1
|
Santa Paola S, Di Blasi FD, Borgione E, Lo Giudice M, Giuliano M, Pettinato R, Di Stefano V, Brighina F, Lupica A, Scuderi C. Aromatic L-Amino Acid Decarboxylase Deficiency: A Genetic Screening in Sicilian Patients with Neurological Disorders. Genes (Basel) 2024; 15:134. [PMID: 38275615 PMCID: PMC10815063 DOI: 10.3390/genes15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare autosomal recessive neurometabolic disorder caused by AADC deficiency, an enzyme encoded by the DDC gene. Since the enzyme is involved in the biosynthesis of serotonin and dopamine, its deficiency determines the lack of these neurotransmitters, but also of norepinephrine and epinephrine. Onset is early and the key signs are hypotonia, movement disorders (oculogyric crises, dystonia and hypokinesia), developmental delay and autonomic dysfunction. Taiwan is the site of a potential founder variant (IVS6+4A>T) with a predicted incidence of 1/32,000 births, while only 261 patients with this deficit have been described worldwide. Actually, the number of affected persons could be greater, given that the spectrum of clinical manifestations is broad and still little known. In our study we selected 350 unrelated patients presenting with different neurological disorders including heterogeneous neuromuscular disorders, cognitive deficit, behavioral disorders and autism spectrum disorder, for which the underlying etiology had not yet been identified. Molecular investigation of the DDC gene was carried out with the aim of identifying affected patients and/or carriers. Our study shows a high frequency of carriers (2.57%) in Sicilian subjects with neurological deficits, with a higher concentration in northern and eastern Sicily. Assuming these data as representative of the general Sicilian population, the risk may be comparable to some rare diseases included in the newborn screening programs such as spinal muscular atrophy, cystic fibrosis and phenylketonuria.
Collapse
Affiliation(s)
- Sandro Santa Paola
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (E.B.); (M.L.G.); (M.G.); (C.S.)
| | | | - Eugenia Borgione
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (E.B.); (M.L.G.); (M.G.); (C.S.)
| | - Mariangela Lo Giudice
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (E.B.); (M.L.G.); (M.G.); (C.S.)
| | - Marika Giuliano
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (E.B.); (M.L.G.); (M.G.); (C.S.)
| | - Rosa Pettinato
- Unit of Pediatrics and Medical Genetics, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Via del Vespro, 143, 90127 Palermo, Italy; (V.D.S.); (F.B.); (A.L.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Via del Vespro, 143, 90127 Palermo, Italy; (V.D.S.); (F.B.); (A.L.)
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Via del Vespro, 143, 90127 Palermo, Italy; (V.D.S.); (F.B.); (A.L.)
| | - Carmela Scuderi
- Unit of Neuromuscular Diseases, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (E.B.); (M.L.G.); (M.G.); (C.S.)
| |
Collapse
|
2
|
Himmelreich N, Bertoldi M, Alfadhel M, Alghamdi MA, Anikster Y, Bao X, Bashiri FA, Zeev BB, Bisello G, Ceylan AC, Chien YH, Choy YS, Elsea SH, Flint L, García-Cazorla À, Gijavanekar C, Gümüş EY, Hamad MH, Hişmi B, Honzik T, Kuseyri Hübschmann O, Hwu WL, Ibáñez-Micó S, Jeltsch K, Juliá-Palacios N, Kasapkara ÇS, Kurian MA, Kusmierska K, Liu N, Ngu LH, Odom JD, Ong WP, Opladen T, Oppeboen M, Pearl PL, Pérez B, Pons R, Rygiel AM, Shien TE, Spaull R, Sykut-Cegielska J, Tabarki B, Tangeraas T, Thöny B, Wassenberg T, Wen Y, Yakob Y, Yin JGC, Zeman J, Blau N. Corrigendum to: Prevalence of DDC genotypes in patients with aromatic L-amino acid decarboxylase (AADC) deficiency and in silico prediction of structural protein changes. Mol Genet Metab 2023; 139:107647. [PMID: 37453860 DOI: 10.1016/j.ymgme.2023.107647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Nastassja Himmelreich
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Majid Alfadhel
- Medical Genomic Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, SA, Saudi Arabia
| | - Yair Anikster
- Metabolic Disease Unit, The Edmond and Lily Safra Childrens Hospital, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fahad A Bashiri
- Division of Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bruria Ben Zeev
- Pediatric Neurology, Safra Pediatric Hospital, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Giovanni Bisello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ahmet Cevdet Ceylan
- Ankara Yıldırım Beyazıt University, Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yin-Hsiu Chien
- Department of Medical Genetics & Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Sarah H Elsea
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Àngels García-Cazorla
- Neurometabolic Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Charul Gijavanekar
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emel Yılmaz Gümüş
- Department of Pediatrics and Inherited Metabolic Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Muddathir H Hamad
- Neurology Division, Pediatric Department, King Saud University Medical City, Riyadh, SA, Saudi Arabia
| | - Burcu Hişmi
- Department of Pediatrics and Inherited Metabolic Diseases, Marmara University School of Medicine, Istanbul, Turkey
| | - Tomas Honzik
- Dept. of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Oya Kuseyri Hübschmann
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany; Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Wuh-Liang Hwu
- Department of Medical Genetics & Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Kathrin Jeltsch
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Department of Neurology, Hospital Sant Joan de Déu, CIBERER, Barcelona, Spain
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolism, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research, UCL GOS-Institute of Child Health & Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Katarzyna Kusmierska
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Ning Liu
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lock Hock Ngu
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - John D Odom
- Dept. of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Malaysia
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Mari Oppeboen
- Children's Department, Division of Child Neurology and Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Phillip L Pearl
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Belén Pérez
- Centro de Diagnostico de Enfermedades Moleculares, CIBERER, IdiPAZ, Universidad Autonoma de Madrid, Madrid, Spain
| | - Roser Pons
- First Department of Pediatrics, Aghia Sophia Children's Hospital, University of Athens, Athens, Greece
| | - Agnieszka Magdalena Rygiel
- Department of Medical Genetics, Laboratory of Hereditary Diseases, Institute of Mother and Child, Warsaw, Poland
| | - Tan Ee Shien
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Robert Spaull
- Developmental Neurosciences, Zayed Centre for Research, UCL GOS-Institute of Child Health & Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Brahim Tabarki
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Beat Thöny
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland
| | | | - Yongxin Wen
- Medical Genetic Division, Pediatric Department, College of Medicine, King Saud University, Riyadh, SA, Saudi Arabia
| | - Yusnita Yakob
- Molecular Diagnostics Unit, Specialised Diagnostics Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| | - Jasmine Goh Chew Yin
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Jiri Zeman
- Dept. of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nenad Blau
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
3
|
François‐Heude M, Poulen G, Flamand Roze E, Nguyen Morel M, Gras D, Roch‐Toreilles I, Quintard A, Baroux G, Meyer P, Coubes P, Milesi C, Cambonie G, Baleine J, Sola C, Delye B, Dimopoulou E, Sanchez S, Gasnier M, Touati S, Zamora A, Pontal D, Leboucq N, Kouyoumdjian V, Lebasnier A, Sanquer S, Mariano‐Goulart D, Roujeau T, Roubertie A. Intraputaminal Gene Delivery in Two Patients with Aromatic L-Amino Acid Decarboxylase Deficiency. Mov Disord Clin Pract 2023; 10:811-818. [PMID: 37205256 PMCID: PMC10187009 DOI: 10.1002/mdc3.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/24/2022] [Accepted: 01/20/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, early-onset, dyskinetic encephalopathy mostly reflecting a defective synthesis of brain dopamine and serotonin. Intracerebral gene delivery (GD) provided a significant improvement among AADCD patients (mean age, ≤6 years). OBJECTIVE We describe the clinical, biological, and imaging evolution of two AADCD patients ages >10 years after GD. METHODS Eladocagene exuparvovec, a recombinant adeno-associated virus containing the human complimentary DNA encoding the AADC enzyme, was administered into bilateral putamen by stereotactic surgery. RESULTS Eighteen months after GD, patients showed improvement in motor, cognitive and behavioral function, and in quality of life. Cerebral l-6-[18F] fluoro-3, 4-dihydroxyphenylalanine uptake was increased at 1 month, persisting at 1 year compared to baseline. CONCLUSION Two patients with a severe form of AADCD had an objective motor and non-motor benefit from eladocagene exuparvovec injection even when treated after the age of 10 years, as in the seminal study.
Collapse
Affiliation(s)
| | - Gaetan Poulen
- Département de NeurochirurgieCHU MontpellierMontpellierFrance
| | - Emmanuel Flamand Roze
- Assistance Publique ‐ Hôpitaux de Paris CHU Pitié‐SalpêtrièreDMU Neurosciences et Sorbonne Université, INSERM, CNRS, Institut du Cerveau et de la MoelleParisFrance
| | - Marie‐Ange Nguyen Morel
- Service de Neurologie PédiatriqueHôpital Couple Mère Enfant, CHU Grenoble AlpesLa TroncheFrance
| | - Domitille Gras
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, UP, UNIACT, Neurospin, Joliot, DRF, CEA‐SaclayParisFrance
| | | | | | | | - Pierre Meyer
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
- PhyMedExp, CNRS, INSERM, Université de MontpellierMontpellierFrance
| | - Philippe Coubes
- Département de NeurochirurgieCHU MontpellierMontpellierFrance
| | - Christophe Milesi
- Département de Réanimation PédiatriqueCHU MontpellierMontpellierFrance
| | - Gilles Cambonie
- Département de Réanimation PédiatriqueCHU MontpellierMontpellierFrance
| | - Julien Baleine
- Département de Réanimation PédiatriqueCHU MontpellierMontpellierFrance
| | - Chrystelle Sola
- Département d'Anesthésie‐RéanimationCHU Montpellier; Institute of Functional Genomics (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Bénédicte Delye
- Département d'Anesthésie‐RéanimationCHU Gui de ChauliacMontpellierFrance
| | - Evgenia Dimopoulou
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
| | - Stéphanie Sanchez
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
| | | | - Souad Touati
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
| | - Alberto Zamora
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
| | - Daniel Pontal
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
| | - Nicolas Leboucq
- Département de NeuroradiologieCHU MontpellierMontpellierFrance
| | | | - Adrien Lebasnier
- Département de Médecine NucléaireCHU MontpellierMontpellierFrance
| | | | | | - Thomas Roujeau
- Département de NeurochirurgieCHU MontpellierMontpellierFrance
| | - Agathe Roubertie
- CHU Montpellier, Département de NeuropédiatrieUniv MontpellierMontpellierFrance
- INM, Univ Montpellier, INSERM U 1298MontpellierFrance
| |
Collapse
|
4
|
Gantz E, Daniel Sharer J, McGrath TM. Diagnosis of Aromatic L-Amino Acid Decarboxylase (AADC) Deficiency via Epilepsy Gene Panel Screening in a Patient with Atypical Presentation. Child Neurol Open 2023. [DOI: 10.1177/2329048x231161027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
We describe an atypical presentation of a girl with aromatic L-amino acid decarboxylase (AADC) deficiency identified via a genetic testing program for children with epilepsy. At 21 months of age, she presented with poor head control, diffuse hypotonia, poor fixation, developmental delay, and dysphagia. She was lost to follow-up, then presented back at 3 years of age with staring spells and brief episodes of upward eye deviation. The diagnosis of unprovoked epilepsy allowed her to be included in a genetic testing program, which identified two heterozygous variants in the dopa decarboxylase (DCC) gene. Based on the genetic testing, plasma AADC enzyme activity and plasma 3-O-methyldopa results, a diagnosis of AADC deficiency was made when she was 4 years and 2 months of age. This case report shows that AADC deficiency can be the underlying diagnosis in patients with suspected epilepsy.
Collapse
Affiliation(s)
- Emily Gantz
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama, Birmingham, AL, USA
| | - J. Daniel Sharer
- Biochemical Genetics Laboratory, Department of Genetics, University of Alabama, Birmingham, AL, USA
| | - Tony M. McGrath
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
5
|
Buesch K, Zhang R, Szczepańska K, Veličković V, Turner L, Despotović M, Đorđević B, Russell A. Burden and severity of disease of aromatic L-amino acid decarboxylase deficiency: a systematic literature review. Curr Med Res Opin 2022; 38:1871-1882. [PMID: 35485958 DOI: 10.1080/03007995.2022.2072090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The objective was to investigate the severity of aromatic L-amino acid decarboxylase deficiency (AADCd) as reported in the published literature and to collate evidence of the clinical manifestations of AADCd, and the impact of the disease on patients, caregivers, and healthcare systems. METHODS Published articles reporting severity of disease or disease impact were eligible for inclusion in this review. Articles were searched in MEDLINE, EMBASE, Cochrane CENTRAL, TRIP medical, and CRD databases in October 2021. The quality of the included studies was investigated using a modified version of the grading system of the Centre for Evidence-Based Medicine (CEBM). Descriptive data of the literature was extracted and a narrative synthesis of the results across studies was conducted. This review is reported according to the PRISMA reporting guidelines for systematic reviews. RESULTS The search identified 970 unique reports, of which 59 met eligibility criteria to be included in the review. Of these, 48 included reports provided details on the clinical manifestations of AADCd. Two reports explored the disease impact on patients, while four described the impact on caregivers. Five reports assessed the impact on healthcare systems. Individuals with AADCd experience very severe clinical manifestations regardless of motor milestones achieved, and present with a spectrum of other complications. Individuals with AADCd present with very limited function, which, in combination with additional complications, substantially impact the quality-of-life of individuals and their caregivers. The five studies which explore the impact on the healthcare system reported that adequate care of individuals with AADCd requires a vast array of medical services and supportive therapies. CONCLUSIONS Irrespective of the ambulatory status of individuals, AADCd is a debilitating disease that significantly impacts quality-of-life for individuals and caregivers. It impacts the healthcare system due to the need for complex coordinated activities of a multidisciplinary specialist team.
Collapse
Affiliation(s)
| | | | | | - Vladica Veličković
- Core Models Ltd, London, United Kingdom
- Institute of Public Health, Medical Decision Making and HTA, UMIT, Hall in Tirol, Austria
| | - Lucy Turner
- Core Models Ltd, London, United Kingdom
- Research in Health Consulting, Ottawa, Canada
| | | | - Branka Đorđević
- Core Models Ltd, London, United Kingdom
- Biochemistry Department, Faculty of Medicine, University of Nis, Nis, Serbia
| | | |
Collapse
|
6
|
Clinical Features in Aromatic L-Amino Acid Decarboxylase (AADC) Deficiency: A Systematic Review. Behav Neurol 2022; 2022:2210555. [PMID: 36268467 PMCID: PMC9578880 DOI: 10.1155/2022/2210555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare congenital autosomal recessive metabolic disorder caused by pathogenic homozygous or compound heterozygous variants in the dopa decarboxylase (DDC) gene. Adeno-associated viral vector-mediated gene transfer of the human AADC gene into the putamina has become available. This systematic review on PubMed, Scopus databases, and other sources is aimed at describing the AADC whole phenotypic spectrum in order to facilitate its early diagnosis. Literature reviews, original articles, retrospective and comparative studies, large case series, case reports, and short communications were considered. A database was set up using Microsoft Excel to collect clinical, molecular, biochemical, and therapeutic data. By analysing 261 patients from 41 papers with molecular and/or biochemical diagnosis of AADC deficiency for which individuality could be determined with certainty, we found symptom onset to occur in the first 6 months of life in 93% of cases. Hypotonia and developmental delay are cardinal signs, reported as present in 73.9% and 72% of cases, respectively. Oculogyric crises were seen in 67% of patients while hypokinesia in 42% and ptosis in 26%. Dysautonomic features have been revealed in 53% and gastrointestinal symptoms in 19% of cases. With 37% and 30% of patients reported being affected by sleep and behavioural disorders, it seems to be commoner than previously acknowledged. Although reporting bias cannot be excluded, there is still a need for comprehensive clinical descriptions of symptoms at onset and during follow-up. In fact, our review suggests that most of the neurological and extraneurological symptoms and signs reported, although quite frequent in this condition, are not pathognomonic, and therefore, ADCC deficiency can remain an underdiscovered disorder.
Collapse
|
7
|
Ling TK, Wong KC, Chan CY, Lau NKC, Law CY, Lee HCH, Lai CK, Chong YK, Yau KCE, Cheung KM, Ko CH, Fung CW, Lee LK, Wong SSN, Mak CM, Chan AYW, Tam S, Lam CW. Urine organic acid as the first clue towards aromatic L-amino acid decarboxylase (AADC) deficiency in a high prevalence area. Clin Chim Acta 2021; 521:40-44. [PMID: 34161777 DOI: 10.1016/j.cca.2021.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Aromatic L-amino acid decarboxylase deficiency is a rare neurometabolic disease due to impaired decarboxylation of neurotransmitter precursors to its active form. CASE We retrospectively reviewed 8 cases from 2008 to 2019 with cerebrospinal fluid neurotransmitter analysis performed at our centre. All cases had an elevated urine vanillactic acid and, in most cases, with N-acetylvanilalanine detected. Cerebrospinal fluid analysis showed low downstream metabolites vanillylmandelic acid, homovanillic acid but high 3-O-methyl-L-DOPA, 5-hydroxytryptophan. Cerebrospinal fluid pterins were normal. Genotyping in DDC confirms the diagnosis. Urine organic acid analysis provided the first clue to diagnosis in four of the cases, which then triggered cerebrospinal fluid neurotransmitter and genetic analysis. We also developed a diagnostic decision support system to assist the interpretation of the mass spectrometry data from urine organic acids. CONCLUSIONS Urine organic acid could be essential in guiding subsequent investigations for the diagnosis of aromatic L-amino acid decarboxylase deficiency. We propose to screen suspected cases first with urine organic acids, specifically looking for vanillactic acid and N-acetylvanilalanine. Suggestive findings should be followed with target analysis for c.714 + 4A > T in ethnically Chinese patients. The assistive tool allowed expedite interpretation of profile data generated from urine organic acids analysis. It may also reduce interpreter's bias when peaks of interest are minor peaks in the spectrum.
Collapse
Affiliation(s)
- Tsz-Ki Ling
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Ka-Chung Wong
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Candace Yim Chan
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | | | - Chun-Yiu Law
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | | | - Chi-Kong Lai
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Yeow-Kuan Chong
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Kin-Cheong Eric Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Ka-Ming Cheung
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, China
| | - Chun-Hung Ko
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, China
| | - Cheuk-Wing Fung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Lai-Ka Lee
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Sheila Suet-Na Wong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Chloe M Mak
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong, China
| | - Albert Yan-Wo Chan
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong, China
| | - Sidney Tam
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Ching-Wan Lam
- Department of Pathology, Queen Mary Hospital, Hong Kong, China; Department of Pathology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Wassenberg T, Geurtz BPH, Monnens L, Wevers RA, Willemsen MA, Verbeek MM. Blood, urine and cerebrospinal fluid analysis in TH and AADC deficiency and the effect of treatment. Mol Genet Metab Rep 2021; 27:100762. [PMID: 33996491 PMCID: PMC8093927 DOI: 10.1016/j.ymgmr.2021.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background Aromatic L-amino acid decarboxylase (AADC) deficiency and tyrosine hydroxylase (TH) deficiency are rare inherited disorders of monoamine neurotransmitter synthesis which are typically diagnosed using cerebrospinal fluid examination of monoamine neurotransmitter metabolites. Until now, it has not been systematically studied whether analysis of monamine neurotransmitter metabolites in blood or urine has diagnostic value as compared to cerebrospinal fluid examination, or whether monoamine neurotransmitter metabolites in these peripheral body fluids is useful to monitor treatment efficacy. Methods Assessment, both by literature review and retrospective analysis of our local university hospital database, of monoamine neurotransmitter metabolites in urine, blood and cerebrospinal fluid, and serum prolactin levels, before and during treatment in patients with AADC and TH deficiency. Results In AADC deficiency, 3-O-methyldopa in serum or dried blood spots was reported in 34 patients and found to be (strongly) increased in all, serotonin in serum was decreased in 7/7 patients. Serum prolactin was increased in 34/37 and normal in 3 untreated patients. In urine, dopamine was normal or increased in 21/24 patients, 5-hydroxyindoleacetic acid was decreased in 9/10 patients, and vanillactic acid was increased in 19/20 patients. No significant changes were seen in monoamine neurotransmitter metabolites after medical treatment, except for an increase of homovanillic acid in urine and cerebrospinal fluid after levodopa therapy, sometimes even in absence of a clinical response. After gene therapy, cerebrospinal fluid homovanillic acid increased in most patients (8/12), but 5-hydroxyindoleacetic acid remained unchanged in 9/12 patients. In TH deficiency, serum prolactin was increased in 12/14 and normal in the remaining untreated patients. Urinary dopamine was decreased in 2/8 patients and normal in 6. Homovanillic acid concentrations in cerebrospinal fluid increased upon levodopa treatment, even in the absence of a clear treatment response. Conclusions This study confirms that cerebrospinal fluid is the most informative body fluid to measure monoamine neurotransmitter metabolites when AADC or TH deficiency is suspected, and that routine follow-up of cerebrospinal fluid measurements to estimate treatment response is not needed. 3-O-methyldopa in dried blood spots and vanillactic acid in urine are promising peripheral biomarkers for diagnosis of AADC deficiency. However, in many patients with TH or AADC deficiency dopamine in urine is normal or increased thereby not reflecting the metabolic block. The value of serum prolactin for follow-up of AADC and TH deficiency should be further studied.
Collapse
Key Words
- 3-OMD, 3-O-methyldopa
- 5-HIAA, 5-Hydroxyindoleacetic acid
- 5-HTP, 5-Hydroxytryptophan
- AADC deficiency
- AADC, Aromatic L-amino acid decarboxylase
- Aromatic L-amino acid decarboxylase deficiency
- Biomarkers
- CSF, Cerebrospinal fluid
- HVA, Homovanillic acid
- MHPG, 3-methoxy 4-hydroxyphenylglycol
- Monoamine neurotransmitter deficiency
- TH deficiency
- TH, Tyrosine hydroxylase
- TML, Translational Metabolic Laboratory
- Tyrosine hydroxylase deficiency
- VLA, Vanillactic acid
- VMA, Vanillylmandelic acid
Collapse
Affiliation(s)
- Tessa Wassenberg
- Radboud university medical center, Department of Neurology (943), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.,Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Pediatrics, Pediatric Neurology Unit, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ben P H Geurtz
- Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Leo Monnens
- Radboud university medical center, Department of Physiology (392), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Ron A Wevers
- Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Michèl A Willemsen
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatric Neurology (801), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marcel M Verbeek
- Radboud university medical center, Department of Neurology (943), Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.,Radboud university medical center, Department of Laboratory Medicine, Translational Metabolic Laboratory (830), PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Fusco C, Leuzzi V, Striano P, Battini R, Burlina A, Spagnoli C. Aromatic L-amino Acid Decarboxylase (AADC) deficiency: results from an Italian modified Delphi consensus. Ital J Pediatr 2021; 47:13. [PMID: 33478565 PMCID: PMC7819234 DOI: 10.1186/s13052-021-00954-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare and underdiagnosed neurometabolic disorder resulting in a complex neurological and non-neurological phenotype, posing diagnostic challenges resulting in diagnostic delay. Due to the low number of patients, gathering high-quality scientific evidence on diagnosis and treatment is difficult. Additionally, based on the estimated prevalence, the number of undiagnosed patients is likely to be high. METHODS Italian experts in AADC deficiency formed a steering committee to engage clinicians in a modified Delphi consensus to promote discussion, and support research, dissemination and awareness on this disorder. Five experts in the field elaborated six main topics, each subdivided into 4 statements and invited 13 clinicians to give their anonymous feedback. RESULTS 100% of the statements were answered and a consensus was reached at the first round. This enabled the steering committee to acknowledge high rates of agreement between experts on clinical presentation, phenotypes, diagnostic work-up and treatment strategies. A research gap was identified in the lack of standardized cognitive and motor outcome data. The need for setting up an Italian working group and a patients' association, together with the dissemination of knowledge inside and outside scientific societies in multiple medical disciplines were recognized as critical lines of intervention. CONCLUSIONS The panel expressed consensus with high rates of agreement on a series of statements paving the way to disseminate clear messages concerning disease presentation, diagnosis and treatment and strategic interventions to disseminate knowledge at different levels. Future lines of research were also identified.
Collapse
Affiliation(s)
- Carlo Fusco
- Child Neurology and Psychiatric Unit-Presidio Ospedaliero Santa Maria Nuova -AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Vincenzo Leuzzi
- Department of Paediatric Neuropsychiatry, Università La Sapienza, Rome, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS Istituto G. Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, Scientific Institute for Child and Adolescent Neuropsychiatry - IRCCS Stella Maris Foundation, Pisa, Italy.,Department of Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | | | - Carlotta Spagnoli
- Child Neurology and Psychiatric Unit-Presidio Ospedaliero Santa Maria Nuova -AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
10
|
Ugboko HU, Nwinyi OC, Oranusi SU, Oyewale JO. Childhood diarrhoeal diseases in developing countries. Heliyon 2020; 6:e03690. [PMID: 32322707 PMCID: PMC7160433 DOI: 10.1016/j.heliyon.2020.e03690] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Diarrhoeal diseases collectively constitute a serious public health challenge globally, especially as the leading cause of death in children (after respiratory diseases). Childhood diarrhoea affecting children under the age of five accounts for approximately 63% of the global burden. Accurate and timely detection of the aetiology of these diseases is very crucial; but conventional methods, apart from being laborious and time-consuming, often fail to identify difficult-to-culture pathogens. The aetiological agent of an average of up to 40% of cases of diarrhoea cannot be identified. This review gives an overview of the recent trends in the epidemiology and treatment of diarrhoea and aims at highlighting the potentials of metagenomics technique as a diagnostic method for enteric infections.
Collapse
Affiliation(s)
- Harriet U Ugboko
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - Obinna C Nwinyi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - Solomon U Oranusi
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| | - John O Oyewale
- Microbiology Research Unit, Department of Biological Sciences, Covenant University, Canaanland, KM 10, Idiroko Road, P.M.B, 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
11
|
Kojima K, Nakajima T, Taga N, Miyauchi A, Kato M, Matsumoto A, Ikeda T, Nakamura K, Kubota T, Mizukami H, Ono S, Onuki Y, Sato T, Osaka H, Muramatsu SI, Yamagata T. Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain 2019; 142:322-333. [PMID: 30689738 PMCID: PMC6377184 DOI: 10.1093/brain/awy331] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 12/01/2022] Open
Abstract
In patients with aromatic l-amino acid decarboxylase (AADC) deficiency, a decrease in catecholamines and serotonin levels in the brain leads to developmental delay and movement disorders. The beneficial effects of gene therapy in patients from 1 to 8 years of age with homogeneous severity of disease have been reported from Taiwan. We conducted an open-label phase 1/2 study of population including adolescent patients with different degrees of severity. Six patients were enrolled: four males (ages 4, 10, 15 and 19 years) and one female (age 12 years) with a severe phenotype who were not capable of voluntary movement or speech, and one female (age 5 years) with a moderate phenotype who could walk with support. The patients received a total of 2 × 1011 vector genomes of adeno-associated virus vector harbouring DDC via bilateral intraputaminal infusions. At up to 2 years after gene therapy, the motor function was remarkably improved in all patients. Three patients with the severe phenotype were able to stand with support, and one patient could walk with a walker, while the patient with the moderate phenotype could run and ride a bicycle. This moderate-phenotype patient also showed improvement in her mental function, being able to converse fluently and perform simple arithmetic. Dystonia disappeared and oculogyric crisis was markedly decreased in all patients. The patients exhibited transient choreic dyskinesia for a couple of months, but no adverse events caused by vector were observed. PET with 6-[18F]fluoro-l-m-tyrosine, a specific tracer for AADC, showed a persistently increased uptake in the broad areas of the putamen. In our study, older patients (>8 years of age) also showed improvement, although treatment was more effective in younger patients. The genetic background of our patients was heterogeneous, and some patients suspected of having remnant enzyme activity showed better improvement than the Taiwanese patients. In addition to the alleviation of motor symptoms, the cognitive and verbal functions were improved in a patient with the moderate phenotype. The restoration of dopamine synthesis in the putamen via gene transfer provides transformative medical benefit across all patient ages, genotypes, and disease severities included in this study, with the most pronounced improvements noted in moderate patients.
Collapse
Affiliation(s)
- Karin Kojima
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoyuki Taga
- Department of Anesthesiology and Critical Care Medicine, Division of Anesthesiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University, Shinagawa, Tokyo, Japan.,Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - Tetsuo Kubota
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Aichi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Sayaka Ono
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Genetic Therapeutics, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
12
|
Himmelreich N, Montioli R, Bertoldi M, Carducci C, Leuzzi V, Gemperle C, Berner T, Hyland K, Thöny B, Hoffmann GF, Voltattorni CB, Blau N. Aromatic amino acid decarboxylase deficiency: Molecular and metabolic basis and therapeutic outlook. Mol Genet Metab 2019; 127:12-22. [PMID: 30952622 DOI: 10.1016/j.ymgme.2019.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
Aromatic-l-amino acid decarboxylase (AADC) deficiency is an ultra-rare inherited autosomal recessive disorder characterized by sharply reduced synthesis of dopamine as well as other neurotransmitters. Symptoms, including hypotonia and movement disorders (especially oculogyric crisis and dystonia) as well as autonomic dysfunction and behavioral disorders, vary extensively and typically emerge in the first months of life. However, diagnosis is difficult, requiring analysis of metabolites in cerebrospinal fluid, assessment of plasma AADC activity, and/or DNA sequence analysis, and is frequently delayed for years. New metabolomics techniques promise early diagnosis of AADC deficiency by detection of 3-O-methyl-dopa in serum or dried blood spots. A total of 82 dopa decarboxylase (DDC) variants in the DDC gene leading to AADC deficiency have been identified and catalogued for all known patients (n = 123). Biochemical and bioinformatics studies provided insight into the impact of many variants. c.714+4A>T, p.S250F, p.R347Q, and p.G102S are the most frequent variants (cumulative allele frequency = 57%), and c.[714+4A>T];[714+4A>T], p.[S250F];[S250F], and p.[G102S];[G102S] are the most frequent genotypes (cumulative genotype frequency = 40%). Known or predicted molecular effect was defined for 79 variants. Most patients experience an unrelenting disease course with poor or no response to conventional medical treatments, including dopamine agonists, monoamine oxidase inhibitors, and pyridoxine derivatives. The advent of gene therapy represents a potentially promising new avenue for treatment of patients with AADC deficiency. Clinical studies based on the direct infusion of engineered adeno-associated virus type 2 vectors into the putamen have demonstrated acceptable safety and tolerability and encouraging improvement in motor milestones and cognitive symptoms. The success of gene therapy in AADC deficiency treatment will depend on timely diagnosis to facilitate treatment administration before the onset of neurologic damage.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany
| | - Riccardo Montioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carla Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Corinne Gemperle
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Todd Berner
- Global Medical Affairs, PTC Therapeutics, South Plainfield, NJ, USA
| | - Keith Hyland
- Medical Neurogenetics Laboratories, Atlanta, GA, USA
| | - Beat Thöny
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Georg F Hoffmann
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany
| | - Carla B Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Nenad Blau
- Dietmar-Hopp Metabolic Center and Centre for Pediatrics and Adolescent Medicine, University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
13
|
Lee NC, Chien YH, Hwu WL. A review of aromatic l
-amino acid decarboxylase (AADC) deficiency in Taiwan. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:226-229. [DOI: 10.1002/ajmg.c.31670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Department of Pediatrics; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
14
|
Doummar D, Moussa F, Nougues MC, Ravelli C, Louha M, Whalen S, Burglen L, Rodriguez D, Billette de Villemeur T. Monoamine neurotransmitters and movement disorders in children and adults. Rev Neurol (Paris) 2018; 174:581-588. [DOI: 10.1016/j.neurol.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
|
15
|
Montioli R, Janson G, Paiardini A, Bertoldi M, Borri Voltattorni C. Heterozygosis in aromatic amino acid decarboxylase deficiency: Evidence for a positive interallelic complementation between R347Q and R358H mutations. IUBMB Life 2018; 70:215-223. [PMID: 29356298 DOI: 10.1002/iub.1718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 11/08/2022]
Abstract
Aromatic amino acid or Dopa decarboxylase (AADC or DDC) is a homodimeric pyridoxal 5'-phosphate (PLP) enzyme responsible for the generation of the neurotransmitters dopamine and serotonin. AADC deficiency is a rare inborn disease caused by mutations of the AADC gene leading to a defect of AADC enzyme and resulting in impaired dopamine and serotonin synthesis. Until now, only the molecular effects of homozygous mutations were analyzed. However, although heterozygous carriers of AADC deficiency were identified, the molecular aspects of their enzymatic phenotypes are not yet investigated. Here, we focus our attention on the R347Q/R358H and R347Q/R160W heterozygous mutations, and report for the first time the isolation and characterization, in the purified recombinant form, of the R347Q/R358H heterodimer and of the R358H homodimer. The results, integrated with those already known of the R347Q homodimeric variant, provide evidence that (i) the R358H mutation strongly reduces the PLP-binding affinity and the catalytic activity, and (ii) a positive interallelic complementation exists between the R347Q and the R358H mutations. Bioinformatics analyses provide the structural basis for these data. Unfortunately, the R347Q/R160W heterodimer was not obtained in a sufficient amount to allow its purification and characterization. Nevertheless, the biochemical features of the R160W homodimer give a contribution to the enzymatic phenotype of the heterozygous R347Q/R160W and suggest the possible relevance of Arg160 in the proper folding of human DDC. © 2018 IUBMB Life, 70(3):215-223, 2018.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giacomo Janson
- Department of Biochemical Sciences "A. Rossi Fanelli,", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli,", Sapienza University of Rome, Rome, Italy
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Hwu WL, Chien YH, Lee NC, Li MH. Natural History of Aromatic L-Amino Acid Decarboxylase Deficiency in Taiwan. JIMD Rep 2017; 40:1-6. [PMID: 28856607 DOI: 10.1007/8904_2017_54] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/30/2017] [Accepted: 08/10/2017] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare inherited disorder of monoamine neurotransmitter synthesis; this deficiency leads to psychomotor delay, hypotonia, oculogyric crises, dystonia, and extraneurological symptoms. This study aimed to provide further insight into the clinical course of AADC deficiency in Taiwan. PATIENTS AND METHODS We present a retrospective, descriptive, single-center study of 37 children with a confirmed diagnosis of AADC deficiency. Their medical histories were reviewed for motor milestones, motor development, DDC mutation, and body weight. The termination point for each patient in this study was defined as no further follow-up, death, or enrollment in a gene therapy trial. RESULTS The median age of the study patients at the end of the study was 4.39 years (1.28-11.30). Of the 37 patients, 36 did not develop full head control, sitting ability, standing ability, or speech at any time point from birth to the termination points. Motor scales were administered to 22 patients. Their Alberta Infant Motor Scale scores were below the fifth percentile, and their Peabody Developmental Motor Scales, Second Edition, scores were below the first percentile. Their body weights were normal in the first few months of life, but severe growth retardation occurred at later ages. The mutation c.714+4A>T (IVS6+4A>T) accounted for 76% of all their DDC mutations. CONCLUSION In this chapter, we report the clinical course of AADC deficiency in Taiwan. Our data will help guide the development of treatment strategies for the disease.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mei-Hsin Li
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|