1
|
Bayrak H, Sezer A, Danış A, Özhan SH, Yıldız H, Kılıç M. SERAC1 gene mutation presented with markedly alpha fetoprotein elevation: case report. Acta Neurol Belg 2024; 124:307-309. [PMID: 37306826 DOI: 10.1007/s13760-023-02305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Harun Bayrak
- Division of Pediatric Metabolism, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Abdullah Sezer
- Department of Medical Genetics, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayşegül Danış
- Department of Pediatric Neurology, Bolu Abant Izzet Baysal Unıversity, Izzet Baysal Research and Training Hospital, Bolu, Turkey
| | - Selen Has Özhan
- Division of Pediatric Metabolism, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Harun Yıldız
- Division of Pediatric Metabolism, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Mustafa Kılıç
- Division of Pediatric Metabolism, Dr. Sami Ulus Maternity and Child Health Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
2
|
Machiraju P, Degtiarev V, Patel D, Hazari H, Lowry RB, Bedard T, Sinasac D, Brundler MA, Greenway SC, Khan A. Phenotype and pathology of the dilated cardiomyopathy with ataxia syndrome in children. J Inherit Metab Dis 2022; 45:366-376. [PMID: 34580891 DOI: 10.1002/jimd.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
The dilated cardiomyopathy with ataxia syndrome (DCMA) is an autosomal recessive mitochondrial disease caused by mutations in the DnaJ heat shock protein family (Hsp40) member C19 (DNAJC19) gene. DCMA or 3-methylglutaconic aciduria type V is globally rare, but the largest number of patients in the world is found in the Hutterite population of southern Alberta in Canada. We provide an update on phenotypic findings, natural history, pathological findings, and our clinical experience. We analyzed all available records for 43 patients diagnosed with DCMA between 2005 and 2015 at the Alberta Children's Hospital. All patients studied were Hutterite and homozygous for the causative DNAJC19 variant (c.130-1G>C, IVS3-1G>C) and had elevated levels of 3-methyglutaconic acid. We calculated a birth prevalence of 1.54 cases per 1000 total births in the Hutterite community. Children were small for gestational age at birth and frequently required supplemental nutrition (63%) or surgical placement of a gastrostomy tube (35%). Early mortality in this cohort was high (40%) at a median age of 13 months (range 4-294 months). Congenital anomalies were common as was dilated cardiomyopathy (50%), QT interval prolongation (83%), and developmental delay (95%). Tissue pathology was analyzed in a limited number of patients and demonstrated subendocardial fibrosis in the heart, macrovesicular steatosis and fibrosis in the liver, and structural abnormalities in mitochondria. This report provides clinical details for a cohort of children with DCMA and the first presentation of tissue pathology for this disorder. Despite sharing common genetic etiology and environment, the disease is highly heterogeneous for reasons that are not understood. DCMA is a clinically heterogeneous systemic mitochondrial disease with significant morbidity and mortality that is common in the Hutterite population of southern Alberta.
Collapse
Affiliation(s)
- Pranav Machiraju
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vlad Degtiarev
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dhwani Patel
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hassan Hazari
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R Brian Lowry
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Congenital Anomalies Surveillance System, Calgary, Alberta, Canada
| | - Tanya Bedard
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Congenital Anomalies Surveillance System, Calgary, Alberta, Canada
| | - David Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Marie-Anne Brundler
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Metabolics and Genetics in Calgary (M.A.G.I.C.) Clinic Ltd., Calgary, Alberta, Canada
| |
Collapse
|
3
|
Liu W, Johansson Å, Rask-Andersen H, Rask-Andersen M. A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Med 2021; 19:302. [PMID: 34847940 PMCID: PMC8638543 DOI: 10.1186/s12916-021-02169-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss is one of the most common sensory deficiencies. However, the molecular contribution to age-related hearing loss is not fully elucidated. METHODS We performed genome-wide association studies (GWAS) for hearing loss-related traits in the UK Biobank (N = 362,396) and selected a high confidence set of ten hearing-associated gene products for staining in human cochlear samples: EYA4, LMX1A, PTK2/FAK, UBE3B, MMP2, SYNJ2, GRM5, TRIOBP, LMO-7, and NOX4. RESULTS All proteins were found to be expressed in human cochlear structures. Our findings illustrate cochlear structures that mediate mechano-electric transduction of auditory stimuli, neuronal conductance, and neuronal plasticity to be involved in age-related hearing loss. CONCLUSIONS Our results suggest common genetic variation to influence structural resilience to damage as well as cochlear recovery after trauma, which protect against accumulated damage to cochlear structures and the development of hearing loss over time.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otorhinolaryngology and Head & Neck Surgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Genetic etiology of hereditary hearing loss in the Gulf Cooperation Council countries. Hum Genet 2021; 141:595-605. [PMID: 34338889 DOI: 10.1007/s00439-021-02323-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
The past 30 years have seen an exponential growth concerning the identification of genes and variants responsible for hereditary hearing loss (HL) worldwide. This has led to a huge gain in our understanding of molecular mechanisms of hearing and deafness, which improved diagnosis for populations with hereditary HL. Many communities around the world, especially in the Middle East and North Africa, have a high prevalence of consanguineous marriages. Congenital monogenic conditions, such as recessive HL, are more common in these populations due to high consanguinity rates. Many studies have shown that high rates of consanguinity, endogamy, and first cousin marriages were observed in the six countries of the Gulf Cooperation Council (GCC). The intent of this study is to investigate the etiology of HL in the GCC region. A deep literature review of genes and variants responsible for HL in this region revealed 89 recessive DNA pathogenic variants reported in 138 cases/familial cases. A total of 21 genes responsible for non-syndromic hearing loss (NSHL) and 17 genes associated with syndromic hearing loss (SHL) were reported in cases from the GCC region. Out of 156 reported affected cases, 112 showed HL only, and 44 showed HL associated with other clinical manifestations. This data suggests that in the GCC region 72% of HL forms are non-syndromic and 28% are syndromic. For individuals with NSHL, 66% of variants were detected in four genes (GJB2, OTOF, TMC1 and CDH23), with a predominance of variants located in the GJB2 gene (37.5%). However, among SHL, Usher syndrome was the more frequent as it has been observed in 41% of the reported syndromic GCC cases. Finally, our analysis showed that HL genetics testing and research in the GCC region took advantage of the next generation sequencing (NGS)-based techniques, as approximately 58% of reported variants were identified using this technology.
Collapse
|
5
|
Alshammari SA, Alghamdi FA, Alhazmi R, Aldossary S. Incidental Finding of MEGDEL Syndrome Based on Neuroimaging: Case Report. Case Rep Neurol 2021; 13:429-433. [PMID: 34326751 PMCID: PMC8299399 DOI: 10.1159/000516319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
MEGDEL 3-methylglutaconic (MG) aciduria, deafness, encephalopathy, Leigh-like syndrome is an autosomal recessive disorder associated with infantile hypoglycemia, progressive psychomotor developmental delay, cerebellar atrophy with lesions in the basal ganglia, spasticity, dystonia, deafness, and transient liver problems, which typically occur in the first year of life. Other clinical presentations include failure to thrive, epilepsy, and optic nerve atrophy. The serine active site-containing 1 (SERAC1) mutation is localized at the mitochondria-associated membranes, which are responsible for encoding a phosphatidylglycerol remodeler essential for both mitochondrial function and intracellular cholesterol trafficking and is thus responsible for the disease. Diagnosis is confirmed by the elevation of and concentrations of 3-MG acid and 3-methylglutaric acid in the urine or by identification of bi-allelic SERAC1 pathogenic variants on molecular genetic testing. Different pathological variants of SERAC1 have been identified in MEGDEL syndrome to date. Here, we report a case of a child with MEGDEL syndrome due to SERAC1 mutation. The child presented with accidental finding by CT showing hypodensity on bilateral symmetric anterior putamen and caudate abnormal. Neurological examination was unremarkable. This report presents a new neuroimaging finding by CT of MEGDEL syndrome.
Collapse
Affiliation(s)
| | | | - Rami Alhazmi
- King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | |
Collapse
|
6
|
Yan D, Chen S, Cai F, Shu J, Zhi X, Zheng J, Zhang C, Li D, Cai C. Complicated Hereditary Spastic Paraplegia Caused by SERAC1 Variants in a Chinese Family. Front Pediatr 2021; 9:816265. [PMID: 35223715 PMCID: PMC8873186 DOI: 10.3389/fped.2021.816265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The serine active site-containing protein 1 (SERAC1) biallelic variant usually causes MEGDEL syndrome, clinically characterized by increased excretion of 3-methylglutaconic in the urine, muscle hypotonia, sensorineural deafness, and Leigh-like lesions on brain MRI scans. In this study, we present a case from a Chinese family with disordered metabolism and dystonia owing to SERAC1 variants; the clinical phenotypes of the proband were different from those of MEGDEL syndrome but were similar to those juvenile-onset complicated hereditary spastic paraplegia. Thus, in this study, we aimed to confirm the relationship between SERAC1 variants and complicated hereditary spastic paraplegia. METHODS MRI and laboratory tests, including gas chromatography/mass spectrometry (GC/MS), were carried out for the proband. Whole-exome sequencing was used to detect the candidate SERAC1 variants. Variants were verified using Sanger sequencing. Various software programs (PolyPhen-2, MutationTaster, PROVEAN, and SIFT) were used to predict the pathogenicity of novel variants. RESULTS Brain MRI scans showed a symmetric flake abnormal signal shadow in the bilateral basal ganglia in T2-weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) analyses. The excretion of 3-methylglutaconic acid was found to be increased in our GC/MS analysis. Whole-exome sequencing showed novel compound heterozygous variants, including a novel c.1495A>G (p.Met499Val) variant in exon 14 of SERAC1 inherited from the father and a novel c.721_722delAG (p.Leu242fs) variant in exon 8 inherited from the mother. The pathogenicity prediction results showed that these two variants were deleterious. CONCLUSIONS This study presented a patient with complicated hereditary spastic paraplegia caused by SERAC1 variants. These findings expand the number of known SERAC1 variants and the phenotypic spectrum associated with SERAC1 deficiency. This study may contribute to counseling and prevention of hereditary diseases through prenatal.
Collapse
Affiliation(s)
- Dandan Yan
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Shaopei Chen
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Fengying Cai
- Department of Physiology, Tianjin Medical College, Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Xiufang Zhi
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Jie Zheng
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Chunhua Zhang
- Matsumoto Institute of Life Science (MILS) International, Yokohama, Japan
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
7
|
Finsterer J, Scorza FA, Fiorini AC, Scorza CA. MEGDEL Syndrome. Pediatr Neurol 2020; 110:25-29. [PMID: 32684373 DOI: 10.1016/j.pediatrneurol.2020.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
MEGDEL syndrome is an autosomal recessive disorder, clinically characterized by 3-methylglutaconic aciduria, psychomotor delay, muscle hypotonia, sensorineural deafness, and Leigh-like lesions on brain magnetic resonance imaging. MEGDEL syndrome is due to mutations in the serine active site-containing protein 1 (SERAC1) gene. The SERAC1 protein is localized at the interface between the mitochondria and the endoplasmic reticulum in the mitochondrion-associated membrane fraction, which is essential for phospholipid exchange. SERAC1 was identified as a key player in phosphatidylglycerol remodeling, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Since the first description of MEGDEL syndrome in 2006, at least 102 patients have been reported. The phenotypic spectrum of MEGDEL syndrome is much broader than so far anticipated. In addition to the brain, ears, and gastrointestinal tract, the eyes, endocrine organs, heart, peripheral nerves, and the skeletal muscle may be affected. Diagnosing MEGDEL syndrome requires a multidisciplinary approach, including genetic confirmation of a SERAC1 mutation. Treatment is supportive, and the outcome is usually poor with early death, except for the juvenile-onset type.
Collapse
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/, (EPM/UNIFESP), São Paulo, Brazil
| | - Ana C Fiorini
- Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo/, (EPM/UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Jones DE, Perez L, Ryan RO. 3-Methylglutaric acid in energy metabolism. Clin Chim Acta 2019; 502:233-239. [PMID: 31730811 DOI: 10.1016/j.cca.2019.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
3-methylglutaric (3MG) acid is a conspicuous C6 dicarboxylic organic acid classically associated with two distinct leucine pathway enzyme deficiencies. 3MG acid is excreted in urine of individuals harboring deficiencies in 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HMGCL) or 3-methylglutaconyl CoA hydratase (AUH). Whereas 3MG CoA is not part of the leucine catabolic pathway, it is likely formed via a side reaction involving reduction of the α-ß trans double bond in the leucine pathway intermediate, 3-methylglutaconyl CoA. While the metabolic basis for the accumulation of 3MG acid in subjects with deficiencies in HMGCL or AUH is apparent, the occurrence of 3MG aciduria in a host of unrelated inborn errors of metabolism associated with compromised mitochondrial energy metabolism is less clear. Herein, a novel mitochondrial biosynthetic pathway termed "the acetyl CoA diversion pathway", provides an explanation. The pathway is initiated by defective electron transport chain function which, ultimately, inhibits acetyl CoA entry into the TCA cycle. When this occurs, 3MG acid is synthesized in five steps from acetyl CoA via a novel reaction sequence, providing a metabolic rationale for the connection between 3MG aciduria and compromised mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Dylan E Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Leanne Perez
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
9
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
10
|
Maas RR, Iwanicka‐Pronicka K, Kalkan Ucar S, Alhaddad B, AlSayed M, Al‐Owain MA, Al‐Zaidan HI, Balasubramaniam S, Barić I, Bubshait DK, Burlina A, Christodoulou J, Chung WK, Colombo R, Darin N, Freisinger P, Garcia Silva MT, Grunewald S, Haack TB, van Hasselt PM, Hikmat O, Hörster F, Isohanni P, Ramzan K, Kovacs‐Nagy R, Krumina Z, Martin‐Hernandez E, Mayr JA, McClean P, De Meirleir L, Naess K, Ngu LH, Pajdowska M, Rahman S, Riordan G, Riley L, Roeben B, Rutsch F, Santer R, Schiff M, Seders M, Sequeira S, Sperl W, Staufner C, Synofzik M, Taylor RW, Trubicka J, Tsiakas K, Unal O, Wassmer E, Wedatilake Y, Wolff T, Prokisch H, Morava E, Pronicka E, Wevers RA, de Brouwer AP, Wortmann SB. Progressive deafness-dystonia due to SERAC1 mutations: A study of 67 cases. Ann Neurol 2017; 82:1004-1015. [PMID: 29205472 PMCID: PMC5847115 DOI: 10.1002/ana.25110] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/13/2017] [Accepted: 11/26/2017] [Indexed: 11/12/2022]
Abstract
OBJECTIVE 3-Methylglutaconic aciduria, dystonia-deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. METHODS This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. RESULTS Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days-33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic "putaminal eye" was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. INTERPRETATION MEGDHEL syndrome is a progressive deafness-dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004-1015.
Collapse
Affiliation(s)
- Roeltje R. Maas
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Sema Kalkan Ucar
- Division of Metabolic Disease, Ege University Medical Faculty, Department of PediatricsIzmirTurkey
| | - Bader Alhaddad
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
| | - Moeenaldeen AlSayed
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Mohammed A. Al‐Owain
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Hamad I. Al‐Zaidan
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Shanti Balasubramaniam
- Western Sydney Genetics Program, Children's Hospital at Westmead, SydneyNew South WalesAustralia
- Discipline of Genetic Medicine & Paediatrics and Child Health, University of SydneySydneyNew South WalesAustralia
| | - Ivo Barić
- Department of PediatricsUniversity Hospital CenterZagrebCroatia
- School of Medicine, University of ZagrebZagrebCroatia
| | - Dalal K. Bubshait
- Department of Pediatrics, College of MedicineImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of PediatricsUniversity Hospital of PaduaPaduaItaly
| | - John Christodoulou
- Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, and Department of PaediatricsMelbourne Medical School, University of MelbourneMelbourneVictoriaAustralia
- Genetic Metabolic Disorders Research Unit and Western Sydney Genetics Program, Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Child and Adolescent Health and Genetic Medicine, Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Wendy K. Chung
- Departments of Pediatrics and MedicineColumbia UniversityNew YorkNY
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University of the Sacred HeartRomeItaly
- Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan HospitalMilanItaly
| | - Niklas Darin
- Department of PediatricsInstitute of Clinical Sciences, University of Gothenburg, Queen Silvia's Children's HospitalGothenburgSweden
| | | | - Maria Teresa Garcia Silva
- Inborn Errors of Metabolism and Mitochondrial Disease Unit“12 de Octubre” University Hospital, Avenida de Cordoba sn, 28041 Madrid, Spain. Rare Diseases Biomedical Research Centre (CIBERER)MadridSpain
- Complutense UniversityMadridSpain
| | - Stephanie Grunewald
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children National Health Service Foundation Trust, University College London Institute of Child HealthLondonUnited Kingdom
| | - Tobias B. Haack
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
- Institute of Medical Genetics and Applied GenomicsTübingenGermany
| | - Peter M. van Hasselt
- Wilhelmina Children's Hospital Utrecht, University Medical Center UtrechtUtrechtthe Netherlands
| | - Omar Hikmat
- Department of PediatricsHaukeland University HospitalBergenNorway
- Department of Clinical Medicine (K1)University of BergenBergenNorway
| | - Friederike Hörster
- Department of General Pediatrics, Division of Neuropediatrics and Pediatric Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Pirjo Isohanni
- Children's Hospital, University of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of HelsinkiHelsinkiFinland
| | - Khushnooda Ramzan
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyCollege of Medicine, Alfaisal UniversityRiyadhSaudi Arabia
| | - Reka Kovacs‐Nagy
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
| | - Zita Krumina
- Department of Biology and MicrobiologyRiga Stradin's UniversityRigaLatvia
| | - Elena Martin‐Hernandez
- Inborn Errors of Metabolism and Mitochondrial Disease Unit“12 de Octubre” University Hospital, Avenida de Cordoba sn, 28041 Madrid, Spain. Rare Diseases Biomedical Research Centre (CIBERER)MadridSpain
- Complutense UniversityMadridSpain
| | - Johannes A. Mayr
- Department of PediatricsSalzburg State Hospitals and Paracelsus Medical UniversitySalzburgAustria
| | - Patricia McClean
- Leeds Teaching Hospitals National Health Service TrustLeedsUnited Kingdom
| | | | - Karin Naess
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Lock H. Ngu
- Division of Clinical Genetics, Department of GeneticsKuala Lumpur HospitalKuala LumpurMalaysia
| | - Magdalena Pajdowska
- Department of Clinical Biochemistry, Radioimmunology, and Experimental MedicineChildren's Memorial Health InstituteWarsawPoland
| | - Shamima Rahman
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Gillian Riordan
- Department of Pediatric NeurologyRed Cross War Memorial Children's HospitalCape TownSouth Africa
| | - Lisa Riley
- Genetic Metabolic Disorders Research Unit and Western Sydney Genetics Program, Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Child and Adolescent Health and Genetic Medicine, Sydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Benjamin Roeben
- Department of NeurodegenerationHertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Frank Rutsch
- Department of General PediatricsMünster University Children's HospitalMünsterGermany
| | - Rene Santer
- Department of PediatricsUniversity Medical Center EppendorfHamburgGermany
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, AP‐HP, Robert Debré Hospital, University Paris Diderot‐Sorbonne Paris Cité, Paris, France AND INSERM U1141ParisFrance
| | - Martine Seders
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Wolfgang Sperl
- Department of PediatricsSalzburg State Hospitals and Paracelsus Medical UniversitySalzburgAustria
| | - Christian Staufner
- Department of General Pediatrics, Division of Neuropediatrics and Pediatric Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Matthis Synofzik
- Department of NeurodegenerationHertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial ResearchInstitute of Neuroscience, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Joanna Trubicka
- Department of Medical GeneticsChildren's Memorial Health InstituteWarsawPoland
| | | | - Ozlem Unal
- Division of Metabolic DiseasesHacettepe University Children's HospitalAnkaraTurkey
| | | | - Yehani Wedatilake
- University College London Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Toni Wolff
- Nottingham University Hospitals National Health Service Trust, Nottingham Children's HospitalNottinghamUnited Kingdom
| | - Holger Prokisch
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
- Institute of Human Genetics, Helmholtz Center MunichNeuherbergGermany
| | - Eva Morava
- Hayward Genetics Center and Department of PediatricsTulane University Medical SchoolNew OrleansLA
| | - Ewa Pronicka
- Department of Pediatrics, Nutrition and Metabolic DiseasesChildren's Memorial Health InstituteWarsawPoland
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | - Arjan P. de Brouwer
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical CenterNijmegenthe Netherlands
| | - Saskia B. Wortmann
- Institute of Human GeneticsTechnische UniversitätMünchenMunichGermany
- Department of PediatricsSalzburg State Hospitals and Paracelsus Medical UniversitySalzburgAustria
- Institute of Human Genetics, Helmholtz Center MunichNeuherbergGermany
| |
Collapse
|
11
|
Radha Rama Devi A, Lingappa L. Novel mutations in SERAC1 gene in two Indian patients presenting with dystonia and intellectual disability. Eur J Med Genet 2017; 61:100-103. [PMID: 28778788 DOI: 10.1016/j.ejmg.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 11/18/2022]
Abstract
In this study we present the first two cases from India of a rare inborn error of metabolism manifesting as dystonia and 3-methylglutaconic aciduria and a Leigh like lesions in the brain MRI associated with SERAC1 gene mutation, a phenotype characteristic of MEGDEL syndrome. A four base pair duplication in exon 15 i.e.NM_032861.3 (SERAC1) c. 1643_1646 dup ATCT (p.(Leu550SerfsX19)) and another with a homozygous missense variation in exon 15 i.e. NM_032861.3 (SERAC1) c.1709 G > A (p.(Gly526Glu)) were detected and both were novel mutations. Hepatopathy was observed in the neonatal period with lactic acidosis in one child and at the age of 5yrs in the other. These cases add to the existing number of patients identified till today and additional mutations in the SERAC1 gene.
Collapse
Affiliation(s)
- A Radha Rama Devi
- Sandor Life Sciences & Rainbow Children Hospital, Perinatal Centre for Women and Children, Road No 3, Banjara Hills, Hyderabad, 500082, India.
| | - Lokesh Lingappa
- Paediatric Neurologist, Rainbow Children Hospital, Hyderabad, 500082, India
| |
Collapse
|
12
|
Harbulot C, Paquay S, Dorboz I, Pichard S, Bourillon A, Benoist JF, Jardel C, Ogier de Baulny H, Boespflug-Tanguy O, Schiff M. Transient neonatal renal failure and massive polyuria in MEGDEL syndrome. Mol Genet Metab Rep 2016; 7:8-10. [PMID: 27331002 PMCID: PMC4908062 DOI: 10.1016/j.ymgmr.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND MEGDEL (3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome) syndrome is a mitochondrial disorder associated with recessive mutations in SERAC1. OBJECTIVES To report transient neonatal renal findings in MEGDEL syndrome. RESULTS This 7 year-old girl was the first child of consanguineous Turkish parents. She exhibited an acute neonatal deterioration with severe lactic acidosis and liver failure. Initial evaluation revealed massive polyuria and renal failure with 3-methylglutaconic aciduria. Symptoms and biological findings progressively improved with symptomatic treatment but lactic acidosis and high lactate to pyruvate ratio along with 3-methylglutaconic aciduria persisted. At 8 months of age, a subacute neurological degradation occurred with severe hypotonia, dystonia with extrapyramidal movements and failure to thrive. Brain MRI revealed basal ganglia lesions suggestive of Leigh syndrome. At 3 years of age, sensorineural deafness was documented. MEGDEL syndrome was further confirmed by the identification of an already reported homozygous mutation in SERAC1. CONCLUSION Transient neonatal polyuria and renal failure have not been reported to date in SERAC1 defective patients. Such neonatal kidney findings expand the clinical spectrum of MEGDEL syndrome.
Collapse
Affiliation(s)
| | - Stéphanie Paquay
- Child Neurology, Hôpital Robert Debré, APHP, Paris, France; Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| | - Imen Dorboz
- Inserm U1141 and Université Paris-Diderot, Sorbonne Paris Cité, site Robert Debré, Paris, France
| | - Samia Pichard
- Child Neurology, Hôpital Robert Debré, APHP, Paris, France; Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| | | | | | - Claude Jardel
- Biochemistry, Hôpital de la Salpêtrière, APHP, Paris, France
| | - Hélène Ogier de Baulny
- Child Neurology, Hôpital Robert Debré, APHP, Paris, France; Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| | - Odile Boespflug-Tanguy
- Child Neurology, Hôpital Robert Debré, APHP, Paris, France; Inserm U1141 and Université Paris-Diderot, Sorbonne Paris Cité, site Robert Debré, Paris, France
| | - Manuel Schiff
- Child Neurology, Hôpital Robert Debré, APHP, Paris, France; Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France; Inserm U1141 and Université Paris-Diderot, Sorbonne Paris Cité, site Robert Debré, Paris, France
| |
Collapse
|
13
|
First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking. Neurogenetics 2015; 17:51-6. [PMID: 26445863 DOI: 10.1007/s10048-015-0463-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein.
Collapse
|
14
|
Delineation of New Disorders and Phenotypic Expansion of Known Disorders Through Whole Exome Sequencing. CURRENT GENETIC MEDICINE REPORTS 2015. [DOI: 10.1007/s40142-015-0079-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 2015; 6:3. [PMID: 25691889 PMCID: PMC4315098 DOI: 10.3389/fgene.2015.00003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023] Open
Abstract
The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|