1
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
2
|
Yoon JK, Schindler JW, Loperfido M, Baricordi C, DeAndrade MP, Jacobs ME, Treleaven C, Plasschaert RN, Yan A, Barese CN, Dogan Y, Chen VP, Fiorini C, Hull F, Barbarossa L, Unnisa Z, Ivanov D, Kutner RH, Guda S, Oborski C, Maiwald T, Michaud V, Rothe M, Schambach A, Pfeifer R, Mason C, Biasco L, van Til NP. Preclinical lentiviral hematopoietic stem cell gene therapy corrects Pompe disease-related muscle and neurological manifestations. Mol Ther 2024:S1525-0016(24)00606-3. [PMID: 39295144 DOI: 10.1016/j.ymthe.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Aimin Yan
- AVROBIO, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Véronique Michaud
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Luca Biasco
- AVROBIO, Inc., Cambridge, MA 02139, USA; Zayed Centre for Research, University College London, London WC1N 1DZ, UK
| | - Niek P van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
van den Dorpel JJA, Mackenbach MJ, Dremmen MHG, van der Vlugt WMC, Rizopoulos D, van Doorn PA, van der Ploeg AT, Muetzel R, van der Beek NAME, van den Hout JMP. Long term survival in patients with classic infantile Pompe disease reveals a spectrum with progressive brain abnormalities and changes in cognitive functioning. J Inherit Metab Dis 2024; 47:716-730. [PMID: 38584574 DOI: 10.1002/jimd.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
The aim of this longitudinal cohort study, is to provide more insight into the pattern of brain abnormalities, and possible consequences for cognitive functioning, in patients with classic infantile Pompe disease. We included 19 classic infantile Pompe patients (median age last assessment 8.9 years, range 1.5-22.5 years; 5/19 CRIM negative), treated with ERT. Using MR imaging of the brain (T1, T2, and FLAIR acquisitions), we classified progression of brain abnormalities on a 12-point rating scale at multiple time points throughout follow-up. Additionally we noted specific white matter patterns and examined atrophy. Cognitive development was studied using Wechsler IQ assessments obtained by certified neuropsychologists. The association between age and cognitive functioning, and MRI ratings and cognitive functioning was assessed by linear regression models. All but one patient developed brain abnormalities. The abnormalities progressed in a similar pattern throughout the brain, with early involvement of periventricular white matter, later followed by subcortical white matter, gray matter structures, and juxtacortical U-fibers. We found a significant decline (p < 0.01), with increasing age for full scale IQ, performance IQ and processing speed, but not for verbal IQ (p = 0.17). Each point increment in the 12-point MRI rating scale was associated with a significant decline (3.1-6.0 points) in all the IQ index scores (p < 0.05). The majority of long-term surviving patients in our cohort develop incremental brain MRI abnormalities and decline in cognitive functioning. This highlights the need for new therapies that can cross the blood-brain barrier in order to treat this CNS phenotype.
Collapse
Affiliation(s)
- J J A van den Dorpel
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - M J Mackenbach
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - M H G Dremmen
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - W M C van der Vlugt
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - D Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - P A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - R Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - N A M E van der Beek
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| | - J M P van den Hout
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Center for Lysosomal and Metabolic Diseases, The Netherlands
| |
Collapse
|
4
|
Kenney-Jung D, Korlimarla A, Spiridigliozzi GA, Wiggins W, Malinzak M, Nichting G, Jung SH, Sun A, Wang RY, Al Shamsi A, Phornphutkul C, Owens J, Provenzale JM, Kishnani PS. Severe CNS involvement in a subset of long-term treated children with infantile-onset Pompe disease. Mol Genet Metab 2024; 141:108119. [PMID: 38184429 PMCID: PMC11080415 DOI: 10.1016/j.ymgme.2023.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION The standard of care for patients with infantile-onset Pompe disease (IOPD) is enzyme replacement therapy (ERT), which does not cross the blood brain barrier. While neuromuscular manifestations of IOPD are well-described, central nervous system (CNS) manifestations of this disorder are far less characterized. Here we describe severe CNS-related neurological manifestations including seizures and encephalopathy in six individuals with IOPD. METHOD We identified six children with IOPD who developed CNS manifestations such as seizures and/or encephalopathy. We studied their brain magnetic resonance imaging scans (MRIs) and graded the severity of white matter hyperintensities (WMHI) using the Fazekas scale scoring system as previously published. Longitudinal cognitive measures were available from 4/6 children. RESULTS All six IOPD patients (4 males/2 females) had been treated with ERT for 12-15 years. Seizures and/or encephalopathy were noted at a median age at onset of 11.9 years (range 9-15 years). All were noted to have extensive WMHI in the brain MRIs and very high Fazekas scores which preceded the onset of neurological symptoms. Longitudinal IQ scores from four of these children suggested developmental plateauing. DISCUSSION Among a subset of IOPD patients on long-term ERT, CNS manifestations including hyperreflexia, encephalopathy and seizures may become prominent, and there is likely an association between these symptoms and significant WMHI on MRI. Further study is needed to identify risk factors for CNS deterioration among children with IOPD and develop interventions to prevent neurological decline.
Collapse
Affiliation(s)
- Daniel Kenney-Jung
- Division of Neurology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Aditi Korlimarla
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Gail A Spiridigliozzi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Walter Wiggins
- Department of Neuroradiology, Duke University Medical Center, Durham, NC, United States of America
| | - Michael Malinzak
- Department of Neuroradiology, Duke University Medical Center, Durham, NC, United States of America
| | - Gretchen Nichting
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Seung-Hye Jung
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
| | - Angela Sun
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States of America
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, Orange, CA, United States of America
| | - Aisha Al Shamsi
- Genetic Metabolic Division, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Chanika Phornphutkul
- The Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - James Owens
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States of America
| | - James M Provenzale
- Department of Neuroradiology, Duke University Medical Center, Durham, NC, United States of America
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America.
| |
Collapse
|
5
|
Burlina AP, Manara R, Gueraldi D. Lysosomal storage diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:147-172. [PMID: 39322377 DOI: 10.1016/b978-0-323-99209-1.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Lysosomal storage disorders (LSDs) are a group of inherited metabolic diseases caused by dysfunction of the lysosomal system, with subsequent progressive accumulation of macromolecules, activation of inflammatory response, and cell death. Neurologic damage is almost always present, and it is usually degenerative. White matter (WM) involvement may be primary or secondary. Diseases with primary WM involvement are leukodystrophies, demyelinating (Krabbe disease and metachromatic leukodystrophy), and hypomyelinating leukodystrophies (free sialic acid storage disease, fucosidosis, and mucolipidosis type IV). LSDs with secondary WM involvement are classified as leukoencephalopathies and include gangliosidosis, mucopolysaccharidosis (MPS), ceroid neuronal lipofuscinosis, multiple sulfatase deficiency, alpha-mannosidosis, Pompe disease, and Fabry disease. Neurologic manifestations may overlap among LSDs and include developmental delays, motor, cognitive and speech impairments, seizures, visual failure, ataxia, and extrapyramidal signs. Most of LSDs are typically present in early or late infancy, but juvenile and adult forms also exist and are associated with predominantly neuropsychiatric and behavioral symptoms. The outcome of these disorders is generally poor and specific treatments (enzyme replacement therapy, hematopoietic stem cell transplantation, or gene therapy) are only available in a small number of them.
Collapse
Affiliation(s)
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University Hospital of Padova, Padova, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, University Hospital of Padova, Padova, Italy
| |
Collapse
|
6
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Zhang WC, Mao YY, Chen Q. [Research progress of nervous system damage in Pompe disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:420-424. [PMID: 37073849 PMCID: PMC10120337 DOI: 10.7499/j.issn.1008-8830.2211052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Collapse
Affiliation(s)
- Wen-Chao Zhang
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ying-Ying Mao
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qian Chen
- Department of Neurology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
8
|
Sniderman King L, Pan Y, Nallamilli BRR, Hegde M, Jagannathan L, Ramachander V, Lucas A, Markind J, Colzani R. Pompe disease ascertained through The Lantern Project, 2018-2021: Next-generation sequencing and enzymatic testing to overcome obstacles to diagnosis. Mol Genet Metab 2023; 139:107565. [PMID: 37087815 DOI: 10.1016/j.ymgme.2023.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023]
Abstract
The Lantern Project is an ongoing complimentary diagnostic program for patients in the United States sponsored by Sanofi and implemented by PerkinElmer Genomics. It combines specific enzymatic, biomarker, and genetic testing to facilitate rapid, accurate laboratory diagnosis of Pompe disease and several other lysosomal storage diseases, and a multigene next-generation sequencing panel including Pompe disease, LGMD, and other neuromuscular disorders. This article reports data for Pompe disease collected from October 2018 through December 2021, including acid α-glucosidase (GAA) enzyme assay and GAA sequencing (standard or expedited for positive newborn screening [NBS] to rule out infantile-onset Pompe disease [IOPD]) and the Focused Neuromuscular Panel, which includes GAA. One hundred forty patients (12 received only GAA enzyme testing, 128 had GAA sequencing alone or in addition to enzyme assay) have been confirmed with Pompe disease in this project. Eight of the 140 had a variant of unknown significance, but GAA activity ≤2.10 μmol/L/h, thus were confirmed with Pompe disease. Three diagnosed patients 0-2 years old had cross-reactive immunologic material (CRIM)-negative GAA variants and thus IOPD. One additional infant with presumptive IOPD had a homozygous frameshift c.1846del, likely CRIM-negative; symptoms were not provided. Among the 128 patients with molecular results, the c.-32-13T>G splice variant was homozygous in 11, compound-heterozygous in 98, and absent in 19. Proximal muscle weakness (58 patients) was the most common sign reported at testing; elevated creatine kinase (29 patients) was the most common laboratory result. The most common symptom categories were muscular (73 patients), musculoskeletal (13 patients), and respiratory (23 patients). Clinical information was not available for 42 samples, and 17 infants had only "abnormal NBS" or "low GAA" reported. Cardiac symptoms in 7 included potentially age-related conditions in five c.-32-13T>G-compound-heterozygous adults (myocardial infarction, heart murmur/palpitations, congestive heart failure: 1 each; 2 with atrial fibrillation) and hypertrophic cardiomyopathy in 2 children (1 and 2 years old) with presumptive IOPD. One novel GAA variant was observed in a patient with enzyme activity 0.31 μmol/L/h: c.1853_1854ins49, a frameshift pathogenic variant. The Lantern Project demonstrates the combinatorial utility of enzyme assay, targeted single-gene testing, and a focused neuromuscular next-generation sequencing panel in diagnosing Pompe disease.
Collapse
|
9
|
de Moraes MBM, de Souza HMR, de Oliveira MLC, Peake RWA, Scalco FB, Garrett R. Combined targeted and untargeted high-resolution mass spectrometry analyses to investigate metabolic alterations in pompe disease. Metabolomics 2023; 19:29. [PMID: 36988742 DOI: 10.1007/s11306-023-01989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/05/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Pompe disease is a rare, lysosomal disorder, characterized by intra-lysosomal glycogen accumulation due to an impaired function of α-glucosidase enzyme. The laboratory testing for Pompe is usually performed by enzyme activity, genetic test, or urine glucose tetrasaccharide (Glc4) screening by HPLC. Despite being a good preliminary marker, the Glc4 is not specific for Pompe. OBJECTIVE The purpose of the present study was to develop a simple methodology using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for targeted quantitative analysis of Glc4 combined with untargeted metabolic profiling in a single analytical run to search for complementary biomarkers in Pompe disease. METHODS We collected 21 urine specimens from 13 Pompe disease patients and compared their metabolic signatures with 21 control specimens. RESULTS Multivariate statistical analyses on the untargeted profiling data revealed Glc4, creatine, sorbitol/mannitol, L-phenylalanine, N-acetyl-4-aminobutanal, N-acetyl-L-aspartic acid, and 2-aminobenzoic acid as significantly altered in Pompe disease. This panel of metabolites increased sample class prediction (Pompe disease versus control) compared with a single biomarker. CONCLUSION This study has demonstrated the potential of combined acquisition methods in LC-HRMS for Pompe disease investigation, allowing for routine determination of an established biomarker and discovery of complementary candidate biomarkers that may increase diagnostic accuracy, or improve the risk stratification of patients with disparate clinical phenotypes.
Collapse
Affiliation(s)
- Mariana B M de Moraes
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Hygor M R de Souza
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil
- Institute of Chemistry, Fluminense Federal University, Niterói, RJ, Brazil
| | - Maria L C de Oliveira
- Inborn Error of Metabolism Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fernanda B Scalco
- Inborn Error of Metabolism Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Horácio Macedo 1281, Rio de Janeiro, RJ, 21941-598, Brazil.
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Hsu YK, Chien YH, Shinn-Forng Peng S, Hwu WL, Lee WT, Lee NC, Po-Yu Huang E, Weng WC. Evaluating brain white matter hyperintensity, IQ scores, and plasma neurofilament light chain concentration in early-treated patients with infantile-onset Pompe disease. Genet Med 2023; 25:27-36. [PMID: 36399131 DOI: 10.1016/j.gim.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The study aimed to describe central nervous system (CNS) progression in patients with infantile-onset Pompe disease (IOPD) and explore the potential clinical impact and predictors. METHODS Patients with IOPD treated with enzyme replacement therapy were longitudinally followed with brain magnetic resonance imaging (MRI) and evaluation for IQ scores from 2004 to 2021. Investigation of CNS involvement focused on white matter (WM) abnormalities and was quantified using a scoring system for metachromatic leukodystrophy. MRI scores were correlated with plasma neurofilament light chain (NfL) concentration and IQ scores. RESULTS A total of 19 patients who started enzyme replacement therapy at a mean age of 26 days were analyzed; the median age at last examination was 12.1 (range = 1.7-19) years. MRI abnormalities were found in all patients, from supratentorial central WM to U-fibers, then to infratentorial WM, and eventually to gray matter. MRI scores progressed (n = 16) at variable rates (range = 0.8-2.7/y) and were positively correlated with age (n = 16) and negatively correlated with IQ scores (n = 8). Plasma NfL concentration was positively correlated with MRI scores (r2 = 0.8569; P < .001; n = 13). CONCLUSION Our results suggest that the progression of CNS involvement in IOPD may be associated with neuroaxonal injury and decreased IQ scores. NfL could serve as a biomarker for CNS involvement in IOPD.
Collapse
Affiliation(s)
- Yu-Kang Hsu
- Department of Pediatrics, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Eric Po-Yu Huang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Unnisa Z, Yoon JK, Schindler JW, Mason C, van Til NP. Gene Therapy Developments for Pompe Disease. Biomedicines 2022; 10:302. [PMID: 35203513 PMCID: PMC8869611 DOI: 10.3390/biomedicines10020302] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.
Collapse
Affiliation(s)
- Zeenath Unnisa
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | - John K. Yoon
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Cell type-selective targeted delivery of a recombinant lysosomal enzyme for enzyme therapies. Mol Ther 2021; 29:3512-3524. [PMID: 34400331 DOI: 10.1016/j.ymthe.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 11/21/2022] Open
Abstract
Lysosomal diseases are a class of genetic disorders predominantly caused by loss of lysosomal hydrolases, leading to lysosomal and cellular dysfunction. Enzyme replacement therapy (ERT), where recombinant enzyme is given intravenously, internalized by cells, and trafficked to the lysosome, has been applied to treat several lysosomal diseases. However, current ERT regimens do not correct disease phenotypes in all affected organs because the biodistribution of enzyme uptake does not match that of the affected cells that require the enzyme. We present here targeted ERT, an approach that utilizes antibody-enzyme fusion proteins to target the enzyme to specific cell types. The antibody moiety recognizes transmembrane proteins involved in lysosomal trafficking and that are also preferentially expressed in those cells most affected in disease. Using Pompe disease (PD) as an example, we show that targeted ERT is superior to ERT in treating the skeletal muscle phenotypes of PD mice both as a protein replacement therapeutic and as a gene therapy.
Collapse
|
13
|
Díaz-Manera J, Walter G, Straub V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2020; 63:640-650. [PMID: 33155691 DOI: 10.1002/mus.27099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Barcelona, Spain
| | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Korlimarla A, Spiridigliozzi GA, Crisp K, Herbert M, Chen S, Malinzak M, Stefanescu M, Austin SL, Cope H, Zimmerman K, Jones H, Provenzale JM, Kishnani PS. Novel approaches to quantify CNS involvement in children with Pompe disease. Neurology 2020; 95:e718-e732. [PMID: 32518148 PMCID: PMC7455359 DOI: 10.1212/wnl.0000000000009979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/26/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the extent of CNS involvement in children with Pompe disease using brain MRI and developmental assessments. METHODS The study included 14 children (ages 6-18 years) with infantile Pompe disease (IPD) (n = 12) or late-onset Pompe disease (LOPD) (n = 2) receiving enzyme replacement therapy. White matter (WM) hyperintense foci seen in the brain MRIs were systematically quantified using the Fazekas scale (FS) grading system with a novel approach: the individual FS scores from 10 anatomical areas were summed to yield a total FS score (range absent [0] to severe [30]) for each child. The FS scores were compared to developmental assessments of cognition and language obtained during the same time period. RESULTS Mild to severe WM hyperintense foci were seen in 10/12 children with IPD (median age 10.6 years) with total FS scores ranging from 2 to 23. Periventricular, subcortical, and deep WM were involved. WM hyperintense foci were seen throughout the path of the corticospinal tracts in the brain in children with IPD. Two children with IPD had no WM hyperintense foci. Children with IPD had relative weaknesses in processing speed, fluid reasoning, visual perception, and receptive vocabulary. The 2 children with LOPD had no WM hyperintense foci, and high scores on most developmental assessments. CONCLUSION This study systematically characterized WM hyperintense foci in children with IPD, which could serve as a benchmark for longitudinal follow-up of WM abnormalities in patients with Pompe disease and other known neurodegenerative disorders or leukodystrophies in children.
Collapse
Affiliation(s)
- Aditi Korlimarla
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Gail A Spiridigliozzi
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Kelly Crisp
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Mrudu Herbert
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Steven Chen
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Michael Malinzak
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Mihaela Stefanescu
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Stephanie L Austin
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Heidi Cope
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Kanecia Zimmerman
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Harrison Jones
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - James M Provenzale
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC
| | - Priya S Kishnani
- From the Division of Medical Genetics, Department of Pediatrics (A.K., M.S., S.L.A., H.C., P.S.K.), Department of Psychiatry and Behavioral Sciences (G.A.S.), Department of Surgery (K.C., H.J.), and Department of Neuroradiology (S.C., M.M., J.M.P.), Duke University Medical Center, Durham, NC; Department of Pediatric Neurology (M.H.), University of Kentucky Medical Center, Lexington; and Duke Clinical Research Institute (K.Z.), Durham, NC.
| |
Collapse
|
15
|
Lachmann RH. Treating lysosomal storage disorders: What have we learnt? J Inherit Metab Dis 2020; 43:125-132. [PMID: 31140601 DOI: 10.1002/jimd.12131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
The first enzyme replacement therapy (ERT) for a lysosomal storage disorder (LSD) was approved in 1991 and we now have more than 25 years of experience of treating patients with type 1 Gaucher disease. Because of the remarkable success of this therapy, enormous effort and resource has gone into developing other ERTs, for Gaucher (where three different enzyme preparations have now been approved) and for other LSDs. We now have more than 10 years of clinical experience in using ERT to treat Gaucher, Fabry, Pompe and MPS I, II, and VI. This article aims to assess the real-life experience of a selection of these innovative and expensive treatments to see if they have met the high expectations which were set for them when they launched.
Collapse
Affiliation(s)
- Robin H Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
16
|
Korlimarla A, Lim JA, Kishnani PS, Sun B. An emerging phenotype of central nervous system involvement in Pompe disease: from bench to bedside and beyond. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:289. [PMID: 31392201 DOI: 10.21037/atm.2019.04.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pompe disease (PD) is a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acid-alpha glucosidase (GAA). Pathogenic variants in the GAA gene lead to excessive accumulation of lysosomal glycogen primarily in the cardiac, skeletal, and smooth muscles. There is growing evidence of central nervous system (CNS) involvement in PD. Current research is focused on determining the true extent of CNS involvement, its effects on behavior and cognition, and effective therapies that would correct the disease in both muscle and the CNS. This review article summarizes the CNS findings in patients, highlights the importance of research on animal models, explores the probable success of gene therapy in reversing CNS pathologies as reported by some breakthrough preclinical studies, and emphasizes the need to follow patients and monitor for CNS involvement over time. Lessons learned from animal models (bench) and from the literature available to date on patients will guide future clinical trials in patients (bedside) with PD. Our preliminary studies in infantile PD show that some patients are susceptible to early and extensive CNS pathologies, as assessed by neuroimaging and developmental assessments. This article highlights the importance of neuroimaging which could serve as useful tools to diagnose and monitor certain CNS pathologies such as white matter hyperintense foci (WMF) in the brain. Longitudinal studies with large sample sizes are warranted at this time to better understand the emergence, progression and consequences of CNS involvement in patients with PD.
Collapse
Affiliation(s)
- Aditi Korlimarla
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Hahn A, Schänzer A. Long-term outcome and unmet needs in infantile-onset Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:283. [PMID: 31392195 DOI: 10.21037/atm.2019.04.70] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infantile-onset Pompe disease (IOPD) is characterized by virtually complete absence of acid alpha-glucosidase (GAA)-activity, resulting in rapidly progressive hypertrophic cardiomyopathy (HCM), profound skeletal muscle weakness, and death usually within the first 12 months of life. Enzyme replacement therapy (ERT) with recombinant GAA in humans started in 1999, and pivotal studies demonstrated that the treatment ameliorated HCM, improved motor function in some patients, and prolonged overall and ventilator-free survival. These outcomes led to the approval of ERT in 2006. Implementation of ERT has uncovered multisystemic character of IOPD, not known in the pre-ERT era. Although ERT has substantially improved the prognosis of IOPD, mortality is still considerable, and decline of motor function with time is frequent in long-term survivors. This review details the new complex IOPD phenotype, outlines problems related to ERT, and highlights unmet needs.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
18
|
Severe distal muscle involvement and mild sensory neuropathy in a boy with infantile onset Pompe disease treated with enzyme replacement therapy for 6 years. Neuromuscul Disord 2019; 29:477-482. [DOI: 10.1016/j.nmd.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 11/22/2022]
|
19
|
Angelini C, Pinzan E. Advances in imaging of brain abnormalities in neuromuscular disease. Ther Adv Neurol Disord 2019; 12:1756286419845567. [PMID: 31105770 PMCID: PMC6503605 DOI: 10.1177/1756286419845567] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
Brain atrophy, white matter abnormalities, and ventricular enlargement have been described in different neuromuscular diseases (NMDs). We aimed to provide a comprehensive overview of the substantial advancement of brain imaging in neuromuscular diseases by consulting the main libraries (Pubmed, Scopus and Google Scholar) including the more common forms of muscular dystrophies such as dystrophinopathies, dystroglycanopathies, myotonic dystrophies, facioscapulohumeral dystrophy, limb-girdle muscular dystrophy, congenital myotonia, and congenital myopathies. A consistent, widespread cortical and subcortical involvement of grey and white matter was found. Abnormalities in the functional connectivity in brain networks and metabolic alterations were observed with positron emission tomography (PET) and single photon emission computed tomography (SPECT). Pathological brain changes with cognitive dysfunction seemed to be frequently associated in NMDs. In particular, in congenital muscular dystrophies (CMDs), skeletal muscular weakness, severe hypotonia, WM abnormalities, ventricular dilatation and abnormalities in cerebral gyration were observed. In dystroglycanopathy 2I subtype (LGMD2I), adult patients showed subcortical atrophy and a WM periventricular involvement, moderate ventriculomegaly, and enlargement of subarachnoid spaces. Correlations with clinical features have been observed with brain imaging characteristics and alterations were prominent in congenital or childhood onset cases. In myotonic dystrophy type 2 (DM2) symptoms seem to be less severe than in type 1 (DM1). In Duchenne and Becker muscular dystrophies (DMD, BMD) cortical atrophy is associated with minimal ventricular dilatation and WM abnormalities. Late-onset glycogenosis type II (GSD II) or Pompe infantile forms are characterized by delayed myelination. Only in a few cases of oculopharyngeal muscular dystrophy (OPMD) central nervous system involvement has been described and associated with executive functions impairment.
Collapse
Affiliation(s)
- Corrado Angelini
- Fondazione Ospedale San Camillo IRCCS, Via
Alberoni 70, Venezia, 30126, Italia
| | - Elena Pinzan
- Fondazione Ospedale San Camillo IRCCS, Venezia,
Italia
| |
Collapse
|
20
|
Abstract
Lysosomal storage disorders are a heterogeneous group of genetic diseases characterized by defective function in one of the lysosomal enzymes. In this review paper, we describe neuroradiological findings and clinical characteristics of neuronopathic lysosomal disorders with a focus on differential diagnosis. New insights regarding pathogenesis and therapeutic perspectives are also briefly discussed.
Collapse
|
21
|
Ebbink BJ, Poelman E, Aarsen FK, Plug I, Régal L, Muentjes C, van der Beek NAME, Lequin MH, van der Ploeg AT, van den Hout JMP. Classic infantile Pompe patients approaching adulthood: a cohort study on consequences for the brain. Dev Med Child Neurol 2018; 60:579-586. [PMID: 29573408 DOI: 10.1111/dmcn.13740] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 01/09/2023]
Abstract
AIM To examine the long-term consequences of glycogen storage in the central nervous system (CNS) for classic infantile Pompe disease using enzyme replacement therapy. METHOD Using neuropsychological tests and brain magnetic resonance imaging (MRI), we prospectively assessed a cohort of 11 classic infantile Pompe patients aged up to 17 years. RESULTS From approximately age 2 years onwards, brain MRI showed involvement of the periventricular white matter and centrum semiovale. After 8 years of age, additional white-matter abnormalities occurred in the corpus callosum, internal and external capsule, and subcortical areas. From 11 years of age, white-matter abnormalities were also found in the brainstem. Although there seemed to be a characteristic pattern of involvement over time, there were considerable variations between patients, reflected by variations in neuropsychological development. Cognitive development ranged from stable and normal to declines that lead to intellectual disabilities. INTERPRETATION As treatment enables patients with classic infantile Pompe disease to reach adulthood, white-matter abnormalities are becoming increasingly evident, affecting the neuropsychological development. Therefore, we advise follow-up programs are expanded to capture CNS involvement in larger, international patient cohorts, to incorporate our findings in the counselling of parents before the start of treatment, and to include the brain as an additional target in the development of next-generation therapeutic strategies for classic infantile Pompe disease. WHAT THIS PAPER ADDS In our long-term survivors treated intravenously with enzyme replacement therapy, we found slowly progressive symmetric white-matter abnormalities. Cognitive development varied from stable and normal to declines towards intellectual disabilities.
Collapse
Affiliation(s)
- Berendine J Ebbink
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Esther Poelman
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Femke K Aarsen
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Iris Plug
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Luc Régal
- Department of Pediatrics, Pediatric Neurology and Metabolic Disorders, UZ Brussel, Brussels, Belgium
| | - Carsten Muentjes
- Department of Pediatrics III, University Children's Hospital, Essen, Germany
| | - Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Maarten H Lequin
- Division of Pediatric Radiology, Department of Pediatrics, Utrecht University, Utrecht, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
22
|
McIntosh PT, Hobson-Webb LD, Kazi ZB, Prater SN, Banugaria SG, Austin S, Wang R, Enterline DS, Frush DP, Kishnani PS. Neuroimaging findings in infantile Pompe patients treated with enzyme replacement therapy. Mol Genet Metab 2018; 123:85-91. [PMID: 29050825 PMCID: PMC5808895 DOI: 10.1016/j.ymgme.2017.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recombinant human acid α-glucosidase (rhGAA) enzyme replacement therapy (ERT) has prolonged survival in infantile Pompe disease (IPD), but has unmasked central nervous system (CNS) changes. METHODS Brain imaging, consisting of computed tomography (CT) and/or magnetic resonance imaging (MRI), was performed on 23 patients with IPD (17 CRIM-positive, 6 CRIM-negative) aged 2-38months. Most patients had baseline neuroimaging performed prior to the initiation of ERT. Follow-up neuroimaging was performed in eight. RESULTS Sixteen patients (70%) had neuroimaging abnormalities consisting of ventricular enlargement (VE) and/or extra-axial cerebrospinal fluid accumulation (EACSF) at baseline, with delayed myelination in two. Follow-up neuroimaging (n=8) after 6-153months showed marked improvement, with normalization of VE and EACSF in seven patients. Two of three patients imaged after age 10years demonstrated white matter changes, with one noted to have a basilar artery aneurysm. CONCLUSIONS Mild abnormalities on brain imaging in untreated or newly treated patients with IPD tend to resolve with time, in conjunction with ERT. However, white matter changes are emerging as seen in Patients 1 and 3 which included abnormal periventricular white matter changes with subtle signal abnormalities in the basal ganglia and minimal, symmetric signal abnormalities involving the deep frontoparietal cerebral white matter, respectively. The role of neuroimaging as part of the clinical evaluation of IPD needs to be considered to assess for white matter changes and cerebral aneurysms.
Collapse
Affiliation(s)
- Paul T McIntosh
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Lisa D Hobson-Webb
- Department of Neurology, Neuromuscular Division, Duke University, Durham, NC, USA
| | - Zoheb B Kazi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Sean N Prater
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Suhrad G Banugaria
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Stephanie Austin
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Raymond Wang
- Department of Metabolic Disorders, Children's Hospital of Orange County, Orange, CA, USA
| | - David S Enterline
- Department of Radiology, Division of Neuroradiology, Duke University, Durham, NC, USA
| | - Donald P Frush
- Department of Radiology, Division of Pediatric Radiology, Duke University, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.
| |
Collapse
|