1
|
Cao H, Xiong W, Zeng M, Hu L, Xu Y, Zhong W, Hu Y. Identification of potential characteristic genes in chronic skin infections through RNA sequencing and immunohistochemical analysis. Exp Ther Med 2024; 28:432. [PMID: 39347497 PMCID: PMC11425772 DOI: 10.3892/etm.2024.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
The objective of the present study was to perform RNA sequencing and immunohistochemical analysis on skin specimens obtained from healthy individuals and individuals afflicted with prolonged skin infections. Bioinformatics methodologies were used to scrutinize the RNA sequencing data with the intention of pinpointing distinctive gene signatures associated with chronic skin infections. Skin tissue samples were collected from 11 individuals (4 subjects healthy and 7 patients with chronic skin infections) at the Affiliated Hospital of Southwest Medical University (Luzhou, China). The iDEP tool identified differentially expressed genes (DEGs) with log2 (fold change) ≥2 and q-value ≤0.01. Functional enrichment analysis using Gene Ontology and KEGG databases via the oebiotech online tool was then performed to determine the biological functions and pathways related to these DEGs. A protein-protein interaction network of DEGs identified HIF1A as a potential key gene. Subsequent immunohistochemistry analyses were performed on the samples to assess any variations in HIF1A expression. A total of 900 DEGs, 365 upregulated and 535 downregulated, were observed between the normal and chronic infection groups. The identified DEGs were found to serve a role in various biological processes, including 'hypoxia adaptation', 'angiogenesis', 'cell adhesion' and 'regulation of positive cell migration'. Additionally, these genes were revealed to be involved in the 'TGF-β', 'PI3K-Akt' and 'IL-17' signaling pathways. HIF1A and nine other genes were identified as central nodes in the PPI network. HIF1A expression was higher in chronically infected skin samples than in healthy samples, indicating its potential as a novel research target.
Collapse
Affiliation(s)
- Hongying Cao
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiong
- Department of Emergency Medicine, Leshan People's Hospital, Leshan, Sichuan 614000, P.R. China
| | - Mei Zeng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yan Xu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wu Zhong
- Department of Emergency Medicine, Sichuan Provincial Rehabilitation Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Lu C, Li X, Fang C, Li C, Xu Y, Guo Y. Pretreatment of artesunate promoted hepatocyte proliferation by activating the PI3K/Akt/mTOR signaling pathway in mice. Acta Cir Bras 2024; 39:e394324. [PMID: 39476067 PMCID: PMC11506702 DOI: 10.1590/acb394324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Artesunate (ART) has been implicated in regulating the many processes of liver injury, but its roles in liver regeneration still need to be illustrated. METHODS In the present study, ART was used to pretreat hepatocyte cell line NCTC1469 to study the effect of ART on hepatocyte proliferation in vitro. Furthermore, the potency of ART as a regimen to promote liver regeneration and restore liver function was evaluated following partial hepatectomy (PH) on C57BL/6 mice. RESULTS ART concentration-dependently promoted hepatocyte proliferation and reduced apoptosis. Cell cycle and Ki-67 immunohistochemical analyses demonstrated that ART supplementation promoted the proliferation of hepatocytes and accelerated liver regeneration. Our results provided evidence that ART improved liver function in a dose-dependent manner, as indicated by decreased serum alanine aminotransferase, aspartate aminotransferase, and increased albumin, and hepatocyte growth factor levels in PH mice. Meanwhile, ART promoted the PI3K/Akt/mTOR signaling in NCTC1469 cells and liver tissue of PH mice. In addition, PI3K inhibitor LY294002 blocked the promotion effect of ART on hepatocyte proliferation and cell cycle progression. CONCLUSION ART promoted hepatocyte proliferation via activation of the PI3K/Akt/mTOR pathway, which was beneficial to liver regeneration of PH-induced liver injury.
Collapse
Affiliation(s)
- Changyou Lu
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Xinkai Li
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Chao Fang
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Chuntao Li
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Yunke Xu
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Yong Guo
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| |
Collapse
|
3
|
Xu L, Li J, Ma J, Hasim A. Combined spatially resolved metabolomics and spatial transcriptomics reveal the mechanism of RACK1-mediated fatty acid synthesis. Mol Oncol 2024. [PMID: 39425259 DOI: 10.1002/1878-0261.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/01/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Lipid metabolism is altered in rapidly proliferating cancer cells, where fatty acids (FAs) are utilized in the synthesis of sphingolipids and glycerophospholipids to produce cell membranes and signaling molecules. Receptor for activated C-kinase 1 (RACK1; also known as small ribosomal subunit protein) is an intracellular scaffolding protein involved in signaling pathways. Whether such lipid metabolism is regulated by RACK1 is unknown. Here, integrated spatially resolved metabolomics and spatial transcriptomics revealed that accumulation of lipids in cervical cancer (CC) samples correlated with overexpression of RACK1, and RACK1 promoted lipid synthesis in CC cells. Chromatin immunoprecipitation verified binding of sterol regulatory element-binding protein 1 (SREBP1) to acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) promoters. RACK1 enhanced de novo FA synthesis by upregulating expression of sterol regulatory element binding transcription factor 1 (SREBP1) and lipogenic genes FASN and ACC1. Co-immunoprecipitation and western blotting revealed that RACK1 interacted with protein kinase B (AKT) to activate the AKT/mammalian target of rapamycin (mTOR)/SREBP1 signaling pathway to promote FA synthesis. Cell proliferation and apoptosis experiments suggested that RACK1-regulated FA synthesis is key in the progression of CC. Thus, RACK1 enhanced lipid synthesis through the AKT/mTOR/SREBP1 signaling pathway to promote the growth of CC cells. RACK1 may become a therapeutic target for CC.
Collapse
Affiliation(s)
- Lixiu Xu
- Department of Basic Medicine, Xinjiang Medical University and Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
- Department of Pathology, QiLu Hospital of Shandong University (Qingdao), China
| | - Jinqiu Li
- Department of Basic Medicine, Xinjiang Medical University and Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| | - Junqi Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ayshamgul Hasim
- Department of Basic Medicine, Xinjiang Medical University and Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, China
| |
Collapse
|
4
|
Shen J, Su X, Wang Q, Ke Y, Zheng T, Mao Y, Wang Z, Dong J, Duan S. Current and future perspectives on the regulation and functions of miR-545 in cancer development. CANCER PATHOGENESIS AND THERAPY 2024; 2:142-154. [PMID: 39027151 PMCID: PMC11252520 DOI: 10.1016/j.cpt.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 07/20/2024]
Abstract
Micro ribonucleic acids (miRNAs) are a highly conserved class of single-stranded non-coding RNAs. Within the miR-545/374a cluster, miR-545 resides in the intron of the long non-coding RNA (lncRNA) FTX on Xq13.2. The precursor form, pre-miR-545, is cleaved to generate two mature miRNAs, miR-545-3p and miR-545-5p. Remarkably, these two miRNAs exhibit distinct aberrant expression patterns in different cancers; however, their expression in colorectal cancer remains controversial. Notably, miR-545-3p is affected by 15 circular RNAs (circRNAs) and 10 long non-coding RNAs (lncRNAs), and it targets 27 protein-coding genes (PCGs) that participate in the regulation of four signaling pathways. In contrast, miR-545-5p is regulated by one circRNA and five lncRNAs, it targets six PCGs and contributes to the regulation of one signaling pathway. Both miR-545-3p and miR-545-5p affect crucial cellular behaviors, including cell cycle, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and migration. Although low miR-545-3p expression is associated with poor prognosis in three cancer types, studies on miR-545-5p are yet to be reported. miR-545-3p operates within a diverse range of regulatory networks, thereby augmenting the efficacy of cancer chemotherapy, radiotherapy, and immunotherapy. Conversely, miR-545-5p enhances immunotherapy efficacy by inhibiting T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. In summary, miR-545 holds immense potential as a cancer biomarker and therapeutic target. The aberrant expression and regulatory mechanisms of miR-545 in cancer warrant further investigation.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Tianyu Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
5
|
Liu R, Zhang B, Zou S, Cui L, Lin L, Li L. Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway. J Microbiol Biotechnol 2024; 34:774-782. [PMID: 38668684 DOI: 10.4014/jmb.2310.10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 04/30/2024]
Abstract
This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Ruiqi Liu
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| | - Bin Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, 211200 Nanjing, Jiangsu Province, P.R. China
| | - Shuting Zou
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| | - Li Cui
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| | - Lin Lin
- Gastroenterology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 518000 Shenzhen, Guangdong Province, P.R. China
| | - Lingchang Li
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
6
|
Yao N, Ma Q, Yi W, Zhu Y, Liu Y, Gao X, Zhang Q, Luo W. Artesunate attenuates the tumorigenesis of choroidal melanoma via inhibiting EFNA3 through Stat3/Akt signaling pathway. J Cancer Res Clin Oncol 2024; 150:202. [PMID: 38630320 PMCID: PMC11024049 DOI: 10.1007/s00432-024-05711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Choroidal melanoma (CM), a kind of malignant tumor, is the main type of Uveal melanoma and one half of CM patients develop metastases. As a member of Eph/ephrin pathway that plays vital role in tumors, EphrinA3 (EFNA3) has been proved to promote tumorigenesis in many tumors. But the effect of EFNA3 in CM has not been studied yet. Through inhibiting angiogenesis, inducing apoptosis and autophagy and so on, Artesunate (ART) plays a key anti-tumor role in many tumors, including CM. However, the exact mechanisms of anti-tumor in CM remain unclear. METHODS The UALCAN and TIMER v2.0 database analyzed the role of EFNA3 in CM patients. Quantitative real time polymerase chain reaction (qPCR) and Western blot were used to detect the expression of EFNA3 in CM. The growth ability of CM was tested by clonogenic assay and Cell counting kit-8 assay, and the migration ability using Transwell assay. RESULTS Our results found EFNA3 boosted CM cells' growth and migration through activating Stat3/Akt signaling pathway, while ART inhibited the tumor promoting effect of CM via downregulating EFNA3. In xenograft tumor model, EFNA3 knockdown and ART significantly inhibited tumor growth. CONCLUSION EFNA3 could be a valuable prognostic factor in CM.
Collapse
Affiliation(s)
- Ningning Yao
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qingyue Ma
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wendan Yi
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanzhang Zhu
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yichong Liu
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaodi Gao
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Zhang
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wenjuan Luo
- Department of Ophthalmology of The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
7
|
Lu HT, Jiao YY, Yu TY, Shi JX, Tian JW, Zou GM, Liu L, Zhuo L. Unraveling DDIT4 in the VDR-mTOR pathway: a novel target for drug discovery in diabetic kidney disease. Front Pharmacol 2024; 15:1344113. [PMID: 38567351 PMCID: PMC10985261 DOI: 10.3389/fphar.2024.1344113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Diabetic kidney disease (DKD) necessitates innovative therapeutic strategies. This study delves into the role of DNA damage-inducing transcription factor 4 (DDIT4) within the VDR-mTOR pathway, aiming to identify a novel target for DKD drug discovery. Methods Transcriptome data from the Gene Expression Omnibus Database were analyzed to assess the expression of mTOR and VDR expression in human renal tissues. Clinical samples from DKD patients and minimal change disease (MCD) controls were examined, and a DKD animal model using 20-week-old db/db mice was established. DDIT4 plasmid transfection was employed to modulate the VDR-mTOR pathway, with its components evaluated using immunohistochemistry, real-time quantitative PCR (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results Changes in the expression of the VDR-mTOR pathway were observed in both DKD patients and the animal model. Overexpression of DDIT4 increased VDR expression and decreased levels of mTOR, p70s6k, and 4E-BP1. Furthermore, DDIT4 treatment regulated autophagy by upregulating LC3I expression and downregulating LC3II expression. Notably, DDIT4 alleviated oxidative stress by reducing the levels of lipid peroxidation product MDA, while simultaneously increasing the levels of superoxide dismutase (SOD) and glutathione (GSH), underscoring the role of DDIT4 in the pathological process of DKD and its potential as a therapeutic target. Conclusion Unraveling DDIT4's involvement in the VDR-mTOR pathway provides insights for innovative DKD drug discovery, emphasizing its potential as a therapeutic target for future interventions.
Collapse
Affiliation(s)
- Hai-tao Lu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan-yuan Jiao
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Tian-yu Yu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Jing-xuan Shi
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing-wei Tian
- Department of Nephrology, Beijing Sixth Hospital, Beijing, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Gu-ming Zou
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Lin Liu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
10
|
Miller MJ, Akter D, Mahmud J, Chan GC. Human cytomegalovirus modulates mTORC1 to redirect mRNA translation within quiescently infected monocytes. J Virol 2024; 98:e0188823. [PMID: 38289104 PMCID: PMC10878035 DOI: 10.1128/jvi.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Abstract
Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.
Collapse
Affiliation(s)
- Michael J. Miller
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dilruba Akter
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamil Mahmud
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
11
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE, Nica RI. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int J Mol Sci 2024; 25:1848. [PMID: 38339127 PMCID: PMC10856016 DOI: 10.3390/ijms25031848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of death worldwide, with more than 1 million cases diagnosed every year. Helicobacter pylori represents the main risk factor, being responsible for 78% of the cases. Increased amounts of salt, pickled food, red meat, alcohol, smoked food, and refined sugars negatively affect the stomach wall, contributing to GC development. Several gene mutations, including PIK3CA, TP53, ARID1A, CDH1, Ras, Raf, and ERBB3 are encountered in GC pathogenesis, leading to phosphatidylinositol 3-kinase (PI3K) protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-PI3K/AKT/mTOR-and mitogen-activated protein kinase (MAPK) signaling pathway activation and promoting tumoral activity. Helicobacter pylori, growth factors, cytokines, hormones, and oxidative stress also activate both pathways, enhancing GC development. In clinical trials, promising results have come from monoclonal antibodies such as trastuzumab and ramucirumab. Dual inhibitors targeting the PI3K/AKT/mTOR and MAPK signaling pathways were used in vitro studies, also with promising results. The main aim of this review is to present GC incidence and risk factors and the dysregulations of the two protein kinase complexes together with their specific inhibitors.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Elena-Claudia Coculescu
- Discipline of Oral Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Dragos-Eugen Georgescu
- Department of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania;
- Department of General Surgery, “Dr. Ion Cantacuzino” Clinical Hospital, 020475 Bucharest, Romania
| | - Remus Iulian Nica
- Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
12
|
Jiang D, Zhang H, Yin B, He M, Lu X, He C. The Prognostic Hub Gene POLE2 Promotes BLCA Cell Growth via the PI3K/AKT Signaling Pathway. Comb Chem High Throughput Screen 2024; 27:1984-1998. [PMID: 38963027 DOI: 10.2174/0113862073273633231113060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 07/05/2024]
Abstract
BACKGROUND BLCA is a common urothelial malignancy characterized by a high recurrence rate. Despite its prevalence, the molecular mechanisms underlying its development remain unclear. AIMS This study aimed to explore new prognostic biomarkers and investigate the underlying mechanism of bladder cancer (BLCA). OBJECTIVE The objective of this study is to identify key prognostic biomarkers for BLCA and to elucidate their roles in the disease. METHODS We first collected the overlapping DEGs from GSE42089 and TCGA-BLCA samples for the subsequent weighted gene co-expression network analysis (WGCNA) to find a key module. Then, key module genes were analyzed by the MCODE algorithm, prognostic risk model, expression and immunohistochemical staining to identify the prognostic hub gene. Finally, the hub gene was subjected to clinical feature analysis, as well as cellular function assays. RESULTS In WGCNA on 1037 overlapping genes, the blue module was the key module. After a series of bioinformatics analyses, POLE2 was identified as a prognostic hub gene in BLCA from potential genes (TROAP, POLE2, ANLN, and E2F8). POLE2 level was increased in BLCA and related to different clinical features of BLCA patients. Cellular assays showed that si-POLE2 inhibited BLCA proliferation, and si-POLE2+ 740Y-P in BLCA cells up-regulated the PI3K and AKT protein levels. CONCLUSION In conclusion, POLE2 was identified to be a promising prognostic biomarker as an oncogene in BLCA. It was also found that POLE2 exerts a promoting function by the PI3K/AKT signaling pathway in BLCA.
Collapse
Affiliation(s)
- Dongzhen Jiang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Huawei Zhang
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Minke He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Xuwei Lu
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| | - Chang He
- Department of Urology, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai, 201199, China
| |
Collapse
|
13
|
Xu M, Wen J, Xu Q, Li H, Lin B, Bhandari A, Qu J. AHNAK2 Promotes the Progression of Differentiated Thyroid Cancer through PI3K/AKT Signaling Pathway. Curr Cancer Drug Targets 2024; 24:220-229. [PMID: 36089788 DOI: 10.2174/1568009622666220908092506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022]
Abstract
AIMS AHNAK2 may be used as a candidate marker for TC diagnosis and treatment. BACKGROUND Thyroid cancer (TC) is the most frequent malignancy in endocrine carcinoma, and the incidence has been increasing for decades. OBJECTIVE To understand the molecular mechanism of DTC, we performed next-generation sequencing (NGS) on 79 paired DTC tissues and normal thyroid tissues. The RNA-sequencing (RNA-seq) data analysis results indicated that AHNAK nucleoprotein 2 (AHNAK2) was significantly upregulated in the thyroid cancer patient's tissue. METHODS We also analyzed AHNAK2 mRNA levels of DTC tissues and normal tissues from The Cancer Genome Atlas (TCGA). The association between the expression level of AHNAK2 and clinicopathological features was evaluated in the TCGA cohort. Furthermore, AHNAK2 gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) in 40 paired DTC tissues and adjacent normal thyroid tissues. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic value of AHNAK2. For cell experiments in vitro, AHNAK2 was knocked down using small interfering RNA (siRNA), and the biological function of AHNAK2 in TC cell lines was investigated. The expression of AHNAK2 was significantly upregulated in both the TCGA cohort and the local cohort. RESULTS The analysis results of the TCGA cohort indicated that the upregulation of AHNAK2 was associated with tumor size (P < 0.001), lymph node metastasis (P < 0.001), and disease stage (P < 0.001). The area under the curve (AUC, TCGA: P < 0.0001; local validated cohort: P < 0.0001) in the ROC curve revealed that AHNAK2 might be considered a diagnostic biomarker for TC. The knockdown of AHNAK2 reduced TC cell proliferation, colony formation, migration, invasion, cell cycle, and induced cell apoptosis. CONCLUSION Furthermore, the protein levels of phospho-PI3 Kinase p85 and phospho-AKT were downregulated in the transfected TC cell. Our study results indicate that AHNAK2 may promote metastasis and proliferation of thyroid cancer through PI3K/AKT signaling pathway. Thus, AHNAK2 may be used as a candidate marker for TC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Xu
- Department of Operating Theatre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
| | - Jialiang Wen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
| | - Qiding Xu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
| | - Huihui Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
| | - Bangyi Lin
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
| | - Adheesh Bhandari
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
- Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Jinmiao Qu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P.R. China
| |
Collapse
|
14
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Zhao D, Liu Y, Yi F, Zhao X, Lu K. Recent advances in the development of inhibitors targeting KRAS-G12C and its related pathways. Eur J Med Chem 2023; 259:115698. [PMID: 37542991 DOI: 10.1016/j.ejmech.2023.115698] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
The RAS gene, also known as the mouse sarcoma virus, includes three genes (KRAS, HRAS, and NRAS) that are associated with human tumors. Among them, KRAS has the highest incidence of mutations in cancer, accounting for around 80% of cases. At the molecular level, the RAS gene plays a regulatory role in transcription and translation, while at the cellular level, it affects cell proliferation and migration, making it crucial for cancer development. In 2021, the FDA approved AMG510, the first direct inhibitor targeting the KRAS-G12C mutation, which has shown tumor regression, prolonged survival, and low off-target activity. However, with the increase of drug resistance, a single inhibitor is no longer sufficient to achieve the desired effect on tumors. Therefore, a large number of other highly efficient inhibitors are being developed at different stages. This article provides an overview of the mechanism of action targeting KRAS-G12C in the KRASGTP-KRASGDP cycle pathway, as well as the structure-activity relationship, structure optimization, and biological activity effects of inhibitors that target the upstream and downstream pathways, or combination therapy.
Collapse
Affiliation(s)
- Dongqiang Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Fengchao Yi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
16
|
Wang L, Liu Y, Li S, Zha Z, Chen Y, Wang Q, Zhou S, Huang X, Xu M. Capsaicin alleviates doxorubicin-induced acute myocardial injury by regulating iron homeostasis and PI3K-Akt signaling pathway. Aging (Albany NY) 2023; 15:11845-11859. [PMID: 37916995 PMCID: PMC10683596 DOI: 10.18632/aging.205138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Capsaicin (CAP), a frequently occurring alkaloid component found in spicy peppers, has demonstrated therapeutic potential against tumors, metabolic disease, and cardiovascular disorders. Doxorubicin (DOX), a widely used anthracycline drug in chemotherapy, is notorious for its cardiotoxicity. This study aimed to investigate the potential of CAP in mitigating DOX toxicity in mouse hearts and H9C2 cells, as well as to explore the underlying mechanisms. METHODS In our study, we conducted experiments on both mice and H9C2 cells. The mice were divided into four groups and treated with different substances: normal saline, CAP, DOX and CAP+DOX. We evaluated the induction of ferroptosis by DOX and the remission of ferroptosis by CAP using various methods, including echocardiography, Hematoxylin and Eosin (H&E) staining, Masson's trichrome staining, and determination of ferroptosis metabolites, genes and proteins. Additionally, we employed RNA-seq to identify the inhibitory effect of CAP on DOX-induced myocardial apoptosis, which was further confirmed through western blotting. Similar approaches were applied to H9C2 cells, yielding reliable results. RESULTS Our study demonstrated that treatment with CAP improved the survival rate of DOX-treated mice and reduced myocardial injury. Mechanistically, CAP downregulated transferrin (Trf) and upregulated solute carrier family 40 member 1 (SLC40A1), which helped maintain iron levels in the cells and prevent ferroptosis. Furthermore, CAP inhibited DOX-induced apoptosis by modulating the phosphoinositide 3-kinase (PI3K)- protein kinase B (Akt) signaling pathway. Specifically, CAP activated the PI3K-Akt pathway and regulated downstream BCL2 and BAX to mitigate DOX-induced apoptosis. Therefore, our results suggest that CAP effectively alleviates acute myocardial injury induced by DOX. CONCLUSION Our findings demonstrate that CAP has the potential to alleviate DOX-induced ferroptosis by regulating iron homeostasis. Additionally, it can inhibit DOX-induced apoptosis by activating PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Longbin Wang
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhijian Zha
- Chinese Internal Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yu Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary, China
| | - Xufeng Huang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary, China
| | - Ming Xu
- College of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Yang L, Liu YN, Gu Y, Guo Q. Deltonin enhances gastric carcinoma cell apoptosis and chemosensitivity to cisplatin via inhibiting PI3K/AKT/mTOR and MAPK signaling. World J Gastrointest Oncol 2023; 15:1739-1755. [PMID: 37969408 PMCID: PMC10631430 DOI: 10.4251/wjgo.v15.i10.1739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND As an active ingredient derived from Dioscorea zingiberensis C.H. Wright, deltonin has been reported to show anti-cancer effects in a variety of malignancies. AIM To investigate the role and mechanism of action of deltonin in promoting gastric carcinoma (GC) cell apoptosis and chemosensitivity to cisplatin. METHODS The GC cell lines AGS, HGC-27, and MKN-45 were treated with deltonin and then subjected to flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide assays for cell apoptosis and viability determination. Western blot analysis was conducted to examine alterations in the expression of apoptosis-related proteins (Bax, Bid, Bad, and Fas), DNA repair-associated proteins (Rad51 and MDM2), and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/AKT/mTOR) and p38-mitogen-activated protein kinase (MAPK) axis proteins. Additionally, the influence of deltonin on GC cell chemosensitivity to cisplatin was evaluated both in vitro and in vivo. RESULTS Deltonin treatment weakened viability, enhanced apoptosis, and dampened DNA repair in GC cell lines in a dose-dependent pattern. Furthermore, deltonin mitigated PI3K, AKT, mTOR, and p38-MAPK phosphorylation. HS-173, an inhibitor of PI3K, attenuated GC cell viability and abolished deltonin inhibition of GC cell viability and PI3K/AKT/mTOR and p38-MAPK pathway activation. Deltonin also promoted the chemosensitivity of GC cells to cisplatin via repressing GC cell proliferation and growth and accelerating apoptosis. CONCLUSION Deltonin can boost the chemosensitivity of GC cells to cisplatin via inactivating p38-MAPK and PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Lin Yang
- Intensive Care Unit, Second Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ya-Nan Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yi Gu
- Nursing Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qi Guo
- Department of Radiotherapy, Second Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
18
|
Zhang X, Zhang P, Cong A, Feng Y, Chi H, Xia Z, Tang H. Unraveling molecular networks in thymic epithelial tumors: deciphering the unique signatures. Front Immunol 2023; 14:1264325. [PMID: 37849766 PMCID: PMC10577431 DOI: 10.3389/fimmu.2023.1264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Thymic epithelial tumors (TETs) are a rare and diverse group of neoplasms characterized by distinct molecular signatures. This review delves into the complex molecular networks of TETs, highlighting key aspects such as chromosomal abnormalities, molecular subtypes, aberrant gene mutations and expressions, structural gene rearrangements, and epigenetic changes. Additionally, the influence of the dynamic tumor microenvironment on TET behavior and therapeutic responses is examined. A thorough understanding of these facets elucidates TET pathogenesis, offering avenues for enhancing diagnostic accuracy, refining prognostic assessments, and tailoring targeted therapeutic strategies. Our review underscores the importance of deciphering TETs' unique molecular signatures to advance personalized treatment paradigms and improve patient outcomes. We also discuss future research directions and anticipated challenges in this intriguing field.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ansheng Cong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Qin YC, Yan X, Yuan XL, Yu WW, Qu FJ. Osteopontin promotes gastric cancer progression via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. World J Gastrointest Oncol 2023; 15:1544-1555. [PMID: 37746644 PMCID: PMC10514723 DOI: 10.4251/wjgo.v15.i9.1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors. Osteopontin (OPN) is thought to be closely related to the occurrence, metastasis and prognosis of many types of tumors. AIM To investigate the effects of OPN on the proliferation, invasion and migration of GC cells and its possible mechanism. METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by real-time quantitative-reverse transcription polymerase chain reaction and western blotting, and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC. Next, the effects of OPN knockdown on GC cells migration and invasion were examined. The short hairpin RNA (shRNA) and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer's instructions. Non transfected cells were classified as control in the identical transfecting process. 24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay, and cell invasiveness and migration were detected by Trans well assay. Meanwhile, the expression of protein kinase B (AKT), matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor (VEGF) in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting. RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells. OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation, invasion and migration of SGC-7901 cells. Moreover, in the experiments of investigating the underlying mechanism, results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF, it also decreased the phosphorylation of AKT. Meanwhile, the protein expression levels of MMP-2, VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase (PI3K) inhibitor (LY294002). CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to up-regulate MMP-2 and VEGF expression, which contribute SGC-7901 cells to proliferation, invasion and migration. Thus, our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Yue-Chao Qin
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
- Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Xin Yan
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Xiao-Lin Yuan
- Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Wei-Wei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Fan-Jie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
20
|
Ji J, Ding Y, Kong Y, Fang M, Yu X, Lai X, Gu Q. Triple‑negative breast cancer cells that survive ionizing radiation exhibit an Axl‑dependent aggressive radioresistant phenotype. Exp Ther Med 2023; 26:448. [PMID: 37614420 PMCID: PMC10443063 DOI: 10.3892/etm.2023.12147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the aggressive behavior of triple-negative breast cancer (TNBC) cells that had survived ionizing radiation and explore the potential targets of TNBC combination treatment. Consistent with the previous literature, Axl was highly expressed in TNBC and closely associated with the degree of malignancy based on immunohistochemical staining. Using a gradient irradiation method, the ionizing radiation-resistant mouse TNBC cell line 4T-1/IRR was established. It was found that Axl expression was upregulated in 4T-1/IRR cells. After irradiation by X-ray, the cell viability and colony formation ability of 4T-1/IRR cells were significantly increased when compared with the 4T-1 cells. Combined radiotherapy with Axl inhibition by treatment with R428 and small interfering RNA lentivirus targeting Axl infection significantly reduced cell viability, colony formation ability, DNA double-stranded break repair, and the invasive and migratory ability of 4T-1/IRR cells. In vivo, the small animal radiation research platform was applied to precisely administer radiotherapy of the tumor-bearing mice. R428 treatment combined with 6 Gy X-ray significantly inhibited the growth of 4T-1/IRR cells-derived xenograft tumors in the BALB/c mouse. The results of western blotting showed that the critical molecular mechanism involved in the radioresistance of TNBC cells was the PI3K/Akt/mTOR signaling pathway induced by Axl activation. Thus, it is hypothesized that targeted Axl therapy combined with radiotherapy may have significant potential for the treatment of TNBC.
Collapse
Affiliation(s)
- Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yue Kong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Min Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaofu Yu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojing Lai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Qing Gu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
21
|
Elshafie NO, Gribskov M, Lichti NI, Sayedahmed EE, Childress MO, dos Santos AP. miRNome expression analysis in canine diffuse large B-cell lymphoma. Front Oncol 2023; 13:1238613. [PMID: 37711209 PMCID: PMC10499539 DOI: 10.3389/fonc.2023.1238613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Lymphoma is a common canine cancer with translational relevance to human disease. Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype, contributing to almost fifty percent of clinically recognized lymphoma cases. Identifying new biomarkers capable of early diagnosis and monitoring DLBCL is crucial for enhancing remission rates. This research seeks to advance our knowledge of the molecular biology of DLBCL by analyzing the expression of microRNAs, which regulate gene expression by negatively impacting gene expression via targeted RNA degradation or translational repression. The stability and accessibility of microRNAs make them appropriate biomarkers for the diagnosis, prognosis, and monitoring of diseases. Methods We extracted and sequenced microRNAs from ten fresh-frozen lymph node tissue samples (six DLBCL and four non-neoplastic). Results Small RNA sequencing data analysis revealed 35 differently expressed miRNAs (DEMs) compared to controls. RT-qPCR confirmed that 23/35 DEMs in DLBCL were significantly upregulated (n = 14) or downregulated (n = 9). Statistical significance was determined by comparing each miRNA's average expression fold-change (2-Cq) between the DLCBL and healthy groups by applying the unpaired parametric Welch's 2-sample t-test and false discovery rate (FDR). The predicted target genes of the DEMs were mainly enriched in the PI3K-Akt-MAPK pathway. Discussion Our data point to the potential value of miRNA signatures as diagnostic biomarkers and serve as a guideline for subsequent experimental studies to determine the targets and functions of these altered miRNAs in canine DLBCL.
Collapse
Affiliation(s)
- Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Nathanael I. Lichti
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Ekramy. E. Sayedahmed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Michael O. Childress
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States
| | - Andrea P. dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
22
|
Guo H, Bechtel-Walz W. The Interplay of Autophagy and Oxidative Stress in the Kidney: What Do We Know? Nephron Clin Pract 2023; 147:627-642. [PMID: 37442108 DOI: 10.1159/000531290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Autophagy, as an indispensable metabolism, plays pivotal roles in maintaining intracellular homeostasis. Nutritional stress, amino acid deficiency, oxidative stress, and hypoxia can trigger its initiation. Oxidative stress in the kidney activates essential signal molecules, like mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), and silent mating-type information regulation 2 homolog-1 (SIRT1), to stimulate autophagy, ultimately leading to degradation of intracellular oxidative substances and damaged organelles. Growing evidence suggests that autophagy protects the kidney from oxidative stress during acute ischemic kidney injury, chronic kidney disease, and even aging. SUMMARY This review emphasizes the cross talk between reactive oxygen species (ROS) signaling pathways and autophagy during renal homeostasis and chronic kidney disease according to the current latest research and provides therapeutic targets during kidney disorders by adjusting autophagy and suppressing oxidative stress. KEY MESSAGES ROS arise through an imbalance of oxidation and antioxidant defense mechanisms, leading to impaired cellular and organ function. Targeting the overproduction of ROS and reactive nitrogen species, reducing the antioxidant enzyme activity and the recovery of the prooxidative-antioxidative balance provide novel therapeutic regimens to contribute to recovery in acute and chronic renal failure. Although, in recent years, great progress has been made in understanding the molecular mechanisms of oxidative stress and autophagy in acute and chronic renal failure, the focus on clinical therapies is still in its infancy. The growing number of studies on the interactive mechanisms of oxidative stress-mediated autophagy will be of great importance for the future treatment and prevention of kidney diseases.
Collapse
Affiliation(s)
- Haihua Guo
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wibke Bechtel-Walz
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Li Y, Wu Z, Hu J, Liu G, Hu H, Ouyang F, Yang J. Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:345-356. [PMID: 37386832 PMCID: PMC10316187 DOI: 10.4196/kjpp.2023.27.4.345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 07/01/2023]
Abstract
This study aimed to assess the effects of exogenous hydrogen sulfide (H2S) on abdominal aorta coarctation (AAC) induced myocardial fibrosis (MF) and autophagy in rats. Forty-four Sprague-Dawley rats were randomly divided into control group, AAC group, AAC + H2S group, and H2S control group. After a model of rats with AAC was built surgically, AAC + H2S group and H2S group were injected intraperitoneally with H2S (100 μmol/kg) daily. The rats in the control group and the AAC group were injected with the same amount of PBS. We observed that H2S can improve left ventricular function and the deposition of myocardial collagen fibers, inhibit pyroptosis, down-regulate the expression of P-eif2α in myocardial tissue, and inhibit cell autophagy by activating the phosphatidylinositol 3-kinase (PI3K)/AKT1 signaling pathway (p < 0.05). In addition, angiotensin II (1 μM) H9c2 cardiomyocytes were injured in vitro experiments, and it was also observed that pyroptosis was inhibited after H2S (400 μmol/kg) intervention, the expression of P-eif2α in cardiomyocytes was significantly down-regulated, and the PI3K/AKT1 signaling pathway was activated at the same time. Therefore, increasing the expression of P-eif2α reverses the activation of the PI3K/AKT1 signaling pathway by H2S. In conclusion, these findings suggest that exogenous H2S can ameliorate MF in rats with AAC by inhibiting pyroptosis, and the mechanism may be associated with inhibiting the phosphorylation of eif2α and activating the PI3K/AKT1 signaling pathway to inhibit excessive cell autophagy.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Zhixiong Wu
- Department of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Jiangping Hu
- Department of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Gongli Liu
- Department of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Hongming Hu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
24
|
Tang L, Zhao C, Zhang J, Dong T, Chen H, Wei T, Wang J, Yang W. Discussion on the Mechanism of Gandoufumu Decoction Attenuates Liver Damage of Wilson's Disease by Inhibiting Autophagy through the PI3K/Akt/mTOR Pathway Based on Network Pharmacology and Experimental Verification. Mediators Inflamm 2023; 2023:3236911. [PMID: 37362448 PMCID: PMC10287518 DOI: 10.1155/2023/3236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Background Gandoufumu decoction (GDFMD) is a traditional Chinese medicine that has been widely used to treat Wilson's disease (WD) liver damage patients. However, its specific molecular mechanism currently remains unclear. Autophagy as a key contributor to WD liver damage has been intensely researched in the recent years. Therefore, the aim of this present study is to explore the effect of GDFMD on autophagy in WD liver damage, and the final purpose is to provide scientific evidence for GDFMD treatment in WD liver damage. Methods The molecular mechanisms and autophagy-related pathways of GDFMD in the treatment of WD liver damage were predicted using network pharmacology. Copper assay kit was used to determine copper content in serum. Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify serum levels of liver enzymes and oxidative stress-related indicators. Hematoxylin-eosin (HE), Masson, and Sirius red staining were used for the characterization of liver pathological changes. Transmission electron microscopy, immunofluorescence, and Western blot analyses were used to evaluate autophagy activity. The impact of the GDFMD on typical autophagy-related pathway (PI3K/Akt/mTOR pathway) molecules was also assessed via Western blot analysis. Results GDFMD effectively attenuated serum liver enzymes, oxidative stress, autophagy, and degree of hepatic histopathological impairment and reduced serum copper content. Through network pharmacological approaches, PI3K/Akt/mTOR pathway was identified as the typical autophagy-related pathway of GDFMD in the treatment of WD liver damage. Treatment with GDFMD activated the PI3K/Akt/mTOR pathway, an effect that was able to be counteracted by LY294002, a PI3K antagonist or Rapa (rapamycin), an autophagy inducer. Conclusions GDFMD imparted therapeutic effects on WD through autophagy suppression by acting through the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Chenling Zhao
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jing Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Huaizhen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jiuxiang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
25
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
26
|
Li Y, Zou H, Zheng Z, Liu Z, Hu H, Wu W, Wang T. Advances in the Study of Bioactive Nanoparticles for the Treatment of HCC and Its Postoperative Residual Cancer. Int J Nanomedicine 2023; 18:2721-2735. [PMID: 37250475 PMCID: PMC10216871 DOI: 10.2147/ijn.s399146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Primary hepatocellular carcinoma (HCC, hepatocellular carcinoma) is the third leading cause of tumor death in the world and the second leading cause in China. The high recurrence rate at 5 years after surgery also seriously affects the long-term survival of HCC patients. For reasons such as poor liver function, large tumors, or vascular invasion, only relatively limited palliative treatment is available. Therefore, effective diagnostic and therapeutic strategies are needed to improve the complex microenvironment and block the mechanism of tumor development in order to treat the tumor and prevent recurrence. A variety of bioactive nanoparticles have been shown to have therapeutic effects on hepatocellular carcinoma and have the advantages of improving drug solubility, reducing drug side effects, preventing degradation in the blood, increasing drug exposure time, and reducing drug resistance. The development of bioactive nanoparticles is expected to complete the current clinical therapeutic approach. In this review, we discuss the therapeutic advances of different nanoparticles for hepatocellular carcinoma and discuss their potential for postoperative applications with respect to possible mechanisms of hepatocellular carcinoma recurrence. We further discuss the limitations regarding the application of NPs and the safety of NPs.
Collapse
Affiliation(s)
- Yanxu Li
- Medical College of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Hao Zou
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zekun Zheng
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhuoheng Liu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huiyuan Hu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Wei Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
27
|
Chen C, Yang C, Tian X, Liang Y, Wang S, Wang X, Shou Y, Li H, Xiao Q, Shu J, Sun M, Chen K. Downregulation of miR-100-5p in cancer-associated fibroblast-derived exosomes facilitates lymphangiogenesis in esophageal squamous cell carcinoma. Cancer Med 2023. [PMID: 37184125 DOI: 10.1002/cam4.6078] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC), an aggressive gastrointestinal tumor, often has high early lymphatic metastatic potential. Cancer-associated fibroblasts (CAFs) are primary components in tumor microenvironment (TME), and the impact of CAFs and its derived exosomes on lymphangiogenesis remains elusive. MATERIALS AND METHODS CAFs and the microlymphatic vessel density (MLVD) in ESCC was examined. Exosomes were extracted from primary normal fibroblast (NFs) and CAFs. Subsequently, tumor-associated lymphatic endothelial cells (TLECs) were treated with these exosomes, and the effect on their biological behavior was examined. miR-100-5p was selected as the target miRNA, and its effect on TLECs was examined. The target of miR-100-5p was predicted and confirmed. Subsequently, IGF1R, PI3K, AKT, and p-AKT expression in TLECs and tumors treated with exosomes and miR-100-5p were examined. RESULTS A large number of CAFs and microlymphatic vessels were present in ESCC, leading to a poor prognosis. CAF-derived exosomes promoted proliferation, migration, invasion, and tube formation in TLECs. Further, they also enhanced lymphangiogenesis in ESCC xenografts. miR-100-5p levels were significantly lower in CAF-derived exosomes than in NF-derived exosomes. miR-100-5p inhibited proliferation, migration, invasion, and tube formation in TLECs. Further, miR-100-5p inhibited lymphangiogenesis in ESCC xenografts. Mechanistic studies revealed that this inhibition was mediated by the miR-100-5p-induced inhibition of IGF1R/PI3K/AKT axis. CONCLUSION Taken together, our study demonstrates that CAF-derived exosomes with decreased miR-100-5p levels exhibit pro-lymphangiogenesis capacity, suggesting a possibility of targeting IGF1R/PI3K/AKT axis as a strategy to inhibit lymphatic metastasis in ESCC.
Collapse
Affiliation(s)
- Chao Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenbo Yang
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Tian
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Osteology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinghao Liang
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuaiyuan Wang
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqian Wang
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuwei Shou
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Qiankun Xiao
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Jiao Shu
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Sun
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
29
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
30
|
Liu G, Chen J, Bao Z. Promising antitumor effects of the curcumin analog DMC-BH on colorectal cancer cells. Aging (Albany NY) 2023; 15:2221-2236. [PMID: 36971681 PMCID: PMC10085616 DOI: 10.18632/aging.204610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 04/07/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide. DMC-BH, a curcumin analog, has been reported to possess anticancer properties against human gliomas. However, its effects and mechanism on CRC cells are still unknown. Our present study demonstrated that DMC-BH had stronger cytostatic ability than curcumin against CRC cells in vitro and in vivo. It effectively inhibited the proliferation and invasion and promoted the apoptosis of HCT116 and HT-29 cells. RNA-Seq and data analysis indicated that its effects might be mediated by regulation of the PI3K/AKT signaling. Western blotting further confirmed that it dose-dependently suppressed the phosphorylation of PI3K, AKT and mTOR. The Akt pathway activator SC79 reversed the proapoptotic effects of DMC-BH on CRC cells, indicating that its effects are mediated by PI3K/AKT/mTOR signaling. Collectively, the results of the present study suggest that DMC-BH exerts more potent effects than curcumin against CRC by inactivating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Liu
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Jian Chen
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Zhicheng Bao
- Department of Rehabilitation, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
31
|
Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 2023; 25:578-591. [PMID: 36315334 DOI: 10.1007/s12094-022-02981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.
Collapse
|
32
|
Chen M, Tan AH, Li J. Curcumin Represses Colorectal Cancer Cell Proliferation by Triggering Ferroptosis via PI3K/Akt/mTOR Signaling. Nutr Cancer 2023; 75:726-733. [PMID: 36346025 DOI: 10.1080/01635581.2022.2139398] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Curcumin is known to suppress the progression of colorectal cancer by inhibiting cancer cell proliferation. In this study, we explored the role of ferroptosis in the antiproliferative properties of curcumin. The effect of curcumin on ferroptosis In Vitro was evaluated in HCT-8 cells. Ferroptosis was first blocked by ferrostatin-1 (Fer-1) and the antiproliferative effect of curcumin was evaluated by determining the levels of ferroptotic markers, including glutathione (GSH), SLC7A11, GPX4, iron, malondialdehyde (MDA), and reactive oxygen species (ROS). An agonist and an inhibitor of PI3K were also used to verify the signaling pathway involved in the antiproliferative effects. Curcumin repressed HCT-8 cell proliferation in a dose-dependent manner. Treating HCT-8 cells with curcumin significantly downregulated GSH, SLC7A11, and GPX4, while significantly increasing levels of iron, MDA, and ROS. In addition, curcumin promoted ferroptosis and reduced proliferation of HCT-8 cells by suppressing the PI3K/Akt/mTOR pathway, and these effects were antagonized by Fer-1. The effects of curcumin were antagonized by a PI3K agonist and reinforced by a PI3K inhibitor. Curcumin triggers ferroptosis and suppresses proliferation of colorectal cancer cells by inhibiting the PI3K/Akt/mTOR signaling pathway. These results indicate its potential as a treatment against colorectal cancer.
Collapse
Affiliation(s)
- Mei Chen
- Anorectal Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - An-Hui Tan
- Anorectal Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Jing Li
- Anorectal Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| |
Collapse
|
33
|
Zhang P, Guo H, Zhao F, Jia K, Yang F, Liu X. UBE2J1 knockdown promotes cell apoptosis in endometrial cancer via regulating PI3K/AKT and MDM2/p53 signaling. Open Med (Wars) 2023; 18:20220567. [PMID: 36852267 PMCID: PMC9961967 DOI: 10.1515/med-2022-0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 03/01/2023] Open
Abstract
Emerging evidence has demonstrated that ubiquitin conjugating enzyme E2 J1 (UBE2J1) exerts pivotal function in many cancers. UBE2J1 was reported to be dysregulated in endometrial cancer (EC). This study was designed to further investigate the regulatory character and mechanism of UBE2J1 in EC. Bioinformatic tools and databases were used to analyze gene expression pattern and gene expression correlation in EC tissues, and the prognosis of EC patients. Gene expression was evaluated by reverse-transcription quantitative polymerase chain reaction. Western blot was used for protein level detection. In vitro cell apoptosis was detected by flow cytometry analyses and TUNEL assays. In vivo cell apoptosis was evaluated by detecting Bax and Bcl-2 expression in tumor tissues via immunohistochemical and western blot analyses. In this study, UBE2J1 knockdown promoted cell apoptosis in EC cells and in mouse models of EC. PI3K and AKT expression is positively correlated with UBE2J1 level and is related to poor prognosis of EC patients. UBE2J1 knockdown repressed the PI3K/AKT pathway both in vitro and in vivo. UBE2J1 downregulation decreased MDM2 expression, but increased p53 expression. MDM2 overexpression reverses the promotion of UBE2J1 knockdown on cell apoptosis in EC. Overall, UBE2J1 knockdown induces cell apoptosis in EC by inactivating the PI3K/AKT signaling and suppressing the MDM2/p53 signaling.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Gynaecology, The First People’s Hospital of Zhangjiagang Affiliated to Suzhou University, No. 68, West Jiyang Road, Zhangjiagang215600, Jiangsu, China
| | - Huiping Guo
- Department of Gynaecology, The First People’s Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang215600, Jiangsu, China
| | - Fang Zhao
- Department of Gynaecology, The First People’s Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang215600, Jiangsu, China
| | - Ke Jia
- Department of Gynaecology, The First People’s Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang215600, Jiangsu, China
| | - Fei Yang
- Department of Gynaecology, The First People’s Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang215600, Jiangsu, China
| | - Xiaoli Liu
- Department of Gynaecology, The First People’s Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang215600, Jiangsu, China
| |
Collapse
|
34
|
Li Z, Zhang XJ, Sun CY, Fei H, Li ZF, Zhao DB. CD93 serves as a potential biomarker of gastric cancer and correlates with the tumor microenvironment. World J Clin Cases 2023; 11:738-755. [PMID: 36818626 PMCID: PMC9928705 DOI: 10.12998/wjcc.v11.i4.738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays an important role in the growth and expansion of gastric cancer (GC). Studies have identified that CD93 is involved in abnormal tumor angiogenesis, which may be related to the regulation of the TME.
AIM To determine the role of CD93 in GC.
METHODS Transcriptomic data of GC was investigated in a cohort from The Cancer Genome Atlas. Additionally, RNA-seq data sets from Gene Expression Omnibus (GSE118916, GSE52138, GSE79973, GSE19826, and GSE84433) were applied to validate the results. We performed the immune infiltration analyses using ESTIMATE, CIBERSORT, and ssGSEA. Furthermore, weighted gene co-expression network analysis (WGCNA) was conducted to identify the immune-related genes.
RESULTS Compared to normal tissues, CD93 significantly enriched in tumor tissues (t = 4.669, 95%CI: 0.342-0.863, P < 0.001). Higher expression of CD93 was significantly associated with shorter overall survival (hazard ratio = 1.62, 95%CI: 1.09-2.4, P = 0.017), less proportion of CD8 T and activated natural killer cells in the TME (P < 0.05), and lower tumor mutation burden (t = 4.131, 95%CI: 0.721-0.256, P < 0.001). Genes co-expressed with CD93 were mainly enriched in angiogenesis. Moreover, 11 genes were identified with a strong relationship between CD93 and the immune microenvironment using WGCNA.
CONCLUSION CD93 is a novel prognostic and diagnostic biomarker for GC, that is closely related to the immune infiltration in the TME. Although this retrospective study was a comprehensive analysis, the prospective cohort studies are preferred to further confirm these conclusions.
Collapse
Affiliation(s)
- Zheng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Jie Zhang
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chong-Yuan Sun
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - He Fei
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ze-Feng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Bing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
35
|
Lin D, Wang D, Li P, Deng L, Zhang Z, Zhang Y, Zhang M, Zhang N. Whole-exome sequencing identified recurrent and novel variants in benzene-induced leukemia. BMC Med Genomics 2023; 16:13. [PMID: 36703207 PMCID: PMC9878782 DOI: 10.1186/s12920-023-01442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genome-wide sequencing may extensively identify potential pathogenic variants, which helps to understand mechanisms of tumorigenesis, but such study has not been reported in benzene-induced leukemia (BIL). METHODS We recruited 10 BIL patients and conducted the whole-exome sequencing on their peripheral blood samples. The obtained sequencing data were screened for potential pathogenic and novel variants, then the variants-located genes were clustered to identify cancer-related pathways. Shared or recurrent variants among the BIL cases were also identified and evaluated for their potential functional impact. RESULTS We identified 48,802 variants in exons in total, 97.3% of which were single nucleotide variants. After filtering out variants with minor allele frequency ≥ 1%, we obtained 8667 potentially pathogenic variants, of which 174 were shared by all the BIL cases. The identified variants located in genes that could be significantly enriched into certain cancer-related pathways such as PI3K-AKT signaling pathway and Ras signaling pathway. We also identified 1010 novel variants with no record in the Genome Aggregation Database and in dbSNP, and one of them was shared by 90% cases. The recurrent and novel variant caused a missense mutation in SESN3. CONCLUSIONS We examined variations of the whole exome in BIL patients for the first time. The commonly shared variants implied a relation with BIL, and the recurrent and novel variant might be specifically related to BIL. The related variants may help unravel the carcinogenic mechanisms of BIL.
Collapse
Affiliation(s)
- Dafeng Lin
- Occupational Health Department, Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Rd., Luohu District, Shenzhen, 518020 China
| | - Dianpeng Wang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020 China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020 China
| | - Lihua Deng
- Occupational Diseases Department, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020 China
| | - Zhimin Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020 China
| | - Yanfang Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020 China
| | - Ming Zhang
- Occupational Health Department, Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Rd., Luohu District, Shenzhen, 518020 China
| | - Naixing Zhang
- Occupational Health Department, Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Rd., Luohu District, Shenzhen, 518020 China
| |
Collapse
|
36
|
Farnood PR, Pazhooh RD, Asemi Z, Yousefi B. Targeting Signaling Pathway by Curcumin in Osteosarcoma. Curr Mol Pharmacol 2023; 16:71-82. [PMID: 35400349 DOI: 10.2174/1874467215666220408104341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The most prevalent primary bone malignancy among children and adolescents is osteosarcoma. The high mortality rate of osteosarcoma is due to lung metastasis. Despite the development of multi-agent chemotherapy and surgical resection, patients with osteosarcoma have a high metastasis rate and poor prognosis. Thus, it is necessary to identify novel therapeutic agents to improve the 5-year survival rate of these patients. Curcumin, a phytochemical compound derived from Curcuma longa, has been employed in treating several types of cancers through various mechanisms. Also, in vitro studies have demonstrated that curcumin could inhibit cell proliferation and induce apoptosis in osteosarcoma cells. Development in identifying signaling pathways involved in the pathogenesis of osteosarcoma has provided insight into finding new therapeutic targets for the treatment of this cancer. Targeting MAPK/ERK, PI3k/AKT, Wnt/β-catenin, Notch, and MircoRNA by curcumin has been evaluated to improve outcomes in patients with osteosarcoma. Although curcumin is a potent anti-cancer compound, it has rarely been studied in clinical settings due to its congenital properties such as hydrophobicity and poor bioavailability. In this review, we recapitulate and describe the effect of curcumin in regulating signaling pathways involved in osteosarcoma.
Collapse
Affiliation(s)
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Liao J, Chen H, Qi M, Wang J, Wang M. MLLT11-TRIL complex promotes the progression of endometrial cancer through PI3K/AKT/mTOR signaling pathway. Cancer Biol Ther 2022; 23:211-224. [PMID: 35253622 PMCID: PMC8903758 DOI: 10.1080/15384047.2022.2046450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is a gynecological malignant tumor characterized by high incidence. EC occurrence and development are regulated by numerous molecules and signal pathways. There is a need to explore key regulatory molecules to identify potential therapeutic targets to reduce the incidence of EC. Treatment by targeting a single molecule is characterized by poor efficacy owing to the development of resistance and significant side effects. The current study explored potential candidates in EC by integrating bioinformatics analysis and in vivo and in vitro experimental validation to circumvent the limitation of low efficacy of currently used molecules. Molecular dynamics simulations provide details at the molecular level of intermolecular regulation. In the current study, MLLT11 and TRIL were identified as important regulatory molecules in EC. The two molecules formed a heteromultimer by binding to AKT protein, which induced its phosphorylation of threonine at position 308. Ultimately, the complex stimulates PI3K/AKT/mTOR signaling pathway, a pivotal pathway in tumors. The findings of the current study show a novel complex, MLLT11-TRIL, which can act as AKT protein agonist, thus inducing activity of PI3K/AKT/mTOR signaling pathway. Targeting MLLT11 and TRIL simultaneously, or blocking the formation of the MLLT11-TRIL complex, can abrogate progression of EC.
Collapse
Affiliation(s)
- Jingnan Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Gynaecology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Huan Chen
- Department of Gynaecology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingming Qi
- Department of Gynaecology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Jinjin Wang
- Department of Gynaecology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Zhu P, Li T, Li Q, Gu Y, Shu Y, Hu K, Chen L, Peng X, Peng J, Hao L. Mechanism and Role of Endoplasmic Reticulum Stress in Osteosarcoma. Biomolecules 2022; 12:1882. [PMID: 36551309 PMCID: PMC9775044 DOI: 10.3390/biom12121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, often occurring in children and adolescents. The etiology of most patients is unclear, and the current conventional treatment methods are chemotherapy, radiotherapy, and surgical resection. However, the sensitivity of osteosarcoma to radiotherapy and chemotherapy is low, and the prognosis is poor. The development of new and useful treatment strategies for improving patient survival is an urgent need. It has been found that endoplasmic reticulum (ER) stress (ERS) affects tumor angiogenesis, invasion, etc. By summarizing the literature related to osteosarcoma and ERS, we found that the unfolded protein response (UPR) pathway activated by ERS has a regulatory role in osteosarcoma proliferation, apoptosis, and chemoresistance. In osteosarcoma, the UPR pathway plays an important role by crosstalk with autophagy, oxidative stress, and other pathways. Overall, this article focuses on the relationship between ERS and osteosarcoma and reviews the potential of drugs or gene targets associated with ERS for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yawen Gu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
39
|
Zhang L, Gong Y, Zhang L, Liang B, Xu H, Hu W, Jin Z, Wu X, Chen X, Li M, Shi L, Shi Y, Li M, Huang Y, Wang Y, Yang L. Gou Qi Zi inhibits proliferation and induces apoptosis through the PI3K/AKT1 signaling pathway in non-small cell lung cancer. Front Oncol 2022; 12:1034750. [PMID: 36591458 PMCID: PMC9796997 DOI: 10.3389/fonc.2022.1034750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background Gou Qi Zi (Lycium barbarum) is a traditional herbal medicine with antioxidative effects. Although Gou Qi Zi has been used to prevent premature aging and in the treatment of non-small cell lung cancer (NSCLC), its mechanism of action in NSCLC remains unclear. The present study utilized network pharmacology to assess the potential mechanism of action of Gou Qi Zi in the treatment of NSCLC. Methods The TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM and TTD databases were searched for the active components of Gou Qi Zi and their potential therapeutic targets in NSCLC. Protein-protein interaction networks were identified and the interactions of target proteins were analyzed. Involved pathways were determined by GO enrichment and KEGG pathway analyses using the Metascape database, and molecular docking technology was used to study the interactions between active compounds and potential targets. These results were verified by cell counting kit-8 assays, BrdU labeling, flow cytometry, immunohistochemistry, western blotting, and qRT-PCR. Results Database searches identified 33 active components in Gou Qi Zi, 199 predicted biological targets and 113 NSCLC-related targets. A network of targets of traditional Chinese medicine compounds and potential targets of Gou Qi Zi in NSCLC was constructed. GO enrichment analysis showed that Gou Qi Zi targeting of NSCLC was mainly due to the effect of its associated lipopolysaccharide. KEGG pathway analysis showed that Gou Qi Zi acted mainly through the PI3K/AKT1 signaling pathway in the treatment of NSCLC. Molecular docking experiments showed that the bioactive compounds of Gou Qi Zi could bind to AKT1, C-MYC and TP53. These results were verified by experimental assays. Conclusion Gou Qi Zi induces apoptosis and inhibits proliferation of NSCLC in vitro and in vivo by inhibiting the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Lingling Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Bing Liang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangming Hu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongbin Chen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Li
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaping Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingjian Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Lan Yang, ;
| |
Collapse
|
40
|
Li G, Fu Q, Liu C, Peng Y, Gong J, Li S, Huang Y, Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front Oncol 2022; 12:1074307. [PMID: 36561529 PMCID: PMC9763625 DOI: 10.3389/fonc.2022.1074307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosinen (m6A) methylation is a frequent RNA methylation modification that is regulated by three proteins: "writers", "erasers", and "readers". The m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Interestingly, recent research has linked m6A RNA modification to the occurrence and development of cancers, such as hepatocellular carcinoma and non-small cell lung cancer. This review summarizes the regulatory role of m6A RNA modification in gastric cancer (GC), including targets, the mechanisms of action, and the potential signaling pathways. Our present findings can facilitate our understanding of the significance of m6A RNA modification in GC.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qiru Fu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cong Liu
- Editorial Department of Journal of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuxi Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Shilan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yan Huang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| |
Collapse
|
41
|
On the Core Prescriptions and Their Mechanisms of Traditional Chinese Medicine in Hepatitis B, Liver Cirrhosis, and Liver Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:5300523. [PMID: 36193202 PMCID: PMC9525786 DOI: 10.1155/2022/5300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022]
Abstract
Background As a frequent cause of death in cancer patients, liver cancer usually occurs in hepatitis B and cirrhosis. In China, Chinese people have been using traditional Chinese medicine (TCM) in treating various chronic liver diseases, which could effectively improve the symptoms and slow down the progression of liver diseases. However, due to the complexity rules of TCM prescription, their action mechanisms are still not clearly understood, which may affect the popularization of effective prescriptions. This study aims to identify the core TCM herbs in the treatment of hepatitis B, liver cirrhosis, and liver cancer so as to clarify the mechanism of action of the core herb networks. Methods There were 1,673 prescriptions for chronic liver diseases collected in this study, of which 854 were hepatic B prescriptions, 530 were for liver cirrhosis, and 289 were for liver cancer. The basic characteristics of herbal medicine were firstly explained via descriptive analysis, then the core prescriptions of herbal medicine were analyzed through association rule, and finally, the mechanism of core prescriptions was explored with the help of systematic network pharmacology and by applying such databases as TCMIP, HERB, OMIM, GeneCards, KEGG, and software like RStudio and Cytoscape. Results The rule of the core prescriptions in these cases was characterized by the application of herbs with both cold and warm properties, in which bitter herbs with cold property took priority. Tonifying deficiency, clearing heat, and activating blood circulations to remove stasis were common treatment principles for the three liver diseases. Turmeric Root Tuber (YuJin), White Peony Root (BaiShao), Bupleurum (ChaiHu), Salvia miltiorrhiza (DanShen), and Astragali Radix (HuangQi) were prescribed the most in hepatitis B treatment to invigorate the spleen and soothe the liver. Astragali Radix (HuangQi), Tuckahoe (FuLing), Atractylodis Macrocephalae Rhizoma (BaiZhu), Fructus Polygoni Orientalis (ShuiHongHuaZi), and Curcumae Rhizome (EZhu) were most frequently applied in liver cirrhosis treatment to replenish qi and activate blood. Oldenlandia (BaiHuaSheSheCao), Bearded Scutellaria (BanZhiLian), Curcumae Rhizome (EZhu), and Cardamom (DouKou) were most frequently prescribed to eliminate cancer toxin, invigorate the spleen, and activate blood. These core herbs mainly act through signal transduction and immune system pathways, in which the PI3K-Akt pathway plays a key role. The core prescription for liver cirrhosis regulated more endocrine system pathways than the hepatitis B prescription, and liver cancer prescription regulated more nervous system-related pathways. Conclusion Three core prescriptions for hepatitis B, liver cirrhosis, and liver cancer treatment were identified, which acted mainly through signal transduction and immune system pathways to regulate immunity and cell growth and participate in inflammation inhibition, in which liver cancer prescription regulated more pathways, especially more nervous system-related pathways than the other two.
Collapse
|
42
|
Tian K, Ma J, Wang K, Li D, Zhang J, Wang L, Wu Z. PTEN is recognized as a prognostic-related biomarker and inhibits proliferation and invasiveness of skull base chordoma cells. Front Surg 2022; 9:1011845. [PMID: 36211273 PMCID: PMC9537766 DOI: 10.3389/fsurg.2022.1011845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Objective This work aimed to examine the function of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in skull base chordoma (SBC) at the clinical and cellular levels. Methods Totally 65 paraffin-embedded and 86 frozen specimens from 96 patients administered surgery were analyzed. Immunohistochemical staining and quantitative real-time polymerase chain reaction were performed, and the associations of PTEN expression with clinical features were assessed. At the cellular level, PTEN was knocked down by the siRNA approach in the UCH-1 cell line, and cell proliferation and invasion were detected by the CCK-8 and migration assays, respectively. Results At the protein level, PTEN expression was increased in non-bone-invasive tumor samples in comparison with bone-invasive specimens (p = 0.025), and elevated in soft SBCs in comparison with hard tumors (p = 0.017). Increased PTEN protein expression was associated with decreased risk of tumor progression (p = 0.002; hazard ratio = 0.981, 95% confidence interval: 0.969–0.993). At the gene expression level, the cut-off value was set at 10.5 after ROC curve analysis, and SBC specimens were divided into two groups: PTEN high group, ΔCt value below 10.5; PTEN low group, ΔCt value above 10.5. In multivariate regression analysis of PFS, the risk of tumor progression was increased in PTEN low group tumors in comparison with PTEN high group SBCs (p = 0.006). In the CCK-8 assay, in comparison with control cells, PTEN knockdown cells had increased absorbance, suggesting elevated cell proliferation rate. In the invasion assay, the number of tumor cells penetrating into the lower chamber was significantly increased in the PTEN knockdown group compared with control cells. Conclusions Decreased PTEN expression in SBC, at the protein and gene levels, is associated with reduced PFS. PTEN knockdown in chordoma cells led to enhanced proliferation and invasiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen Wu
- Correspondence: Liang Wang Zhen Wu
| |
Collapse
|
43
|
SLC26A4 Mutation Promotes Cell Apoptosis by Inducing Pendrin Transfer, Reducing Cl- Transport, and Inhibiting PI3K/Akt/mTOR Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6496799. [PMID: 36072472 PMCID: PMC9444440 DOI: 10.1155/2022/6496799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Objective. Pendrin is encoded by SLC26A4, which is expressed in the apical membrane of inner ear epithelial cells and drives chloride reabsorption in the apical septum. In the inner ear, pendrin dysfunction and hypofunctional mutations lead to vestibular aqueduct (EVA) enlargement and sensory neural hearing loss. Mutations in SLC26A4 are a common reason of deafness. However, the underlying mechanisms of SLC26A4 mutants in hearing loss remain unknown. Methods. In the present study, pEGFP-N1 carrying wild-type and mutant SLC26A4 (c.85G>A, c.2006A>T, and c.853G>A) were transfected into HEK-293T cells. GFP fluorescence and GFP levels were determined. SLC26A4 mRNA levels were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Then, the expression of chloride intracellular channel 1 (CLIC1) and CLIC2 was measured by Immunofluorescence assay. Intracellular chloride concentration and apoptotic rate were analyzed by flow cytometry. The levels of membrane/cytoplasmic pendrin, apoptosis-associated proteins, and the PI3K/Akt/mTOR pathway members were determined by Western blot. Results. Constructed SLC26A4 mutant 1 (c.85G>A), SLC26A4 mutant 2 (c.2006A>T), and SLC26A4 mutant 3 (c.853G>A). The wild-type and 3 mutations were stably expressed in HEK-293T. SLC26A4 mRNA expression was significantly increased after transfection with wild-type SLC26A4 and mutant SLC26A4 compared with the untransfected vector group (
). Compared with the vector group, the expression levels of membrane pendrin, cytoplasmic pendrin, CLIC1, CLIC2, Bcl-2, p-PI3K, p-Akt, and p-mTOR were upregulated. Compared with the vector group, the chloride concentration, cell apoptotic rate, and the expression levels of caspase-3, caspase-9, and Bax were downregulated. Compared with the vector group, the above effects of SLC26A4 were reversed after the SLC26A4 mutant. Conclusion. After SLC26A4 mutation, pendrin was transferred from the membrane, the chloride intracellular channel function was reduced, and the excessive accumulation of chloride in the cytoplasm induced cell apoptosis by inhibited PI3K/Akt/mTOR pathway phosphorylation.
Collapse
|
44
|
Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol 2022; 15:120. [PMID: 36038892 PMCID: PMC9422141 DOI: 10.1186/s13045-022-01340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.,School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xingrong Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
45
|
Shao BZ, Chai NL, Yao Y, Li JP, Law HKW, Linghu EQ. Autophagy in gastrointestinal cancers. Front Oncol 2022; 12:975758. [PMID: 36091106 PMCID: PMC9459114 DOI: 10.3389/fonc.2022.975758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancers are a group of cancers occurred in gastrointestinal tissues with high morbidity and mortality rate. Although numerous studies were conducted on the investigation of gastrointestinal cancers, the real mechanisms haven’t been discovered, and no effective methods of prevention and treatment of gastrointestinal cancers have been developed. Autophagy, a vital catabolic process in organisms, have been proven to participate in various mechanisms and signaling pathways, thus producing a regulatory effect on various diseases. The role of autophagy in gastrointestinal cancers remains unclear due to its high complexity. In this review, firstly, the biological features of autophagy will be introduced. Secondly, the role of autophagy in three popular gastrointestinal cancers, namely esophageal cancer, gastric cancer, and colorectal cancer will be described and discussed by reviewing the related literature. We aimed to bring novel insights in exploring the real mechanisms for gastrointestinal cancers and developing effective and efficient therapeutic methods to treat gastrointestinal cancers.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
- *Correspondence: En-Qiang Linghu, ; Helen Ka Wai Law, ; Bo-Zong Shao,
| | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yi Yao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin-Ping Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
- *Correspondence: En-Qiang Linghu, ; Helen Ka Wai Law, ; Bo-Zong Shao,
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
- *Correspondence: En-Qiang Linghu, ; Helen Ka Wai Law, ; Bo-Zong Shao,
| |
Collapse
|
46
|
Sandalova T, Sala BM, Achour A. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Front Chem 2022; 10:861609. [PMID: 36017166 PMCID: PMC9395651 DOI: 10.3389/fchem.2022.861609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Significant advances in mass-spectroscopy (MS) have made it possible to investigate the cellular immunopeptidome, a large collection of MHC-associated epitopes presented on the surface of healthy, stressed and infected cells. These approaches have hitherto allowed the unambiguous identification of large cohorts of epitope sequences that are restricted to specific MHC class I and II molecules, enhancing our understanding of the quantities, qualities and origins of these peptide populations. Most importantly these analyses provide essential information about the immunopeptidome in responses to pathogens, autoimmunity and cancer, and will hopefully allow for future tailored individual therapies. Protein post-translational modifications (PTM) play a key role in cellular functions, and are essential for both maintaining cellular homeostasis and increasing the diversity of the proteome. A significant proportion of proteins is post-translationally modified, and thus a deeper understanding of the importance of PTM epitopes in immunopeptidomes is essential for a thorough and stringent understanding of these peptide populations. The aim of the present review is to provide a structural insight into the impact of PTM peptides on stability of MHC/peptide complexes, and how these may alter/modulate immune responses.
Collapse
Affiliation(s)
- Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Section for Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Section for Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Section for Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Adnane Achour,
| |
Collapse
|
47
|
Zheng H, Lin Q, Rao Y. A-Kinase Interacting Protein 1 Knockdown Restores Chemosensitivity via Inactivating PI3K/AKT and β-Catenin Pathways in Anaplastic Thyroid Carcinoma. Front Oncol 2022; 12:854702. [PMID: 35965570 PMCID: PMC9366429 DOI: 10.3389/fonc.2022.854702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundA-kinase interacting protein 1 (AKIP1) promotes tumor progression and chemoresistance in several malignancies; meanwhile, it is related to higher tumor size and recurrence risk of papillary thyroid carcinoma, while the role of AKIP1 in anaplastic thyroid carcinoma (ATC) is unclear. The aim of this study is to explore the effect of AKIP1 knockdown on cell malignant behaviors and doxorubicin resistance in ATC.MethodsAKIP1 knockdown was conducted in ATC cell lines (8505C and CAL-62 cells) by siRNA; then, cell viability, apoptosis, invasion, PI3K/AKT and β-catenin pathways, and doxorubicin sensitivity were detected. Subsequently, doxorubicin-resistant 8505C cells (8505C/Dox) were established. Additionally, AKIP1 was modified in 8505C and 8505C/Dox cells that underwent doxorubicin treatment by siRNA or overexpression plasmid, followed by cellular function and pathway detection.ResultsAKIP1 was elevated in FRO, 8505C, CAL-62, and KHM-5M cells compared to control cells (all p < 0.05). Subsequently, AKIP1 knockdown elevated apoptosis, inhibited viability and invasion, and inactivated PI3K/AKT and β-catenin pathways in 8505C and CAL-62 cells (all p < 0.05). AKIP1 knockdown decreased relative cell viability in doxorubicin-treated 8505C and CAL-62 cells; then, AKIP1 was elevated in 8505C/Dox cells compared to 8505C cells (all p < 0.05). Furthermore, AKIP1 knockdown restored doxorubicin sensitivity (reflected by decreased cell viability and invasion, and increased apoptosis), but inactivated PI3K/AKT and β-catenin pathways in doxorubicin-treated 8505C/Dox cells. However, AKIP1 overexpression presented an opposite effect on these functions and pathways in doxorubicin-treated 8505C cells.ConclusionAKIP1 knockdown decreases cell survival and invasion while promoting sensitivity to doxorubicin via inactivating PI3K/AKT and β-catenin pathways in ATC.
Collapse
|
48
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
49
|
Li Y, He Y, Xiang J, Feng L, Wang Y, Chen R. The Functional Mechanism of MicroRNA in Oral Lichen Planus. J Inflamm Res 2022; 15:4261-4274. [PMID: 35923905 PMCID: PMC9342247 DOI: 10.2147/jir.s369304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genomes of mammals and other complex organisms, and many of them are alternately spliced and processed into smaller products. Types of ncRNAs include microRNAs (miRNAs), circular RNAs, and long ncRNAs. miRNAs are about 21 nucleotides long and form a broad class of post-transcriptional regulators of gene expression that affect numerous developmental and physiological processes in eukaryotes. They usually act as negative regulators of mRNA expression through complementary binding sequences in the 3’-UTR of the target mRNA, leading to translation inhibition and target degradation. In recent years, the importance of ncRNA in oral lichen planus (OLP), particularly miRNA, has attracted extensive attention. However, the biological functions of miRNAs and their mechanisms in OLP are still unclear. In this review, we discuss the role and function of miRNAs in OLP, and we also describe their potential functional roles as biomarkers for the diagnosis of OLP. MiRNAs are promising new therapeutic targets, but more work is needed to understand their biological functions.
Collapse
Affiliation(s)
- Yunshan Li
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Yaodong He
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Junwei Xiang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
- Correspondence: Yuanyin Wang; Ran Chen, College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China, Email ;
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
50
|
Lei W, Yan Y, Ma Y, Jiang M, Zhang B, Zhang H, Li Y. Notoginsenoside R1 Regulates Ischemic Myocardial Lipid Metabolism by Activating the AKT/mTOR Signaling Pathway. Front Pharmacol 2022; 13:905092. [PMID: 35814216 PMCID: PMC9257227 DOI: 10.3389/fphar.2022.905092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Ischemic heart diseases are responsible for more than one-third of all deaths worldwide. Radix notoginseng is widely used to treat ischemic heart disease in China and other Asian countries, and notoginsenoside R1 (NGR1) is its characteristic and large-amount ingredient. However, the potential molecular mechanisms of NGR1 in improving ischemic heart diseases are unclear. In this study, we combined pharmacological evaluation with network pharmacology, myocardial proteomics, and conventional molecular dynamics (MD) simulation to explore the cardio-protection mechanisms of NGR1. Our results revealed that NGR1 improved the echocardiographic, tissue pathological, and serum biochemical perturbations in myocardial ischemic rats. The network pharmacology studies indicated that NGR1 mainly regulated smooth muscle cell proliferation, vasculature development, and lipid metabolism signaling, especially in the PI3K/AKT pathway. Myocardial proteomics revealed that the function of NGR1 was focused on regulating metabolic and energy supply processes. The research combined reverse-docked targets with differential proteins and demonstrated that NGR1 modulated lipid metabolism in ischemic myocardia by interacting with mTOR and AKT. Conventional MD simulation was applied to investigate the influence of NGR1 on the structural stabilization of the mTOR and AKT complex. The results suggested that NGR1 can strengthen the affinity stabilization of mTOR and AKT. Our study first revealed that NGR1 enhanced the affinity stabilization of mTOR and AKT, thus promoting the activation of the AKT/mTOR pathway and improving lipid metabolic abnormity in myocardial ischemic rats.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaolei Ma
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Boli Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Li,
| |
Collapse
|