF functions in Tregs are not mediated by their repression of the transcription factor Runx3. Additionally, we found that Thpok is needed for the differentiation of thymic Treg precursors, an observation in line with the fact that Foxp3+ Tregs are CD4+ cells. Thus, a common Thpok-LRF node supports both helper and regulatory arms of MHC class II responses.
Collapse
Affiliation(s)
- Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elizabeth Wohlfert
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yongmei Zhao
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Jyoti Shetty
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Callie Deng
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Bao Tran
- Center for Cancer Research Sequencing Facility, Advanced Technology Research Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Margaret Cam
- Center for Cancer Research Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Matthias M Gaida
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yasmine Belkaid
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
5
|
Sellars M, Huh JR, Day K, Issuree PD, Galan C, Gobeil S, Absher D, Green MR, Littman DR. Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nat Immunol 2015; 16:746-54. [PMID: 26030024 PMCID: PMC4474743 DOI: 10.1038/ni.3198] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
During development, progenitor cells with binary potential give rise to daughter cells that have distinct functions. Heritable epigenetic mechanisms then lock in gene expression programs that define lineage identity. Cd4 regulation in helper and cytotoxic T cells exemplifies this process, with enhancer- and silencer-regulated establishment of epigenetic memories for stable gene expression and repression, respectively. Using a genetic screen, we identified the DNA methylation machinery as essential for maintaining Cd4 silencing in the cytotoxic lineage. Further, we found a requirement for the proximal enhancer in mediating removal of Cd4 DNA methylation marks, allowing for stable expression in T helper cells. These findings suggest that stage-specific methylation and demethylation events in Cd4 regulate its heritable expression in response to the distinct signals that dictate lineage choice during T cell development.
Collapse
Affiliation(s)
- MacLean Sellars
- 1] The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York, USA. [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York, USA
| | - Jun R Huh
- 1] The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York, USA. [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York, USA. [3] Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kenneth Day
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Priya D Issuree
- 1] The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York, USA. [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York, USA
| | - Carolina Galan
- 1] The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York, USA. [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York, USA
| | - Stephane Gobeil
- 1] Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Michael R Green
- 1] Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dan R Littman
- 1] The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York, USA. [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Steinke FC, Xue HH. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res 2015; 59:45-55. [PMID: 24847765 DOI: 10.1007/s12026-014-8545-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors have recurring roles during T cell development and activation. Tcf1 and Lef1 are known to be essential for early stages of thymocyte maturation. Recent research has revealed several novel aspects of their functionality. Tcf1 is induced at the very earliest step of specifying hematopoietic progenitors to the T cell lineage as a key target gene downstream of Notch activation. In addition to promoting maturation of T-lineage-committed thymocytes, Tcf1 functions as a tumor suppressor in developing thymocytes, and this is mediated, paradoxically, by restraining Lef1 expression. After positive selection, Tcf1 and Lef1 act together to direct CD4(+)CD8(+) double positive thymocytes to a CD4(+) T cell fate. Although not required for CD8(+) T cell differentiation, Tcf1 and Lef1 cooperate with Runx factors to achieve stable silencing of the Cd4 gene in CD8(+) T cells. Tcf1 is also found to have versatile roles in innate immune cells, which partly mirror its functions in mature T helper cells. Discrepancy in requirements of Tcf1/Lef1 and β-catenin in T cells has been a long-standing enigma. We will review other protein factors interacting with Tcf1 and Lef1 and discuss their regulatory roles independent of β-catenin.
Collapse
Affiliation(s)
- Farrah C Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
7
|
Cleveland SM, Goodings C, Tripathi RM, Elliott N, Thompson MA, Guo Y, Shyr Y, Davé UP. LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Exp Hematol 2014; 42:581-93.e5. [PMID: 24792354 PMCID: PMC4241760 DOI: 10.1016/j.exphem.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
In this study, we present a remarkable clonal cell line, 32080, derived from a CD2-Lmo2- transgenic T-cell leukemia with differentiation arrest at the transition from the intermediate single positive to double positive stages of T-cell development. We observed that 32080 cells had a striking variegated pattern in CD4 expression. There was cell-to-cell variability, with some cells expressing no CD4 and others expressing high CD4. The two populations were isogenic and yet differed in their rates of apoptosis and sensitivity to glucocorticoid. We sorted the 32080 line for CD4-positive or CD4-negative cells and observed them in culture. After 1 week, both sorted populations showed variegated CD4 expression, like the parental line, showing that the two populations could interconvert. We determined that cell replication was necessary to transit from CD4(+) to CD4(-) and CD4(-) to CD4(+). Lmo2 knockdown decreased CD4 expression, while inhibition of intracellular NOTCH1 or histone deacetylase activity induced CD4 expression. Enforced expression of RUNX1 repressed CD4 expression. We analyzed the CD4 locus by Histone 3 chromatin immunoprecipitation and found silencing marks in the CD4(-) cells and activating marks in the CD4(+) population. The 32080 cell line is a striking model of intermediate single positive to double positive T-cell plasticity and invokes a novel mechanism for LMO2's oncogenic functions.
Collapse
Affiliation(s)
- Susan M Cleveland
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Charnise Goodings
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Rati M Tripathi
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Natalina Elliott
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Mary Ann Thompson
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee, USA
| | - Yan Guo
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Utpal P Davé
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Smale ST. Transcriptional regulation in the immune system: a status report. Trends Immunol 2014; 35:190-4. [PMID: 24703179 PMCID: PMC4041609 DOI: 10.1016/j.it.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 01/28/2023]
Abstract
Regulated changes in transcription play a central role in virtually all events that accompany the development of the immune system and its response to microbial and environmental cues. Over the past 30 years, a large number of proteins that regulate transcription in the immune system have been discovered and much has been learned about their mechanisms of action. However, the field remains in its infancy, with technical challenges and the complexity of gene regulation circuitry limiting our current knowledge and providing formidable barriers to further advancement. Despite these barriers, the development of new and increasingly sophisticated technologies is speeding progress towards an understanding of the gene-specific and global logic through which transcription is regulated in key immunological settings.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Epigenetic plasticity of Cd8a locus during CD8(+) T-cell development and effector differentiation and reprogramming. Nat Commun 2014; 5:3547. [PMID: 24675400 PMCID: PMC3974221 DOI: 10.1038/ncomms4547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 03/04/2014] [Indexed: 11/29/2022] Open
Abstract
Modulation of CD8 coreceptor levels can profoundly affect T-cell sensitivity to antigen. Here we show that the heritable downregulation of CD8 during type 2 polarization of murine CD8+ effector T cells in vitro and in vivo is associated with CpG methylation of several regions of the Cd8a locus. These epigenetic modifications are maintained long-term in vivo following adoptive transfer. Even after extended type 2 polarization, however, some CD8low effector cells respond to interferon-γ by re-expressing CD8 and a type 1 cytokine profile in association with partial Cd8a demethylation. Cd8a methylation signatures in naive, polarized and repolarized cells are distinct from those observed during the initiation, maintenance and silencing of CD8 expression by developing T cells in the thymus. This persistent capacity for epigenetic reprogramming of coreceptor levels on effector CD8+ T cells enables the heritable tuning of antigen sensitivity in parallel with changes in type 1/type 2 cytokine balance. CD8 expression levels on peripheral CD8+ T cells are regulated during development and effector differentiation. Here, the authors show that methylation patterns at the Cd8a locus, whose product is essential for surface CD8 expression, can change during T-cell development, activation, cytokine polarization and reprogramming.
Collapse
|