1
|
Alvero AB, Fox A, Madina BR, Krady MM, Gogoi R, Chehade H, Nakaar V, Almassian B, Yarovinsky TO, Rutherford T, Mor G. Immune Modulation of Innate and Adaptive Responses Restores Immune Surveillance and Establishes Antitumor Immunologic Memory. Cancer Immunol Res 2024; 12:261-274. [PMID: 38078853 PMCID: PMC11027955 DOI: 10.1158/2326-6066.cir-23-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Current immunotherapies have proven effective in strengthening antitumor immune responses, but constant opposing signals from tumor cells and the surrounding microenvironment eventually lead to immune escape. We hypothesized that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system would provide a robust and long-term antitumor effect by creating immunologic memory against tumors. To achieve this, we developed CARG-2020, a genetically modified virus-like vesicle (VLV) that is a self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three immune modulators: (i) the pleiotropic antitumor cytokine IL12, in which the subunits (p35 and p40) are tethered together; (ii) the extracellular domain (ECD) of the protumor IL17RA, which serves as a dominant-negative antagonist; and (iii) a shRNA targeting PD-L1. Using a mouse model of ovarian cancer, we demonstrated the oncolytic effect and immune-modulatory capacities of CARG-2020. By enhancing IL12 and blocking IL17 and PD-L1, CARG-2020 successfully reactivated immune surveillance by promoting M1, instead of M2, macrophage differentiation, inhibiting MDSC expansion and establishing a potent CD8+ T cell-mediated antitumoral response. Furthermore, we demonstrated that this therapeutic approach provided tumor-specific and long-term protection against the establishment of new tumors. Our results provide a rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance antitumor responses and prevent a recurrence.
Collapse
Affiliation(s)
- Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | | | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
2
|
Alvero AB, Fox A, Madina B, Krady M, Gogoi R, Chehade H, Nakaar V, Almassian B, Yarovinsky T, Rutherford T, Mor G. Immune modulation of innate and adaptive responses restores immune surveillance and establishes anti-tumor immunological memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559828. [PMID: 37808682 PMCID: PMC10557730 DOI: 10.1101/2023.09.27.559828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Current immunotherapies have proven effective in strengthening anti-tumor immune responses but constant opposing signals from tumor cells and surrounding microenvironment eventually lead to immune escape. We hypothesize that in situ release of antigens and regulation of both the innate and adaptive arms of the immune system will provide a robust and long-term anti-tumor effect by creating immunological memory against the tumor. To achieve this, we developed CARG-2020, a virus-like-vesicle (VLV). It is a genetically modified and self-amplifying RNA with oncolytic capacity and encodes immune regulatory genes. CARG-2020 carries three transgenes: 1 ) the pleiotropic antitumor cytokine IL-12 in which the subunits (p35 and p40) are tethered together; 2) the extracellular domain (ECD) of the pro- tumor IL-17RA, which can serve as a dominant negative antagonist; and 3) shRNA for PD-L1. Using a mouse model of ovarian cancer, we demonstrate the oncolytic effect and immune modulatory capacities of CARG-2020. By enhancing IL-12 and blocking IL-17 and PD-L1, CARG-2020 successfully reactivates immune surveillance by promoting M1 instead of M2 macrophage differentiation, inhibiting MDSC expansion, and establishing a potent CD8+ T cell mediated anti-tumoral response. Furthermore, we demonstrate that this therapeutic approach provides tumor-specific and long-term protection preventing the establishment of new tumors. Our results provide rationale for the further development of this platform as a therapeutic modality for ovarian cancer patients to enhance the anti-tumor response and to prevent recurrence.
Collapse
Affiliation(s)
- Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | | | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
3
|
Britto DD, Wyroba B, Chen W, Lockwood RA, Tran KB, Shepherd PR, Hall CJ, Crosier KE, Crosier PS, Astin JW. Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. Dis Model Mech 2018; 11:dmm.035998. [PMID: 30396905 PMCID: PMC6307908 DOI: 10.1242/dmm.035998] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Tumour angiogenesis has long been a focus of anti-cancer therapy; however, anti-angiogenic cancer treatment strategies have had limited clinical success. Tumour-associated myeloid cells are believed to play a role in the resistance of cancer towards anti-angiogenesis therapy, but the mechanisms by which they do this are unclear. An embryonic zebrafish xenograft model has been developed to investigate the mechanisms of tumour angiogenesis and as an assay to screen anti-angiogenic compounds. In this study, we used cell ablation techniques to remove either macrophages or neutrophils and assessed their contribution towards zebrafish xenograft angiogenesis by quantitating levels of graft vascularisation. The ablation of macrophages, but not neutrophils, caused a strong reduction in tumour xenograft vascularisation and time-lapse imaging demonstrated that tumour xenograft macrophages directly associated with the migrating tip of developing tumour blood vessels. Finally, we found that, although macrophages are required for vascularisation in xenografts that either secrete VEGFA or overexpress zebrafish vegfaa, they are not required for the vascularisation of grafts with low levels of VEGFA, suggesting that zebrafish macrophages can enhance Vegfa-driven tumour angiogenesis. The importance of macrophages to this angiogenic response suggests that this model could be used to further investigate the interplay between myeloid cells and tumour vascularisation. Summary: Zebrafish embryonic macrophages associate with the distal tips of tumour xenograft blood vessels and are required for Vegfa-driven angiogenesis.
Collapse
Affiliation(s)
- Denver D Britto
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Barbara Wyroba
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Wenxuan Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Rhoswen A Lockwood
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Khanh B Tran
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
4
|
Sprague L, Muccioli M, Pate M, Singh M, Xiong C, Ostermann A, Niese B, Li Y, Li Y, Courreges MC, Benencia F. Dendritic cells: In vitro culture in two- and three-dimensional collagen systems and expression of collagen receptors in tumors and atherosclerotic microenvironments. Exp Cell Res 2014; 323:7-27. [PMID: 24569142 DOI: 10.1016/j.yexcr.2014.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are immune cells found in the peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the co-expression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis.
Collapse
Affiliation(s)
- Leslee Sprague
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA
| | - Maria Muccioli
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Chengkai Xiong
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA
| | - Alexander Ostermann
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Brandon Niese
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Yihan Li
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Yandi Li
- Molecular and Cellular Biology Program, Ohio University, USA
| | - Maria Cecilia Courreges
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, USA; Molecular and Cellular Biology Program, Ohio University, USA; Diabetes Institute, Ohio University, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, USA.
| |
Collapse
|
5
|
Fox BA, Sanders KL, Chen S, Bzik DJ. Targeting tumors with nonreplicating Toxoplasma gondii uracil auxotroph vaccines. Trends Parasitol 2013; 29:431-7. [PMID: 23928100 DOI: 10.1016/j.pt.2013.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that has evolved to actively control its invaded host cells. Toxoplasma triggers then actively regulates host innate interleukin-12 (IL-12) and interferon-γ (IFN-γ) responses that elicit T cell control of infection. A live, nonreplicating avirulent uracil auxotroph vaccine strain (cps) of Toxoplasma triggers novel innate immune responses that stimulate amplified CD8(+) T cell responses and life-long immunity in vaccinated mice. Here, we review recent reports showing that intratumoral treatment with cps activated immune-mediated regression of established solid tumors in mice. We speculate that a better understanding of host-parasite interaction at the molecular level and applying improved genetic models based on Δku80 Toxoplasma strains will stimulate development of highly effective immunotherapeutic cancer vaccine strategies using engineered uracil auxotrophs.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
6
|
Baird JR, Fox BA, Sanders KL, Lizotte PH, Cubillos-Ruiz JR, Scarlett UK, Rutkowski MR, Conejo-Garcia JR, Fiering S, Bzik DJ. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res 2013; 73:3842-51. [PMID: 23704211 DOI: 10.1158/0008-5472.can-12-1974] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversing tumor-associated immunosuppression seems necessary to stimulate effective therapeutic immunity against lethal epithelial tumors. Here, we show this goal can be addressed using cps, an avirulent, nonreplicating uracil auxotroph strain of the parasite Toxoplasma gondii (T. gondii), which preferentially invades immunosuppressive CD11c(+) antigen-presenting cells in the ovarian carcinoma microenvironment. Tumor-associated CD11c(+) cells invaded by cps were converted to immunostimulatory phenotypes, which expressed increased levels of the T-cell receptor costimulatory molecules CD80 and CD86. In response to cps treatment of the immunosuppressive ovarian tumor environment, CD11c(+) cells regained the ability to efficiently cross-present antigen and prime CD8(+) T-cell responses. Correspondingly, cps treatment markedly increased tumor antigen-specific responses by CD8(+) T cells. Adoptive transfer experiments showed that these antitumor T-cell responses were effective in suppressing solid tumor development. Indeed, intraperitoneal cps treatment triggered rejection of established ID8-VegfA tumors, an aggressive xenograft model of ovarian carcinoma, also conferring a survival benefit in a related aggressive model (ID8-Defb29/Vegf-A). The therapeutic benefit of cps treatment relied on expression of IL-12, but it was unexpectedly independent of MyD88 signaling as well as immune experience with T. gondii. Taken together, our results establish that cps preferentially invades tumor-associated antigen-presenting cells and restores their ability to trigger potent antitumor CD8(+) T-cell responses. Immunochemotherapeutic applications of cps might be broadly useful to reawaken natural immunity in the highly immunosuppressive microenvironment of most solid tumors.
Collapse
Affiliation(s)
- Jason R Baird
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wertel I, Nowicka A, Rogala E, Kotarski J. Peritoneal Immune System in Patients with Advance Epithelial Ovarian Cancer. Int Rev Immunol 2011; 30:87-101. [DOI: 10.3109/08830185.2011.569902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Lu J, Zhao J, Liu K, Zhao J, Yang H, Huang Y, Qin Z, Bai R, Li P, Ma J, Yan W, Zhao M, Dong Z. MAPK/ERK1/2 signaling mediates endothelial-like differentiation of immature DCs in the microenvironment of esophageal squamous cell carcinoma. Cell Mol Life Sci 2010; 67:2091-106. [PMID: 20221785 PMCID: PMC11115913 DOI: 10.1007/s00018-010-0316-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Endothelial-like differentiation of dendritic cells (DCs) is a new phenomenon, and the mechanism is still elusive. Here, we show that the tumor microenvironment derived from the human esophageal squamous cell carcinoma (ESCC) cell line EC9706 can induce immature DCs (iDCs) differentiate toward endothelial cells, and become endothelial-like cells, but it has no obvious influence on mature DCs. During the course of endothelial-like differentiation of iDCs, a sustained activation of mitogen-activated protein kinase/extracelluar signal-regulated kinase1/2 (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) was detected. Incubation of iDCs with MEK phosphorylation inhibitor PD98059 blocked the MAPK/ERK1/2 and CREB phosphorylation as well as the endothelial-like differentiation of iDCs. Inhibition of vascular endothelial growth factor-A (VEGF-A) in the microenvironment with its antibody blocked the endothelial-like differentiation and the phosphorylation of MAPK/ERK1/2 and CREB. These data suggest that MAPK/ERK1/2 signaling pathway activated by VEGF-A could mediate endothelial-like differentiation of iDCs in the ESCC microenvironment.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. JOURNAL OF ONCOLOGY 2010; 2010:201026. [PMID: 20490273 PMCID: PMC2871549 DOI: 10.1155/2010/201026] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/09/2010] [Accepted: 03/02/2010] [Indexed: 12/26/2022]
Abstract
Myeloid cells are a heterogeneous population of bone marrow-derived cells that play a critical role during growth and metastasis of malignant tumors. Tumors exhibit significant myeloid cell infiltrates, which are actively recruited to the tumor microenvironment. Myeloid cells promote tumor growth by stimulating tumor angiogenesis, suppressing tumor immunity, and promoting metastasis to distinct sites. In this review, we discuss the role of myeloid cells in promoting tumor angiogenesis. Furthermore, we describe a subset of myeloid cells with immunosuppressive activity (known as myeloid-derived suppressor cells). Finally, we will comment on the mechanisms regulating myeloid cell recruitment to the tumor microenvironment and on the potential of myeloid cells as new targets for cancer therapy.
Collapse
|
10
|
Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 2010; 107:7875-80. [PMID: 20385810 DOI: 10.1073/pnas.1003345107] [Citation(s) in RCA: 683] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NY-ESO-1 is a "cancer-testis" antigen frequently expressed in epithelial ovarian cancer (EOC) and is among the most immunogenic tumor antigens defined to date. In an effort to understand in vivo tolerance mechanisms, we assessed the phenotype and function of NY-ESO-1-specific CD8(+) T cells derived from peripheral blood lymphocytes (PBLs), tumor-infiltrating lymphocytes (TILs), and tumor-associated lymphocytes (TALs) of EOC patients with NY-ESO-1-expressing tumors, with or without humoral immunity to NY-ESO-1. Whereas NY-ESO-1-specific CD8(+) T cells were readily detectable ex vivo with tetramers in TILs and TALs of seropositive patients, they were only detectable in PBLs following in vitro stimulation. Compared with PBLs, tumor-derived NY-ESO-1-specific CD8(+) T cells demonstrated impaired effector function, preferential usage of dominant T-cell receptor, and enriched coexpression of inhibitory molecules LAG-3 and PD-1. Expression of LAG-3 and PD-1 on CD8(+) T cells was up-regulated by IL-10, IL-6 (cytokines found in tumor ascites), and tumor-derived antigen-presenting cells. Functionally, CD8(+)LAG-3(+)PD-1(+) T cells were more impaired in IFN-gamma/TNF-alpha production compared with LAG-3(+)PD-1(-) or LAG-3(-)PD-1(-) subsets. Dual blockade of LAG-3 and PD-1 during T-cell priming efficiently augmented proliferation and cytokine production by NY-ESO-1-specific CD8(+) T cells, indicating that antitumor function of NY-ESO-1-specific CD8(+) T cells could potentially be improved by therapeutic targeting of these inhibitory receptors.
Collapse
|
11
|
Yigit R, Massuger LFAG, Figdor CG, Torensma R. Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncol 2010; 117:366-72. [PMID: 20144842 DOI: 10.1016/j.ygyno.2010.01.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND Considering the high mortality rate of ovarian cancer due to the absence of curative treatment in advanced stage or at recurrence, new therapeutic strategies are urgently needed. Immunotherapy is one of these strategies that yielded promising results in fundamental and animal research in the past years. However, implementation in clinical practice remains poor. The aim of this review is to gain insight into the mechanisms of interaction between ovarian cancer and the immune system in order to develop better immunotherapeutic strategies. METHODS We searched the published literature for studies focusing on interactions between ovarian cancer and the immune system, with emphasis on outcome data in order to create a knowledge base that is well grounded in clinical reality. RESULTS The immunological response against cancer is a critical balance between immune-activating and immune-suppressing mechanisms. Besides the immune-activating tumor infiltrating lymphocytes (TILs), immune-suppressive regulatory T-cells (Tregs), tolerance-inducing plasmacytoid dendritic cells (pDCs), B7-H4+ macrophages, immune-suppressive cytokines such as IL10 and TGF-beta are also found in the tumor environment. Myeloid-derived suppressive cells (MDSCs) are recently found to have a significant role in immune suppression in ovarian cancer in murine studies. Furthermore, vascular endothelial growth factor (VEGF) is also known to have an immune-suppressing role besides its angiogenic role. All those concerted mechanisms result in the creation of an environment where the cancer is invincible and can grow unhampered. CONCLUSION Further knowledge of the mechanisms involved is needed to develop better strategies and improve the clinical applicability of immunotherapy. Effective immunotherapy must combine immune-activating strategies with elimination of immune-suppressing mechanisms. We believe that tilting the balance from an immune-suppressive to an immune-active environment may have an enormous impact on the disease.
Collapse
Affiliation(s)
- Refika Yigit
- Department of Obstetrics and Gynecology (791), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Cubillos-Ruiz JR, Rutkowski M, Conejo-Garcia JR. Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes. Cell Cycle 2010; 9:260-8. [PMID: 20023378 DOI: 10.4161/cc.9.2.10430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current therapies for metastatic ovarian carcinoma are based on surgical debulking followed by chemotherapy. After more than three decades implementing treatments that selectively target the tumor cell, the 5-year survival rate for metastatic ovarian cancer patients is still lower than 30%. Novel strategies are therefore urgently needed to complement classical treatments for this malignancy. Recently, leukocytes in the ovarian cancer microenvironment such as regulatory T cells and immature pro-angiogenic/tolerogenic myeloid cells have been demonstrated to play a fundamental role in tumor progression. This review focuses on our recent understanding of the potential of eliminating and/or modulating the phenotype of these leukocytes in vivo and in situ as a novel intervention to complement standard ovarian cancer treatments. The significant effects of targeting these crucial microenvironmental players on cancer vascularization, local tumor growth, distal metastatic spreading and spontaneous anti-tumor immune responses are discussed.
Collapse
|
13
|
Barber A, Rynda A, Sentman CL. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. THE JOURNAL OF IMMUNOLOGY 2009; 183:6939-47. [PMID: 19915047 DOI: 10.4049/jimmunol.0902000] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adoptive transfer of T cells expressing chimeric NKG2D (chNKG2D) receptors, a fusion of NKG2D and CD3zeta, can lead to long-term, tumor-free survival in a murine model of ovarian cancer. To determine the mechanisms of chNKG2D T cell antitumor efficacy, we analyzed how chNKG2D T cells altered the tumor microenvironment, including the tumor-infiltrating leukocyte populations. chNKG2D T cell treatment of mice bearing ID8 tumor cells increased the number and activation of NK cells and increased the activation of host CD8+ T cells within the tumor. Foxp3+ regulatory T cells at the tumor site decreased more than 300-fold after chNKG2D T cell treatment. Tumor-associated regulatory T cells expressed cell surface NKG2D ligands and were killed by chNKG2D T cells in a perforin-dependent manner. chNKG2D T cells also altered the function of myeloid cells at the tumor site, changing these cells from being immunosuppressive to enhancing T cell responses. Cells isolated from the tumor produced elevated amounts of IFN-gamma, NO, and other proinflammatory cytokines after chNKG2D T cell treatment. ChNKG2D T cells required perforin, IFN-gamma, and GM-CSF to induce a full response at the tumor site. In addition, transfer of chNKG2D T cells into mice bearing tumors that were established for 5 weeks led to long-term survival of the mice. Thus, chNKG2D T cells altered the ovarian tumor microenvironment to eliminate immunosuppressive cells and induce infiltration and activation of antitumor immune cells and production of inflammatory cytokines. This induction of an immune response likely contributes to chNKG2D T cells' ability to eliminate established tumors.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
14
|
Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC, Martinez DG, Engle X, Gewirtz AT, Ahonen CL, Conejo-Garcia JR. In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res 2009; 69:7329-37. [PMID: 19738057 PMCID: PMC2754806 DOI: 10.1158/0008-5472.can-09-0835] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Boosting therapeutically relevant immunity against lethal epithelial tumors may require targeting tumor-induced immunosuppression on an individualized basis. Here, we show that, in the ovarian carcinoma microenvironment, CD11c(+)MHC-II(+) dendritic cells spontaneously engulf tumor materials but, rather than enhancing antitumor immunity, suppress T-cell function. In situ costimulation of CD40 and Toll-like receptor (TLR) 3 on tumor-infiltrating dendritic cells decreased their L-arginase activity, enhanced their production of type I IFN and interleukin-12 (p70), augmented their capacity to process antigens, and up-regulated costimulatory molecules in vivo in mice and in vitro in human dissociated tumors. Synergistic CD40/TLR activation also induced the migration of activated dendritic cells to lymphatic locations and promoted their capacity to present antigens. Correspondingly, without exogenous antigen, combined CD40/TLR agonists boosted measurable T-cell-mediated antitumor immunity and induced the rejection of otherwise lethal i.p. ovarian carcinomas. Our results highlight the potential of transforming tumor-infiltrating dendritic cells (the most abundant leukocyte subset in the solid ovarian carcinoma microenvironment) from an immunosuppressive to an immunostimulatory cell type. Combined administration of synergistic CD40 and TLR3 agonists could enhance their individual therapeutic effects against ovarian and other lethal epithelial cancers.
Collapse
Affiliation(s)
- Uciane K Scarlett
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | - Juan R Cubillos-Ruiz
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | - Yolanda C Nesbeth
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | - Diana G Martinez
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | - Xavier Engle
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | - Andrew T Gewirtz
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Cory L Ahonen
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | - Jose R Conejo-Garcia
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
- Department of Medicine, Dartmouth Medical School, Lebanon, NH 03756, USA
| |
Collapse
|
15
|
Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, Elgueta R, Wang L, Nesbeth Y, Durant Y, Gewirtz AT, Sentman CL, Kedl R, Conejo-Garcia JR. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 2009; 119:2231-44. [PMID: 19620771 PMCID: PMC2719935 DOI: 10.1172/jci37716] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 05/27/2009] [Indexed: 02/06/2023] Open
Abstract
The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.
Collapse
Affiliation(s)
- Juan R. Cubillos-Ruiz
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Xavier Engle
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Uciane K. Scarlett
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Diana Martinez
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Li Wang
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Yolanda Nesbeth
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Yvon Durant
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Andrew T. Gewirtz
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Charles L. Sentman
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Ross Kedl
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Jose R. Conejo-Garcia
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| |
Collapse
|
16
|
Nesbeth Y, Scarlett U, Cubillos-Ruiz J, Martinez D, Engle X, Turk MJ, Conejo-Garcia JR. CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res 2009; 69:6331-8. [PMID: 19602595 DOI: 10.1158/0008-5472.can-08-4329] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adoptive transfer of antitumor T cells is a promisingly effective therapy for various cancers, but its effect on endogenous antitumor immune mechanisms remains largely unknown. Here, we show that the administration of naive T cells de novo primed for only 7 days against tumor antigens resulted in the durable rejection of otherwise lethal ovarian cancers when coupled with the depletion of tumor-associated immunosuppressive dendritic cells (DC). Therapeutic activity required tumor antigen specificity and perforin expression by the adoptively transferred T cells, but not IFN-gamma production. Importantly, these shortly primed T cells secreted large amounts of CCL5, which was required for their therapeutic benefit. Accordingly, transferred T cells recruited CCR5(+) DCs into the tumor, where they showed distinct immunostimulatory attributes. Activated CCR5(+) host T cells with antitumor activity also accumulated at tumor locations, and endogenous tumor-specific memory T cells remained elevated after the disappearance of transferred lymphocytes. Therefore, persistent, long-lived antitumor immunity was triggered by the administration of ex vivo activated T cells, but was directly mediated by immune cells of host origin. Our data unveil a CCL5-dependent mechanism of awakening endogenous antitumor immunity triggered by ex vivo expanded T cells, which is augmented by tumor-specific targeting of the cancer microenvironment.
Collapse
Affiliation(s)
- Yolanda Nesbeth
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Pulaski HL, Spahlinger G, Silva IA, McLean K, Kueck AS, Reynolds RK, Coukos G, Conejo-Garcia JR, Buckanovich RJ. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. J Transl Med 2009; 7:49. [PMID: 19545375 PMCID: PMC2704183 DOI: 10.1186/1479-5876-7-49] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 06/19/2009] [Indexed: 12/26/2022] Open
Abstract
Background Murine studies suggest that myeloid cells such as vascular leukocytes (VLC) and Tie2+ monocytes play a critical role in tumor angiogenesis and vasculogenesis. Myeloid cells are a primary cause of resistance to anti-VEGF therapy. The elimination of these cells from the tumor microenvironment significantly restricts tumor growth in both spontaneous and xenograft murine tumor models. Thus animal studies indicate that myeloid cells are potential therapeutic targets for solid tumor therapy. Abundant VLC and Tie2+ monocytes have been reported in human cancer. Unfortunately, the importance of VLC in human cancer growth remains untested as there are no confirmed therapeutics to target human VLC. Methods We used FACS to analyze VLC in ovarian and non-ovarian tumors, and characterize the relationship of VLC and Tie2-monocytes. We performed qRT-PCR and FACS on human VLC to assess the expression of the CD52 antigen, the target of the immunotherapeutic Alemtuzumab. We assessed Alemtuzumab's ability to induce complement-mediated VLC killing in vitro and in human tumor ascites. Finally we assessed the impact of anti-CD52 immuno-toxin therapy on murine ovarian tumor growth. Results Human VLC are present in ovarian and non-ovarian tumors. The majority of VLC appear to be Tie2+ monocytes. VLC and Tie2+ monocytes express high levels of CD52, the target of the immunotherapeutic Alemtuzumab. Alemtuzumab potently induces complement-mediated lysis of VLC in vitro and ex-vivo in ovarian tumor ascites. Anti-CD52 immunotherapy targeting VLC restricts tumor angiogenesis and growth in murine ovarian cancer. Conclusion These studies confirm VLC/myeloid cells as therapeutic targets in ovarian cancer. Our data provide critical pre-clinical evidence supporting the use of Alemtuzumab in clinical trials to test its efficacy as an anti-myeloid cell antiangiogenic therapeutic in ovarian cancer. The identification of an FDA approved anti-VLC agent with a history of clinical use will allow immediate proof-of-principle clinical trials in patients with ovarian cancer.
Collapse
Affiliation(s)
- Heather L Pulaski
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
De Palma M, Naldini L. Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim Biophys Acta Rev Cancer 2009; 1796:5-10. [PMID: 19362584 DOI: 10.1016/j.bbcan.2009.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/30/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
Abstract
There is a growing interest in understanding the complex interactions between bone marrow-derived myeloid-lineage cells and angiogenesis in tumors. Such interest has been revived recently by the observation that tumor-infiltrating myeloid cells convey proangiogenic programs that can counteract the activity of antiangiogenic drugs in mouse tumor models. Among myeloid cells, Tie2-expressing monocytes (TEMs) appear to have nonredundant function in promoting tumor angiogenesis and growth in mouse models. The identification and functional characterization of TEMs in mice and humans may provide novel molecular targets for anticancer therapy. Moreover, TEMs may be exploited to deliver antitumor drugs specifically to the tumor microenvironment.
Collapse
Affiliation(s)
- Michele De Palma
- Angiogenesis and Tumor Targeting Research Unit, San Raffaele Scientific Institute, via Olgettina, 58, 20132 Milan, Italy; San Raffaele-Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, via Olgettina, 58, 20132 Milan, Italy.
| | | |
Collapse
|