1
|
Karimi Nezhad MT, Šamonil P, Daněk P, Jaroš J, Hájek M, Hájková P, Jabinski S, Meador TB, Roleček J. Lipid biomarkers and stable isotopes uncover paleovegetation changes in extremely species-rich forest-steppe ecosystems, Central Europe. ENVIRONMENTAL RESEARCH 2024; 259:119564. [PMID: 38971353 DOI: 10.1016/j.envres.2024.119564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The historical development of the vegetation of semi-dry grasslands in Central Europe is not satisfactorily understood. Long-term continuity of open vegetation or, conversely, deep-past forest phases are considered possible sources of the current extreme species diversity of these ecosystems. We aimed to reveal the trajectory of paleovegetation development in these ecosystems through detailed analysis of terrestrial in-situ soil geoarchives. We measured the bulk soil carbon and nitrogen contents, lipid molecular distribution, and compound-specific stable carbon and hydrogen isotopic signatures of mid- and long-chain n-alkanes extracted from soil and modern plant material tissues (i.e., deciduous and Pinus leaves and grass/herbaceous species). The C23-C33 n-alkane homologues were identified in soils with different abundances. Normally, C27 and C29 n-alkanes were the most abundant homologues in tree-leaf samples, while grass-derived n-alkanes were mostly C31 and C33 homologues. Soils were largely dominated by C29 and C31 n-alkanes. Odd-numbered C27-C33 soil n-alkane δ13C values ranged from -36.2‰ to -23.2‰, whereas their δ2H values showed a wider range of variability that fluctuated from -224‰ to -172‰. Molecular distribution in combination with radiocarbon analysis of soil organic matter (SOM) and δ13C and δ2H values of n-alkanes revealed a large contribution of C3 trees (both deciduous and coniferous trees/pine trees) as the main source of n-alkanes between the late Pleistocene and early Holocene (ca 15,000-8200 calibrated year before present/cal year BP). A clear shift toward more grassy/herbaceous vegetation was observed from the early Holocene (ca 11,700-8200 cal year BP) onwards. Distribution patterns of lipids and soil geochemical parameters showed that plants are the main source of SOM and that biodegradation and kinetic isotope fractionation are not the main reasons for 13C enrichment in soil profiles. Past C3 vegetation shifts as well as paleoclimate changes (i.e., aridity) can have played a role in the observed 13C depth profiles.
Collapse
Affiliation(s)
- Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 25/27, 602 00, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Pavel Šamonil
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 25/27, 602 00, Brno, Czech Republic; Faculty of Forestry and Wood Technology, Mendel University in Brno, Lesnická 3, 613 00, Brno, Czech Republic
| | - Pavel Daněk
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 25/27, 602 00, Brno, Czech Republic
| | - Jakub Jaroš
- Department of Forest Ecology, The Silva Tarouca Research Institute, Lidická 25/27, 602 00, Brno, Czech Republic; Faculty of Forestry and Wood Technology, Mendel University in Brno, Lesnická 3, 613 00, Brno, Czech Republic
| | - Michal Hájek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Petra Hájková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Institute of Botany of the Czech Academy of Sciences, Department of Paleoecology, Lidická 25/27, 602 00, Brno, Czech Republic
| | - Stanislav Jabinski
- University of Southern Bohemia, Na Sádkách 7, 370 05, České Budějovice, Czech Republic; Biology Center Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Travis B Meador
- University of Southern Bohemia, Na Sádkách 7, 370 05, České Budějovice, Czech Republic; Biology Center Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jan Roleček
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Institute of Botany of the Czech Academy of Sciences, Department of Paleoecology, Lidická 25/27, 602 00, Brno, Czech Republic
| |
Collapse
|
2
|
Ding S, Hamm JN, Bale NJ, Sinninghe Damsté JS, Spang A. Selective lipid recruitment by an archaeal DPANN symbiont from its host. Nat Commun 2024; 15:3405. [PMID: 38649682 PMCID: PMC11035636 DOI: 10.1038/s41467-024-47750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
The symbiont Ca. Nanohaloarchaeum antarcticus is obligately dependent on its host Halorubrum lacusprofundi for lipids and other metabolites due to its lack of certain biosynthetic genes. However, it remains unclear which specific lipids or metabolites are acquired from its host, and how the host responds to infection. Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus - Hrr. lacusprofundi symbiotic relationship during co-cultivation. By using a comprehensive untargeted lipidomic methodology, our study reveals that Ca. Nha. antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-thirds of the total number of host lipids. Lipid profiles of co-cultures displayed shifts in abundances of bacterioruberins and menaquinones and changes in degree of bilayer-forming glycerolipid unsaturation. This likely results in increased membrane fluidity and improved resistance to membrane disruptions, consistent with compensation for higher metabolic load and mechanical stress on host membranes when in contact with Ca. Nha. antarcticus cells. Notably, our findings differ from previous observations of other DPANN symbiont-host systems, where no differences in lipidome composition were reported. Altogether, our work emphasizes the strength of employing untargeted lipidomics approaches to provide details into the dynamics underlying a DPANN symbiont-host system.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Joshua N Hamm
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ding S, von Meijenfeldt FAB, Bale NJ, Sinninghe Damsté JS, Villanueva L. Production of structurally diverse sphingolipids by anaerobic marine bacteria in the euxinic Black Sea water column. THE ISME JOURNAL 2024; 18:wrae153. [PMID: 39113610 PMCID: PMC11334938 DOI: 10.1093/ismejo/wrae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Microbial lipids, used as taxonomic markers and physiological indicators, have mainly been studied through cultivation. However, this approach is limited due to the scarcity of cultures of environmental microbes, thereby restricting insights into the diversity of lipids and their ecological roles. Addressing this limitation, here we apply metalipidomics combined with metagenomics in the Black Sea, classifying and tentatively identifying 1623 lipid-like species across 18 lipid classes. We discovered over 200 novel, abundant, and structurally diverse sphingolipids in euxinic waters, including unique 1-deoxysphingolipids with long-chain fatty acids and sulfur-containing groups. Sphingolipids were thought to be rare in bacteria and their molecular and ecological functions in bacterial membranes remain elusive. However, genomic analysis focused on sphingolipid biosynthesis genes revealed that members of 38 bacterial phyla in the Black Sea can synthesize sphingolipids, representing a 4-fold increase from previously known capabilities and accounting for up to 25% of the microbial community. These sphingolipids appear to be involved in oxidative stress response, cell wall remodeling, and are associated with the metabolism of nitrogen-containing molecules. Our findings underscore the effectiveness of multi-omics approaches in exploring microbial chemical ecology.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
- Department of Biology, Faculty of Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
4
|
Rempfert KR, Kraus EA, Nothaft DB, Dildar N, Spear JR, Sepúlveda J, Templeton AS. Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids. Front Microbiol 2023; 14:1198786. [PMID: 38029177 PMCID: PMC10667739 DOI: 10.3389/fmicb.2023.1198786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Nadia Dildar
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Julio Sepúlveda
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| |
Collapse
|
5
|
Kropp C, Lipp J, Schmidt AL, Seisenberger C, Linde M, Hinrichs K, Babinger P. Identification of acetylated diether lipids in halophilic Archaea. Microbiologyopen 2022; 11:e1299. [PMID: 35765181 PMCID: PMC9179154 DOI: 10.1002/mbo3.1299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
As a hallmark of Archaea, their cell membranes are comprised of ether lipids. However, Archaea-type ether lipids have recently been identified in Bacteria as well, with a somewhat different composition: In Bacillales, sn-glycerol 1-phosphate is etherified with one C35 isoprenoid chain, which is longer than the typical C20 chain in Archaea, and instead of a second isoprenoid chain, the product heptaprenylglyceryl phosphate becomes dephosphorylated and afterward diacetylated by the O-acetyltransferase YvoF. Interestingly, database searches have revealed YvoF homologs in Halobacteria (Archaea), too. Here, we demonstrate that YvoF from Haloferax volcanii can acetylate geranylgeranylglycerol in vitro. Additionally, we present the first-time identification of acetylated diether lipids in H. volcanii and Halobacterium salinarum by mass spectrometry. A variety of different acetylated lipids, namely acetylated archaeol, and acetylated archaetidylglycerol, were found, suggesting that halobacterial YvoF has a broad substrate range. We suppose that the acetyl group might serve to modify the polarity of the lipid headgroup, with still unknown biological effects.
Collapse
Affiliation(s)
- Cosimo Kropp
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Julius Lipp
- MARUM Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| | - Anna Lena Schmidt
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Christina Seisenberger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
- Present address:
Roche Diagnostics GmbHPenzbergGermany
| | - Mona Linde
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KG.Biberach an der RißGermany
| | - Kai‐Uwe Hinrichs
- MARUM Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| |
Collapse
|
6
|
Law KP, He W, Tao J, Zhang C. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:735878. [PMID: 34925256 PMCID: PMC8674956 DOI: 10.3389/fmicb.2021.735878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Archaea are differentiated from the other two domains of life by their biomolecular characteristics. One such characteristic is the unique structure and composition of their lipids. Characterization of the whole set of lipids in a biological system (the lipidome) remains technologically challenging. This is because the lipidome is innately complex, and not all lipid species are extractable, separable, or ionizable by a single analytical method. Furthermore, lipids are structurally and chemically diverse. Many lipids are isobaric or isomeric and often indistinguishable by the measurement of mass or even their fragmentation spectra. Here we developed a novel analytical protocol based on liquid chromatography ion mobility mass spectrometry to enhance the coverage of the lipidome and characterize the conformations of archaeal lipids by their collision cross-sections (CCSs). The measurements of ion mobility revealed the gas-phase ion chemistry of representative archaeal lipids and provided further insights into their attributions to the adaptability of archaea to environmental stresses. A comprehensive characterization of the lipidome of mesophilic marine thaumarchaeon, Nitrosopumilus maritimus (strain SCM1) revealed potentially an unreported phosphate- and sulfate-containing lipid candidate by negative ionization analysis. It was the first time that experimentally derived CCS values of archaeal lipids were reported. Discrimination of crenarchaeol and its proposed stereoisomer was, however, not achieved with the resolving power of the SYNAPT G2 ion mobility system, and a high-resolution ion mobility system may be required for future work. Structural and spectral libraries of archaeal lipids were constructed in non-vendor-specific formats and are being made available to the community to promote research of Archaea by lipidomics.
Collapse
Affiliation(s)
- Kai P Law
- Southern University of Science and Technology, SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
7
|
Hunter JE, Fredricks HF, Behrendt L, Alcolombri U, Bent SM, Stocker R, Van Mooy BAS. Using High-Sensitivity Lipidomics To Assess Microscale Heterogeneity in Oceanic Sinking Particles and Single Phytoplankton Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15456-15465. [PMID: 34724376 DOI: 10.1021/acs.est.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sinking particulate organic matter (POM) is a primary component of the ocean's biological carbon pump that is responsible for carbon export from the surface to the deep sea. Lipids derived from plankton comprise a significant fraction of sinking POM. Our understanding of planktonic lipid biosynthesis and the subsequent degradation of lipids in sinking POM is based on the analysis of bulk samples that combine many millions of plankton cells or dozens of sinking particles, which averages out natural heterogeneity. We developed and applied a nanoflow high-performance liquid-chromatography electrospray-ionization high-resolution accurate-mass mass spectrometry lipidomic method to show that two types of sinking particles─marine snow and fecal pellets─collected in the western North Atlantic Ocean have distinct lipidomes, providing new insights into their sources and degradation that would not be apparent from bulk samples. We pressed the limit of this approach by examining individual diatom cells from a single culture, finding marked lipid heterogeneity, possibly indicative of fundamental mechanisms underlying cell division. These single-cell data confirm that even cultures of phytoplankton cells should be viewed as mixtures of physiologically distinct populations. Overall, this work reveals previously hidden lipidomic heterogeneity in natural POM and phytoplankton cells, which may provide critical new insights into microscale chemical and microbial processes that control the export of sinking POM.
Collapse
Affiliation(s)
- Jonathan E Hunter
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Helen F Fredricks
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Lars Behrendt
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Shavonna M Bent
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Benjamin A S Van Mooy
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| |
Collapse
|
8
|
Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020; 16:56. [PMID: 32307636 DOI: 10.1007/s11306-020-01665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Michael P Napolitano
- CSS, Inc., under contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Candice Z Ulmer
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|