1
|
Imai M, Kawaguchi K, Morita M, Imanaka T, So T. Transmembrane helix 6 of ABCD4 is indispensable for cobalamin transport. J Inherit Metab Dis 2024; 47:366-373. [PMID: 38069516 DOI: 10.1002/jimd.12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 03/16/2024]
Abstract
ABCD4, which belongs to the ABC protein subfamily D, plays a role in the transport of cobalamin from lysosomes to the cytosol by cooperating with ATP-binding and ATP-hydrolysis. Pathogenic variants in the ABCD4 gene lead to an inherited metabolic disorder characterized by cobalamin deficiency. However, the structural requirements for cobalamin transport in ABCD4 remain unclear. In this study, six proteoliposomes were prepared, each containing a different chimeric ABCD4 protein, wherein each of the six transmembrane (TM) helices was replaced with the corresponding ABCD1. We analyzed the cobalamin transport activities of the ABCD mutants. In the proteoliposome with chimeric ABCD4 replacing TM helix 6, the cobalamin transport activity disappeared without a reduction in ATPase activity, indicating that TM helix 6 contributes to substrate recognition. Furthermore, the substitution of aspartic acid at position 329 or threonine at position 332 in TM helix 6 with the basic amino acid lysine led to a decrease in cobalamin-transport activity without causing a reduction in ATPase activity. The amino acids in TM helix 6 may be critically involved in substrate recognition; the charged state in the C-terminal half of TM helix 6 of ABCD4 is responsible for cobalamin transport activity.
Collapse
Affiliation(s)
- Momoka Imai
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kosuke Kawaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Jia Y, Zhang Y, Wang W, Lei J, Ying Z, Yang G. Structural and functional insights of the human peroxisomal ABC transporter ALDP. eLife 2022; 11:e75039. [PMID: 36374178 PMCID: PMC9683791 DOI: 10.7554/elife.75039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenoleukodystrophy protein (ALDP) is responsible for the transport of very-long-chain fatty acids (VLCFAs) and corresponding CoA-esters across the peroxisomal membrane. Dysfunction of ALDP leads to peroxisomal metabolic disorder exemplified by X-linked adrenoleukodystrophy (ALD). Hundreds of ALD-causing mutations have been identified on ALDP. However, the pathogenic mechanisms of these mutations are restricted to clinical description due to limited structural and biochemical characterization. Here we report the cryo-electron microscopy structure of human ALDP with nominal resolution at 3.4 Å. ALDP exhibits a cytosolic-facing conformation. Compared to other lipid ATP-binding cassette transporters, ALDP has two substrate binding cavities formed by the transmembrane domains. Such structural organization may be suitable for the coordination of VLCFAs. Based on the structure, we performed integrative analysis of the cellular trafficking, protein thermostability, ATP hydrolysis, and the transport activity of representative mutations. These results provide a framework for understanding the working mechanism of ALDP and pathogenic roles of disease-associated mutations.
Collapse
Affiliation(s)
- Yutian Jia
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Yanming Zhang
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Wenhao Wang
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zhengxin Ying
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| | - Guanghui Yang
- State Key Laboratory for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Morita A, Enokizono T, Ohto T, Tanaka M, Watanabe S, Takada Y, Iwama K, Mizuguchi T, Matsumoto N, Morita M, Takashima S, Shimozawa N, Takada H. Novel ACOX1 mutations in two siblings with peroxisomal acyl-CoA oxidase deficiency. Brain Dev 2021; 43:475-481. [PMID: 33234382 DOI: 10.1016/j.braindev.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022]
Abstract
Peroxisomal acyl-CoA oxidase (ACOX1) deficiency is a rare autosomal recessive single enzyme deficiency characterized by hypotonia, seizures, failure to thrive, developmental delay, and neurological regression starting from approximately 3 years of age. Here, we report two siblings with ACOX1 deficiency born to non-consanguineous Japanese parents. They showed mild global developmental delay from infancy and began to regress at 5 years 10 months and 5 years 6 months of age respectively. They gradually manifested with cerebellar ataxia, dysarthria, pyramidal signs, and dysphasia. Brain MRI revealed T2 high-intensity areas in the cerebellar white matter, bilateral middle cerebellar peduncle, and transverse tracts of the pons, followed by progressive atrophy of these areas. Intriguingly, the ratios of C24:0, C25:0, and C26:0 to C22:0 in plasma, which usually increase in ACOX1 deficiency were within normal ranges in both patients. On the other hand, whole exome sequencing revealed novel compound heterozygous variants in ACOX1: a frameshift variant (c.160delC:p.Leu54Serfs*18) and a missense variant (c.1259 T > C:p.Phe420Ser). The plasma concentration of individual very long chain fatty acids (C24:0, C25:0, and C26:0) was elevated, and we found that peroxisomes in fibroblasts of the patients were larger in size and fewer in number as previously reported in patients with ACOX1 deficiency. Furthermore, the C24:0 β-oxidation activity was dramatically reduced. Our findings suggest that the elevation of individual plasma very long chain fatty acids concentration, genetic analysis including whole exome analysis, and biochemical studies on the patient's fibroblasts should be considered for the correct diagnosis of ACOX1 deficiency.
Collapse
Affiliation(s)
- Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, Japan
| | | | - Tatsuyuki Ohto
- Department of Pediatrics, University of Tsukuba Hospital, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Japan
| | - Shiena Watanabe
- Department of Pediatrics, University of Tsukuba Hospital, Japan
| | - Yui Takada
- Department of Pediatrics, Ibaraki Western Medical Center, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Masashi Morita
- Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Japan
| | - Shigeo Takashima
- Division of Genomic Research, Life Science Research Center, Gifu University, Japan
| | - Nobuyuki Shimozawa
- Division of Genomic Research, Life Science Research Center, Gifu University, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
4
|
Morita M, Toida A, Horiuchi Y, Watanabe S, Sasahara M, Kawaguchi K, So T, Imanaka T. Generation of an immortalized astrocytic cell line from Abcd1-deficient H-2K btsA58 mice to facilitate the study of the role of astrocytes in X-linked adrenoleukodystrophy. Heliyon 2021; 7:e06228. [PMID: 33659749 PMCID: PMC7892932 DOI: 10.1016/j.heliyon.2021.e06228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease characterized by inflammatory demyelination, and activated astrocytes as well as microglia are thought to be involved in its pathogenesis. Conditionally immortalized astrocytic cell clones were prepared from wild-type or Abcd1-deficient H-2KbtsA58 transgenic mice to study the involvement of astrocytes in the pathogenesis of X-ALD. The established astrocyte clones expressed astrocyte-specific molecules such as Vimentin, S100β, Aldh1L1 and Glast. The conditionally immortalized astrocytes proliferated vigorously and exhibited a compact cell body under a permissive condition at 33 °C in the presence of IFN-γ, whereas they became quiescent and exhibited substantial cell enlargement under a non-permissive condition at 37 °C in the absence of IFN-γ. An Abcd1-deficient astrocyte clone exhibited a decrease in the β-oxidation of very long chain fatty acid (VLCFA) and an increase in cellular levels of VLCFA, typical features of Abcd1-deficiency. Upon stimulation with LPS, the Abcd1-deficient astrocyte clone expressed higher levels of pro-inflammatory genes, such as Il6, Nos2, Ccl2 and Cxcl10, compared to wild-type (WT) astrocytes. Furthermore, the Abcd1-deficient astrocytes produced higher amounts of chondroitin sulfate, a marker of reactive astrocytes. These results suggest that dysfunction of Abcd1 renders astrocytes highly responsive to innate immune stimuli. Conditionally immortalized cell clones which preserve astrocyte properties are a useful tool for analyzing the cellular and molecular pathology of ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Ai Toida
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yuki Horiuchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takanori So
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| |
Collapse
|
5
|
Wang C, Liu H, Han B, Zhu H, Liu J. A novel ABCD1 gene mutation causes adrenomyeloneuropathy in a Chinese family. Brain Behav 2019; 9:e01416. [PMID: 31557422 PMCID: PMC6790300 DOI: 10.1002/brb3.1416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Adrenomyeloneuropathy (AMN) is a rare genetic disease. In this study, a case of AMN was uncovered in a Chinese family. METHODS Clinical manifestations were collected and observed through medical records, physical examination, laboratory tests, and magnetic resonance imaging (MRI). Generation sequencing of the ABCD1 gene was performed, and the pedigree of the family was analyzed. RESULTS The proband suffered from adrenocortical insufficiency at 8 years old and presented with a slowly progressive gait disorder at 21 years old. Physical examination, laboratory tests, and MRI showed that he had adult-onset AMN manifestations, including spasticity and hyperactive tendon reflexes with Hoffman and Babinski signs in the limbs, difficulty in performing the heel-to-shin test, hyperpigmentation, increased levels of adrenocorticotropic hormone and very long-chain fatty acids, decreased levels of corticosteroid and serum gesterol, and salient atrophy of the cervical and thoracic spinal cord. DNA analysis revealed a missense variant, c.290A>C (p.His97Pro) in exon 1 of the ABCD1 gene, in the proband. Sanger sequencing confirmed that the proband's mother was heterozygous for the same variant. The ABCD1 gene mutation transmitted in an X-linked inheritance manner. CONCLUSION A novel missense mutation in the ABCD1 gene was identified in a Chinese family, which caused an unusual manifestation of adult-onset AMN. This discovery is beneficial for the genetic counseling of patients with X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongchao Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Bing Han
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Hui Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jingyao Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Morita M, Matsumoto S, Sato A, Inoue K, Kostsin DG, Yamazaki K, Kawaguchi K, Shimozawa N, Kemp S, Wanders RJ, Kojima H, Okabe T, Imanaka T. Stability of the ABCD1 Protein with a Missense Mutation: A Novel Approach to Finding Therapeutic Compounds for X-Linked Adrenoleukodystrophy. JIMD Rep 2018; 44:23-31. [PMID: 29926352 DOI: 10.1007/8904_2018_118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/30/2018] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Mutations in the ABCD1 gene that encodes peroxisomal ABCD1 protein cause X-linked adrenoleukodystrophy (X-ALD), a rare neurodegenerative disorder. More than 70% of the patient fibroblasts with this missense mutation display either a lack or reduction of the ABCD1 protein because of posttranslational degradation. In this study, we analyzed the stability of the missense mutant ABCD1 proteins (p.A616T, p.R617H, and p.R660W) in X-ALD fibroblasts and found that the mutant ABCD1 protein p.A616T has the capacity to recover its function by incubating at low temperature. In the case of such a mutation, chemical compounds that stabilize mutant ABCD1 proteins could be therapeutic candidates. Here, we prepared CHO cell lines stably expressing ABCD1 proteins with a missense mutation in fusion with green fluorescent protein (GFP) at the C-terminal. The stability of each mutant ABCD1-GFP in CHO cells was similar to the corresponding mutant ABCD1 protein in X-ALD fibroblasts. Furthermore, it is of interest that the GFP at the C-terminal was degraded together with the mutant ABCD1 protein. These findings prompted us to use CHO cells expressing mutant ABCD1-GFP for a screening of chemical compounds that can stabilize the mutant ABCD1 protein. We established a fluorescence-based assay method for the screening of chemical libraries in an effort to find compounds that stabilize mutant ABCD1 proteins. The work presented here provides a novel approach to finding therapeutic compounds for X-ALD patients with missense mutations.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Shun Matsumoto
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Airi Sato
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Inoue
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Dzmitry G Kostsin
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus.,Establishment of Health "National Anti-Doping Laboratory", Lyasny, Belarus
| | - Kozue Yamazaki
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuyuki Shimozawa
- Division of Genomic Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Stephan Kemp
- Laboratory of Genetic Metabolic Diseases, Academic Centre, Amsterdam, The Netherlands
| | - Ronald J Wanders
- Laboratory of Genetic Metabolic Diseases, Academic Centre, Amsterdam, The Netherlands
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
7
|
Characterization of human ATP-binding cassette protein subfamily D reconstituted into proteoliposomes. Biochem Biophys Res Commun 2018; 496:1122-1127. [DOI: 10.1016/j.bbrc.2018.01.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
|
8
|
Morita M, Matsumoto S, Okazaki A, Tomita K, Watanabe S, Kawaguchi K, Minato D, Matsuya Y, Shimozawa N, Imanaka T. A novel method for determining peroxisomal fatty acid β-oxidation. J Inherit Metab Dis 2016; 39:725-731. [PMID: 27324171 DOI: 10.1007/s10545-016-9952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to establish an assay method to screen for chemical compounds that stimulate peroxisomal fatty acid β-oxidation activity in X-linked adrenoleukodystropy (X-ALD) fibroblasts. In this investigation, we used 12-(1-pyrene)dodecanoic acid (pyrene-C12:0), a fluorescent fatty acid analog, as a substrate for fatty acid β-oxidation. When human skin fibroblasts were incubated with pyrene-C12:0, β-oxidation products such as pyrene-C10:0 and pyrene-C8:0 were generated time-dependently. These β-oxidation products were scarcely detected in the fibroblasts from patients with Zellweger syndrome, a peroxisomal biogenesis disorder. In contrast, in fibroblasts with mitochondrial carnitine-acylcarnitine translocase deficiency, the β-oxidation products were detected at a level similar to control fibroblasts. These results indicate that the β-oxidation of pyrene-C12:0 takes place in peroxisomes, but not mitochondria, so pyrene-C12:0 is useful for measuring peroxisomal fatty acid β-oxidation activity. In X-ALD fibroblasts, the β-oxidation activity for pyrene-C12:0 was approximately 40 % of control fibroblasts, which is consistent with previous results using [1-(14)C]lignoceric acid as the substrate. The present study provides a convenient procedure for screening chemical compounds that stimulate the peroxisomal fatty acid β-oxidation in X-ALD fibroblasts.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Shun Matsumoto
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Airi Okazaki
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kaito Tomita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daishiro Minato
- Laboratory of Synthetic and Medicinal Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuji Matsuya
- Laboratory of Synthetic and Medicinal Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nobuyuki Shimozawa
- Division of Genomic Research, Life Science Research Center, Gifu University, Gifu, 501-1193, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
9
|
Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 2016; 6:30183. [PMID: 27456980 PMCID: PMC4960490 DOI: 10.1038/srep30183] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
We previously demonstrated that ABCD4 does not localize to peroxisomes but rather, the endoplasmic reticulum (ER), because it lacks the NH2-terminal hydrophilic region required for peroxisomal targeting. It was recently reported that mutations in ABCD4 result in a failure to release vitamin B12 from lysosomes. A similar phenotype is caused by mutations in LMBRD1, which encodes the lysosomal membrane protein LMBD1. These findings suggested to us that ABCD4 translocated from the ER to lysosomes in association with LMBD1. In this report, it is demonstrated that ABCD4 interacts with LMBD1 and then localizes to lysosomes, and this translocation depends on the lysosomal targeting ability of LMBD1. Furthermore, endogenous ABCD4 was localized to both lysosomes and the ER, and its lysosomal localization was disturbed by knockout of LMBRD1. To the best of our knowledge, this is the first report demonstrating that the subcellular localization of the ABC transporter is determined by its association with an adaptor protein.
Collapse
|
10
|
Mehrpour M, Gohari F, Dizaji MZ, Ahani A, Malicdan MCV, Behnam B. An ABCD1 Mutation (c.253dupC) Caused Diverse Phenotypes of Adrenoleukodystrophy in an Iranian Consanguineous Pedigree. J Mol Genet Med 2016; 10. [PMID: 27489563 PMCID: PMC4969076 DOI: 10.4172/1747-0862.1000222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Current study was the first to report a consanguineous Iranian pedigree with ABCD1 mutation. METHODS Targeted molecular analysis was initially performed in three affected individuals in one family suspected to have X-ALD due to chronic progressive spasticity. Upon confirmation of genetic diagnosis, further neurologic and genetic evaluation of all family members was done. RESULTS A mutation in ABCD1 was identified in 35 affected individuals (out 96 pedigree members). The c. 253dup, in exon 1, leads to a frame shift and a premature stop codon at amino acid position 194 (p.Arg85Profs*110). Surprisingly, affected individuals in our cohort show some variability in phenotype, including childhood cerebral ALD, adrenomyeloneuropathy, and addison-only disease phenotypes, expanding the phenotype of X-ALD with p.Arg85Profs*110. CONCLUSION This report characterizes the clinical spectrum of an expanded Iranian pedigree with X-ALD due to an ABCD1 mutation. Given a high frequency of carriers in this region, we expect the prevalence of X-ALD to be higher, underscoring the importance of genetic counseling through reliable identification of heterozygous as well as homozygote females in consanguineous communities.
Collapse
Affiliation(s)
- Masoud Mehrpour
- Department of Neurology, Firoozgar Hospital, Iran University of medical sciences (IUMS), Tehran, Iran
| | - Faeze Gohari
- Medical Student Research Committee (MSRC), Faculty of Medicine, Iran University of medical sciences (IUMS), Tehran, Iran
| | - Majid Zaki Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Ahani
- Medical Student Research Committee (MSRC), Faculty of Medicine, Iran University of medical sciences (IUMS), Tehran, Iran
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, USA
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Morita M, Kawamichi M, Shimura Y, Kawaguchi K, Watanabe S, Imanaka T. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase. Metab Brain Dis 2015; 30:1359-67. [PMID: 26108493 DOI: 10.1007/s11011-015-9701-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Misato Kawamichi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yusuke Shimura
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
12
|
Wiesinger C, Eichler FS, Berger J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. APPLICATION OF CLINICAL GENETICS 2015; 8:109-21. [PMID: 25999754 PMCID: PMC4427263 DOI: 10.2147/tacg.s49590] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding a peroxisomal ABC transporter. In this review, we compare estimates of incidence derived from different populations in order to provide an overview of the worldwide incidence of X-ALD. X-ALD presents with heterogeneous phenotypes ranging from adrenomyeloneuropathy (AMN) to inflammatory demyelinating cerebral ALD (CALD). A large number of different mutations has been described, providing a unique opportunity for analysis of functional domains within ABC transporters. Yet the molecular basis for the heterogeneity of clinical symptoms is still largely unresolved, as no correlation between genotype and phenotype exists in X-ALD. Beyond ABCD1, environmental triggers and other genetic factors have been suggested as modifiers of the disease course. Here, we summarize the findings of numerous reports that aimed at identifying modifier genes in X-ALD and discuss potential problems and future approaches to address this issue. Different options for prenatal diagnosis are summarized, and potential pitfalls when applying next-generation sequencing approaches are discussed. Recently, the measurement of very long-chain fatty acids in lysophosphatidylcholine for the identification of peroxisomal disorders was included in newborn screening programs.
Collapse
Affiliation(s)
- Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Florian S Eichler
- Department for Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|