1
|
The Impact of COVID-19 on the Insurance Industry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165766. [PMID: 32784978 PMCID: PMC7459729 DOI: 10.3390/ijerph17165766] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
This study investigated the impact of COVID-19 on the insurance industry by studying the case of Ghana from March to June 2020. With a parallel comparison to previous pandemics such as SARS-CoV, H1N1 and MERS, we developed outlines for simulating the impact of the pandemic on the insurance industry. The study used qualitative and quantitative interviews to estimate the impact of the pandemic. Presently, the trend is an economic recession with decreasing profits but increasing claims. Due to the cancellation of travels, events and other economic losses, the Ghanaian insurance industry witnessed a loss currently estimated at GH Ȼ112 million. Our comparison and forecast predicts a normalization of economic indicators from January 2021. In the meantime, while the pandemic persists, insurers should adapt to working from remote locations, train and equip staff to work under social distancing regulations, enhance cybersecurity protocols and simplify claims/premium processing using e-payment channels. It will require the collaboration of the Ghana Ministry of Health, Banking Sector, Police Department, Customs Excise and Preventive Service, other relevant Ministries and the international community to bring the pandemic to a stop.
Collapse
|
2
|
Silva Júnior JVJ, Lopes TRR, de Oliveira PSB, Weiblen R, Flores EF. Letter to the Editor: Issues on COVID-19 Pathogenesis. Viral Immunol 2020; 34:358-360. [PMID: 32339089 DOI: 10.1089/vim.2020.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- José Valter Joaquim Silva Júnior
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil.,Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil.,Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Thaísa Regina Rocha Lopes
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Rudi Weiblen
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo Furtado Flores
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
3
|
Abstract
Two novel coronaviruses have emerged in humans in the twenty-first century: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome (ARDS) and are associated with high mortality rates. There are no clinically approved vaccines or antiviral drugs available for either of these infections; thus, the development of effective therapeutic and preventive strategies that can be readily applied to new emergent strains is a research priority. In this Review, we describe the emergence and identification of novel human coronaviruses over the past 10 years, discuss their key biological features, including tropism and receptor use, and summarize approaches for developing broadly effective vaccines.
Collapse
Affiliation(s)
- Rachel L. Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599 North Carolina USA
| | - Eric F. Donaldson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599 North Carolina USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, 27599 North Carolina USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, 27599 North Carolina USA
| |
Collapse
|
4
|
Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J Virol 2010; 85:217-30. [PMID: 20980507 DOI: 10.1128/jvi.01805-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Newly emerging viruses often circulate as a heterogeneous swarm in wild animal reservoirs prior to their emergence in humans, and their antigenic identities are often unknown until an outbreak situation. The newly emerging severe acute respiratory syndrome coronavirus (SARS-CoV) and reemerging influenza virus cause disproportionate disease in the aged, who are also notoriously difficult to successfully vaccinate, likely due to immunosenescence. To protect against future emerging strains, vaccine platforms should induce broad cross-reactive immunity that is sufficient to protect from homologous and heterologous challenge in all ages. From initial studies, we hypothesized that attenuated Venezuelan equine encephalitis virus (VEE) replicon particle (VRP) vaccine glycoproteins mediated vaccine failure in the aged. We then compared the efficacies of vaccines bearing attenuated (VRP(3014)) or wild-type VEE glycoproteins (VRP(3000)) in young and aged mice within novel models of severe SARS-CoV pathogenesis. Aged animals receiving VRP(3000)-based vaccines were protected from SARS-CoV disease, while animals receiving the VRP(3014)-based vaccines were not. The superior protection for the aged observed with VRP(3000)-based vaccines was confirmed in a lethal influenza virus challenge model. While the VRP(3000) vaccine's immune responses in the aged were sufficient to protect against lethal homologous and heterologous challenge, our data suggest that innate defects within the VRP(3014) platform mediate vaccine failure. Exploration into the mechanism(s) of successful vaccination in the immunosenescent should aid in the development of successful vaccine strategies for other viral diseases disproportionately affecting the elderly, like West Nile virus, influenza virus, norovirus, or other emerging viruses of the future.
Collapse
|
5
|
Fukushima A, Fukuda N, Lai Y, Ueno T, Moriyama M, Taguchi F, Iguchi A, Shimizu K, Kuroda K. Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus. Intervirology 2009; 52:92-9. [PMID: 19420961 PMCID: PMC7179559 DOI: 10.1159/000215946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/23/2009] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Severe acute respiratory syndrome (SARS) is a severe pulmonary infectious disease caused by a novel coronavirus. To develop an effective and specific medicine targeting the SARS-coronavirus (CoV), a chimeric DNA-RNA hammerhead ribozyme was designed and synthesized using a sequence homologous with the mouse hepatitis virus (MHV). METHOD Chimeric DNA-RNA hammerhead ribozyme targeting MHV and SARS-CoV were designed and synthesized.To confirm its activity, in vitro cleavage reactions were performed with the synthesized ribozyme. Effects of the chimeric ribozyme were evaluated on multiplication of MHV. Effects of the chimeric ribozyme on expression of SARS-CoV were evaluated in cultured 3T3 cells. RESULT The synthetic ribozyme cleaved the synthetic target MHV and SARS-CoV RNA into fragments of predicted length. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited multiplication of MHV in DBT cells by about 60%. The chimeric DNA-RNA hammerhead ribozyme targeting SARS-CoV significantly inhibited the expression of SARS-CoV RNA in 3T3 cells transfected with the recombinant plasmid. The chimeric DNA-RNA ribozyme targeting SARS-CoV significantly inhibited MHV viral activity and expression of recombinant SARS RNA in vitro. CONCLUSION These findings indicate that the synthetic chimeric DNA-RNA ribozyme could provide a feasible treatment for SARS.
Collapse
Affiliation(s)
- Akiko Fukushima
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cavanagh D. Systematic assembly and genetic manipulation of the mouse hepatitis virus A59 genome. Methods Mol Biol 2009; 454:293-315. [PMID: 19057869 PMCID: PMC7120124 DOI: 10.1007/978-1-59745-181-9_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have developed a DNA assembly platform that utilizes the nonspecific, highly variable sequence signatures of type IIs restriction enzymes to assemble a full-length molecular clone of murine hepatitis coronavirus (MHV) strain A59. The approach also allows changes to be engineered into a DNA fragment by designing primers that incorporate the restriction site and the mutations of interest. By adding the type IIs restriction site in the proper orientation, subsequent digestion removes the restriction site and leaves a sticky end comprising the mutation of interest ready to ligate to a second fragment generated in parallel as its complement. In this chapter, we discuss the details of the method to assemble a full-length infectious clone of MHV and then engineer a specific mutation into the clone to demonstrate the power of this unique site-directed “No See’m” mutagenesis approach.
Collapse
Affiliation(s)
- Dave Cavanagh
- Div. Molecular Biology, Compton Laboratory, Institute Animal Health, Newbury, Berks., RG20 7NN United Kingdom
| |
Collapse
|
7
|
Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. J Virol 2008; 82:3220-35. [PMID: 18199635 DOI: 10.1128/jvi.02377-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002, and detailed phylogenetic and epidemiological analyses have suggested that it originated from animals. The spike (S) glycoprotein has been identified as a major component of protective immunity, and 23 different amino acid changes were noted during the expanding epidemic. Using a panel of SARS-CoV recombinants bearing the S glycoproteins from isolates representing the zoonotic and human early, middle, and late phases of the epidemic, we identified 23 monoclonal antibodies (MAbs) with neutralizing activity against one or multiple SARS-CoV spike variants and determined the presence of at least six distinct neutralizing profiles in the SARS-CoV S glycoprotein. Four of these MAbs showed cross-neutralizing activity against all human and zoonotic S variants in vitro, and at least three of these were mapped in distinct epitopes using escape mutants, structure analyses, and competition assays. These three MAbs (S109.8, S227.14, and S230.15) were tested for use in passive vaccination studies using lethal SARS-CoV challenge models for young and senescent mice with four different homologous and heterologous SARS-CoV S variants. Both S227.14 and S230.15 completely protected young and old mice from weight loss and virus replication in the lungs for all viruses tested, while S109.8 completely protected mice from weight loss and clinical signs in the presence of viral titers. We conclude that a single human MAb can confer broad protection against lethal challenge with multiple zoonotic and human SARS-CoV isolates, and we identify a robust cocktail formulation that targets distinct epitopes and minimizes the likely generation of escape mutants.
Collapse
|
8
|
Garfinkel MS, Endy D, Epstein GL, Friedman RM. Synthetic genomics: Options for governance. Ind Biotechnol (New Rochelle N Y) 2007. [DOI: 10.1089/ind.2007.3.333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20:660-94. [PMID: 17934078 DOI: 10.1128/cmr.00023-07] [Citation(s) in RCA: 657] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections.
Collapse
|
10
|
Bügl H, Danner JP, Molinari RJ, Mulligan JT, Park HO, Reichert B, Roth DA, Wagner R, Budowle B, Scripp RM, Smith JAL, Steele SJ, Church G, Endy D. DNA synthesis and biological security. Nat Biotechnol 2007; 25:627-9. [PMID: 17557094 DOI: 10.1038/nbt0607-627] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hans Bügl
- International Consortium for Polynucleotide Synthesis
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rockx B, Sheahan T, Donaldson E, Harkema J, Sims A, Heise M, Pickles R, Cameron M, Kelvin D, Baric R. Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice. J Virol 2007; 81:7410-23. [PMID: 17507479 PMCID: PMC1933338 DOI: 10.1128/jvi.00505-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The severe acute respiratory syndrome (SARS) epidemic was characterized by high mortality rates in the elderly. The molecular mechanisms that govern enhanced susceptibility of elderly populations are not known, and robust animal models are needed that recapitulate the increased pathogenic phenotype noted with increasing age. Using synthetic biology and reverse genetics, we describe the construction of a panel of isogenic SARS coronavirus (SARS-CoV) strains bearing variant spike glycoproteins that are representative of zoonotic strains found in palm civets and raccoon dogs, as well as isolates spanning the early, middle, and late phases of the SARS-CoV epidemic. The recombinant viruses replicated efficiently in cell culture and demonstrated variable sensitivities to neutralization with antibodies. The human but not the zoonotic variants replicated efficiently in human airway epithelial cultures, supporting earlier hypotheses that zoonotic isolates are less pathogenic in humans but can evolve into highly pathogenic strains. All viruses replicated efficiently, but none produced clinical disease or death in young animals. In contrast, severe clinical disease, diffuse alveolar damage, hyaline membrane formation, alveolitis, and death were noted in 12-month-old mice inoculated with the palm civet HC/SZ/61/03 strain or early-human-phase GZ02 variants but not with related middle- and late-phase epidemic or raccoon dog strains. This panel of SARS-CoV recombinants bearing zoonotic and human epidemic spike glycoproteins will provide heterologous challenge models for testing vaccine efficacy against zoonotic reintroductions as well as provide the appropriate model system for elucidating the complex virus-host interactions that contribute to more-severe and fatal SARS-CoV disease and acute respiratory distress in the elderly.
Collapse
Affiliation(s)
- Barry Rockx
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27699-7435, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|