1
|
Miserocchi G, Beretta E, Rivolta I, Bartesaghi M. Role of the Air-Blood Barrier Phenotype in Lung Oxygen Uptake and Control of Extravascular Water. Front Physiol 2022; 13:811129. [PMID: 35418875 PMCID: PMC8996119 DOI: 10.3389/fphys.2022.811129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
The air blood barrier phenotype can be reasonably described by the ratio of lung capillary blood volume to the diffusion capacity of the alveolar membrane (Vc/Dm), which can be determined at rest in normoxia. The distribution of the Vc/Dm ratio in the population is normal; Vc/Dm shifts from ∼1, reflecting a higher number of alveoli of smaller radius, providing a high alveolar surface and a limited extension of the capillary network, to just opposite features on increasing Vc/Dm up to ∼6. We studied the kinetics of alveolar-capillary equilibration on exposure to edemagenic conditions (work at ∼60% maximum aerobic power) in hypoxia (HA) (PIO2 90 mmHg), based on an estimate of time constant of equilibration (τ) and blood capillary transit time (Tt). A shunt-like effect was described for subjects having a high Vc/Dm ratio, reflecting a longer τ (>0.5 s) and a shorter Tt (<0.8 s) due to pulmonary vasoconstriction and a larger increase in cardiac output (>3-fold). The tendency to develop lung edema in edemagenic conditions (work in HA) was found to be directly proportional to the value of Vc/Dm as suggested by an estimate of the mechanical properties of the respiratory system with the forced frequency oscillation technique.
Collapse
|
2
|
Clark AR, Burrowes KS, Tawhai MH. Integrative Computational Models of Lung Structure-Function Interactions. Compr Physiol 2021; 11:1501-1530. [PMID: 33577123 DOI: 10.1002/cphy.c200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anatomically based integrative models of the lung and their interaction with other key components of the respiratory system provide unique capabilities for investigating both normal and abnormal lung function. There is substantial regional variability in both structure and function within the normal lung, yet it remains capable of relatively efficient gas exchange by providing close matching of air delivery (ventilation) and blood delivery (perfusion) to regions of gas exchange tissue from the scale of the whole organ to the smallest continuous gas exchange units. This is despite remarkably different mechanisms of air and blood delivery, different fluid properties, and unique scale-dependent anatomical structures through which the blood and air are transported. This inherent heterogeneity can be exacerbated in the presence of disease or when the body is under stress. Current computational power and data availability allow for the construction of sophisticated data-driven integrative models that can mimic respiratory system structure, function, and response to intervention. Computational models do not have the same technical and ethical issues that can limit experimental studies and biomedical imaging, and if they are solidly grounded in physiology and physics they facilitate investigation of the underlying interaction between mechanisms that determine respiratory function and dysfunction, and to estimate otherwise difficult-to-access measures. © 2021 American Physiological Society. Compr Physiol 11:1501-1530, 2021.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Stickland MK, Tedjasaputra V, Fuhr DP, Wagner HE, Collins SÉ, Byers BW, Wagner PD, Hopkins SR. Precapillary pulmonary gas exchange is similar for oxygen and inert gases. J Physiol 2019; 597:5385-5397. [PMID: 31448407 PMCID: PMC6858488 DOI: 10.1113/jp277793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Precapillary gas exchange for oxygen has been documented in both humans and animals. It has been suggested that, if precapillary gas exchange occurs to a greater extent for inert gases than for oxygen, shunt and its effects on arterial oxygenation may be underestimated by the multiple inert gas elimination technique (MIGET). We evaluated fractional precapillary gas exchange in canines for O2 and two inert gases, sulphur hexafluoride and ethane, by measuring these gases in the proximal pulmonary artery, distal pulmonary artery (1 cm proximal to the wedge position) and systemic artery. Some 12-19% of pulmonary gas exchange occurred within small (1.7 mm in diameter or larger) pulmonary arteries and this was quantitatively similar for oxygen, sulphur hexafluoride and ethane. Under these experimental conditions, this suggests only minor effects of precapillary gas exchange on the magnitude of calculated shunt and the associated effect on pulmonary gas exchange estimated by MIGET. ABSTRACT Some pulmonary gas exchange is known to occur proximal to the pulmonary capillary, although the magnitude of this gas exchange is uncertain, and it is unclear whether oxygen and inert gases are similarly affected. This has implications for measuring shunt and associated gas exchange consequences. By measuring respiratory and inert gas levels in the proximal pulmonary artery (P), a distal pulmonary artery 1 cm proximal to the wedge position (using a 5-F catheter) (D) and a systemic artery (A), we evaluated precapillary gas exchange in 27 paired samples from seven anaesthetized, ventilated canines. Fractional precapillary gas exchange (F) was quantified for each gas as F = (P - D)/(P - A). The lowest solubility inert gases, sulphur hexafluoride (SF6 ) and ethane were used because, with higher solubility gases, the P-A difference is sufficiently small that experimental error prevents accurate assessment of F. Distal samples (n = 12) with oxygen (O2 ) saturation values that were (within experimental error) equal to or above systemic arterial values, suggestive of retrograde capillary blood aspiration, were discarded, leaving 15 for analysis. D was significantly lower than P for SF6 (D/P = 88.6 ± 18.1%; P = 0.03) and ethane (D/P = 90.6 ± 16.0%; P = 0.04), indicating partial excretion of inert gas across small pulmonary arteries. Distal pulmonary arterial O2 saturation was significantly higher than proximal (74.1 ± 6.8% vs. 69.0 ± 4.9%; P = 0.03). Fractional precapillary gas exchange was similar for SF6 , ethane and O2 (0.12 ± 0.19, 0.12 ± 0.20 and 0.19 ± 0.26, respectively; P = 0.54). Under these experimental conditions, 12-19% of pulmonary gas exchange occurs within the small pulmonary arteries and the extent is similar between oxygen and inert gases.
Collapse
Affiliation(s)
- Michael K Stickland
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, AB, Canada
- G.F. MacDonald Centre for Lung Health, Covenant Health, Edmonton, AB, Canada
| | - Vincent Tedjasaputra
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Desi P Fuhr
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, AB, Canada
| | - Harrieth E Wagner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Sophie É Collins
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Bradley W Byers
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Peter D Wagner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Susan R Hopkins
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Schipke JD, Lemaitre F, Cleveland S, Tetzlaff K. Effects of Breath-Hold Deep Diving on the Pulmonary System. Respiration 2019; 97:476-483. [PMID: 30783070 DOI: 10.1159/000495757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/24/2018] [Indexed: 11/19/2022] Open
Abstract
This short review focuses on pulmonary injury in breath-hold (BH) divers. When practicing their extreme leisure sport, they are exposed to increased pressure on pulmonary gas volumes, hypoxia, and increased partial gas pressures. Increasing ambient pressures do present a serious problem to BH deep divers, because the semi-rigid thorax prevents the deformation required by the Boyle-Mariotte law. As a result, a negative-pressure barotrauma (lung squeeze) with acute hemoptysis is not uncommon. Respiratory maneuvers such as glossopharyngeal insufflation (GI) and glossopharyngeal exsufflation (GE) are practiced to prevent lung squeeze and to permit equalizing the paranasal sinuses and the middle ear. GI not only impairs venous return, thereby provoking hypotension and even fainting, but also produces intrathoracic pressures likely to induce pulmonary barotrauma that is speculated to induce long-term injury. GE, in turn, further increases the already negative intrapulmonary pressure, thereby favoring alveolar collapse (atelectasis). Finally, hypoxia seemingly not only induces brain injury but initiates the opening of intrapulmonary shunts. These pathways are large enough to permit transpulmonary passage of venous N2 bubbles, making stroke-like phenomena in deep BH divers possible.
Collapse
Affiliation(s)
- Jochen D Schipke
- Research Group Experimental Surgery, University Hospital Düsseldorf, Düsseldorf, Germany,
| | - Frederic Lemaitre
- UFR Sciences du Sport et de l'Éducation Physique, Université de Rouen, Mont-Saint-Aignan, France
| | - Sinclair Cleveland
- Institute of Neuro- and Sensory Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kay Tetzlaff
- Department of Sports Medicine, Medical Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Bates ML, Jacobson JE, Eldridge MW. Beta Adrenergic Regulation of Intrapulmonary Arteriovenous Anastomoses in Intact Rat and Isolated Rat Lungs. Front Physiol 2017; 8:218. [PMID: 28469578 PMCID: PMC5396286 DOI: 10.3389/fphys.2017.00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Intrapulmonary arteriovenous anastomoses (IPAVA) allow large diameter particles of venous origin to bypass the pulmonary capillary bed and embolize the systemic arterial circulation. IPAVA have been routinely observed in healthy humans with exercise, hypoxia, and catecholamine infusion, but the mechanism by which they are recruited is not well-defined. We hypothesized that beta-adrenergic receptor stimulation recruits IPAVA and that receptor blockade would limit hypoxia-induced IPAVA recruitment. To test our hypothesis, we evaluated the transpulmonary passage of microspheres in intact rats and isolated rats lung infused with the beta-adrenergic receptor agonist isoproterenol. We also evaluated IPAVA recruitment in intact rats with hypoxia and the beta-adrenergic receptor blocker propranolol. We found that IPAVA are recruited in the intact rat by isoproterenol and their recruitment by hypoxia can be minimized by propranolol, suggesting a role for the adrenergic system in the recruitment of IPAVA by hypoxia. IPAVA recruitment is completely abolished by ventilation with 100% oxygen. Isoproterenol also recruits IPAVA in isolated rat lungs. The fact that isoproterenol can recruit IPAVA in isolated lungs, without increased pulmonary flow, suggests that elevated cardiac output is not required for IPAVA recruitment.
Collapse
Affiliation(s)
- Melissa L Bates
- Critical Care Division and the John Rankin Laboratory of Pulmonary Medicine, Department of Pediatrics, University of IowaIowa City, IA, USA.,Department of Health and Human Physiology, University of IowaIowa City, IA, USA
| | - Joseph E Jacobson
- Critical Care Division and the John Rankin Laboratory of Pulmonary Medicine, Department of Pediatrics, University of IowaIowa City, IA, USA.,Michigan State University College of Human MedicineEast Lansing, MI, USA
| | - Marlowe W Eldridge
- Critical Care Division and the John Rankin Laboratory of Pulmonary Medicine, Department of Pediatrics, University of IowaIowa City, IA, USA.,Departments of Biomedical Engineering and Kinesiology, University of WisconsinMadison, WI, USA
| |
Collapse
|
7
|
Lovering AT, Duke JW, Elliott JE. Intrapulmonary arteriovenous anastomoses in humans--response to exercise and the environment. J Physiol 2015; 593:507-20. [PMID: 25565568 DOI: 10.1113/jphysiol.2014.275495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Intrapulmonary arteriovenous anastomoses (IPAVA) have been known to exist in human lungs for over 60 years. The majority of the work in this area has largely focused on characterizing the conditions in which IPAVA blood flow (Q̇IPAVA ) is either increased, e.g. during exercise, acute normobaric hypoxia, and the intravenous infusion of catecholamines, or absent/decreased, e.g. at rest and in all conditions with alveolar hyperoxia (FIO2 = 1.0). Additionally, Q̇IPAVA is present in utero and shortly after birth, but is reduced in older (>50 years) adults during exercise and with alveolar hypoxia, suggesting potential developmental origins and an effect of age. The physiological and pathophysiological roles of Q̇IPAVA are only beginning to be understood and therefore these data remain controversial. Although evidence is accumulating in support of important roles in both health and disease, including associations with pulmonary arterial pressure, and adverse neurological sequelae, there is much work that remains to be done to fully understand the physiological and pathophysiological roles of IPAVA. The development of novel approaches to studying these pathways that can overcome the limitations of the currently employed techniques will greatly help to better quantify Q̇IPAVA and identify the consequences of Q̇IPAVA on physiological and pathophysiological processes. Nevertheless, based on currently published data, our proposed working model is that Q̇IPAVA occurs due to passive recruitment under conditions of exercise and supine body posture, but can be further modified by active redistribution of pulmonary blood flow under hypoxic and hyperoxic conditions.
Collapse
Affiliation(s)
- Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
8
|
Tremblay JC, Lovering AT, Ainslie PN, Stembridge M, Burgess KR, Bakker A, Donnelly J, Lucas SJE, Lewis NCS, Dominelli PB, Henderson WR, Dominelli GS, Sheel AW, Foster GE. Hypoxia, not pulmonary vascular pressure, induces blood flow through intrapulmonary arteriovenous anastomoses. J Physiol 2014; 593:723-37. [PMID: 25416621 DOI: 10.1113/jphysiol.2014.282962] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased by acute hypoxia during rest by unknown mechanisms. Oral administration of acetazolamide blunts the pulmonary vascular pressure response to acute hypoxia, thus permitting the observation of IPAVA blood flow with minimal pulmonary pressure change. Hypoxic pulmonary vasoconstriction was attenuated in humans following acetazolamide administration and partially restored with bicarbonate infusion, indicating that the effects of acetazolamide on hypoxic pulmonary vasoconstriction may involve an interaction between arterial pH and PCO2. We observed that IPAVA blood flow during hypoxia was similar before and after acetazolamide administration, even after acid-base status correction, indicating that pulmonary pressure, pH and PCO2 are unlikely regulators of IPAVA blood flow. ABSTRACT Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times a day for 48 h) to prevent increases in PASP; and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ + HCO3 (-) ) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3(-)] and Pa,CO2. AZ decreased pH (-0.08 ± 0.01), [HCO3(-)] (-7.1 ± 0.7 mmol l(-1)) and Pa,CO2 (-4.5 ± 1.4 mmHg; P < 0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (P < 0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (P < 0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (P < 0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H(+) concentration or Pa,CO2.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dorfmüller P, Günther S, Ghigna MR, Thomas de Montpréville V, Boulate D, Paul JF, Jaïs X, Decante B, Simonneau G, Dartevelle P, Humbert M, Fadel E, Mercier O. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature. Eur Respir J 2014; 44:1275-88. [DOI: 10.1183/09031936.00169113] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Limited numbers of operated patients with chronic thromboembolic pulmonary hypertension (CTEPH) are refractory to pulmonary endarterectomy (PEA) and experience persistent pulmonary hypertension (PH).We retrospectively assessed lung histology available from nine patients with persistent PH (ineffective PEA (inPEA) group) and from eight patients transplanted for distal CTEPH inaccessible by PEA (noPEA group). Microscopically observed peculiarities were compared with the histology of a recently developed CTEPH model in piglets. Pre-interventional clinical/haemodynamic data and medical history of patients from the inPEA and noPEA groups were collected and analysed.Conspicuous remodelling of small pulmonary arteries/arterioles, septal veins and pre-septal venules, including focal capillary haemangiomatosis, as well as pronounced hypertrophy and enlargement of bronchial systemic vessels, were the predominant pattern in histology from both groups. Most findings were reproduced in our porcine CTEPH model. Ink injection experiments unmasked abundant venular involvement in so-called small vessel or microvascular disease, as well as post-capillary bronchopulmonary shunting in human and experimental CTEPH.Microvascular disease is partly due to post-capillary remodelling in human and experimental CTEPH and appears to be related to bronchial-to-pulmonary venous shunting. Further studies are needed to clinically assess the functional importance of this finding.
Collapse
|
10
|
Bates ML, Jacobson JE, Eldridge MW. Transient intrapulmonary shunting in a patient treated with β₂-adrenergic agonists for status asthmaticus. Pediatrics 2014; 133:e1087-91. [PMID: 24639274 PMCID: PMC3966497 DOI: 10.1542/peds.2013-1171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intrapulmonary arteriovenous anastomoses (IPAVs) are large-diameter pathways that directly connect the arterial and venous networks, bypassing the pulmonary capillaries. Ubiquitously present in healthy humans, these pathways are recruited in experimental conditions by exercise, hypoxia, and catecholamines and have been previously shown to be closed by hyperoxia. Whether they play a role in pulmonary pathophysiology is unknown. Here, we describe IPAV recruitment associated with hypoxemia and right-to-left shunt in a patient with status asthmaticus, treated with agonists of the B2-adrenergic pathway. Our observation of IPAVs in a pediatric patient, mechanically ventilated with 100% O₂, suggests that these pathways are recruited in clinically important circumstances and challenges the notion that IPAVs are always closed by alveolar hyperoxia.
Collapse
Affiliation(s)
- Melissa L. Bates
- Critical Care Division, Department of Pediatrics and the John Rankin Laboratory of Pulmonary Medicine, and
| | - Joseph E. Jacobson
- Michigan State University College of Human Medicine, East Lansing, Michigan
| | - Marlowe W. Eldridge
- Critical Care Division, Department of Pediatrics and the John Rankin Laboratory of Pulmonary Medicine, and,Departments of Biomedical Engineering and Kinesiology, University of Wisconsin, Madison, Wisconsin; and
| |
Collapse
|
11
|
Stickland MK, Lindinger MI, Olfert IM, Heigenhauser GJF, Hopkins SR. Pulmonary gas exchange and acid-base balance during exercise. Compr Physiol 2013; 3:693-739. [PMID: 23720327 PMCID: PMC8315793 DOI: 10.1002/cphy.c110048] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As the first step in the oxygen-transport chain, the lung has a critical task: optimizing the exchange of respiratory gases to maintain delivery of oxygen and the elimination of carbon dioxide. In healthy subjects, gas exchange, as evaluated by the alveolar-to-arterial PO2 difference (A-aDO2), worsens with incremental exercise, and typically reaches an A-aDO2 of approximately 25 mmHg at peak exercise. While there is great individual variability, A-aDO2 is generally largest at peak exercise in subjects with the highest peak oxygen consumption. Inert gas data has shown that the increase in A-aDO2 is explained by decreased ventilation-perfusion matching, and the development of a diffusion limitation for oxygen. Gas exchange data does not indicate the presence of right-to-left intrapulmonary shunt developing with exercise, despite recent data suggesting that large-diameter arteriovenous shunt vessels may be recruited with exercise. At the same time, multisystem mechanisms regulate systemic acid-base balance in integrative processes that involve gas exchange between tissues and the environment and simultaneous net changes in the concentrations of strong and weak ions within, and transfer between, extracellular and intracellular fluids. The physicochemical approach to acid-base balance is used to understand the contributions from independent acid-base variables to measured acid-base disturbances within contracting skeletal muscle, erythrocytes and noncontracting tissues. In muscle, the magnitude of the disturbance is proportional to the concentrations of dissociated weak acids, the rate at which acid equivalents (strong acid) accumulate and the rate at which strong base cations are added to or removed from muscle.
Collapse
Affiliation(s)
- Michael K. Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael I. Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - I. Mark Olfert
- Robert C. Byrd Health Sciences Center, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | - Susan R. Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, San Diego, California
| |
Collapse
|
12
|
Kennedy JM, Foster GE, Koehle MS, Potts JE, Sandor GG, Potts MT, Houghton KM, Henderson WR, Sheel AW. Exercise-induced intrapulmonary arteriovenous shunt in healthy women. Respir Physiol Neurobiol 2012; 181:8-13. [DOI: 10.1016/j.resp.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 12/18/2022]
|
13
|
Cox G, Tzioupis C, Calori GM, Green J, Seligson D, Giannoudis PV. Cerebral fat emboli: a trigger of post-operative delirium. Injury 2011; 42 Suppl 4:S6-S10. [PMID: 21939804 DOI: 10.1016/s0020-1383(11)70005-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Accumulating evidence implicates cerebral fat embolism (CFE) as a causative agent in post-operative confusion (POC). CFE occurs following orthopaedic procedures including, intra-medullary (IM) nailing and total joint arthroplasty (TJA). The incidence of CFE is high (59-100% TJA) and the resulting POC is associated with higher overall complication rates. Cognitive dysfunction improves in many patients but can persist - with potentially disastrous outcomes. The pathomechanics of CFE implicate circulating lipid micro-emboli (LME) that are forced from IM depots by instrumentation/nailing. Passage to the left side of the heart is possible through intra-cardiac or arteriovenous shunts in the lung. LME are propelled to the brain where they cause disruption via ischemia or by alterations in the blood-brain-barrier - causing cerebral oedema. Prevention of CFE follows established practices for preventing FES and consideration of additional techniques to remove resident fat and reduce IM pressures. When CFE occurs supportive treatment should be established.
Collapse
Affiliation(s)
- George Cox
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
14
|
Erupaka K, Bruce EN, Bruce MC. Prediction of Extravascular Burden of Carbon Monoxide (CO) in the Human Heart. Ann Biomed Eng 2009; 38:403-38. [DOI: 10.1007/s10439-009-9814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/26/2009] [Indexed: 11/30/2022]
|
15
|
Vodoz JF, Cottin V, Glérant JC, Derumeaux G, Khouatra C, Blanchet AS, Mastroïanni B, Bayle JY, Mornex JF, Cordier JF. Right-to-left shunt with hypoxemia in pulmonary hypertension. BMC Cardiovasc Disord 2009; 9:15. [PMID: 19335916 PMCID: PMC2671488 DOI: 10.1186/1471-2261-9-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxemia is common in pulmonary hypertension (PH) and may be partly related to ventilation/perfusion mismatch, low diffusion capacity, low cardiac output, and/or right-to-left (RL) shunting. METHODS To determine whether true RL shunting causing hypoxemia is caused by intracardiac shunting, as classically considered, a retrospective single center study was conducted in consecutive patients with precapillary PH, with hypoxemia at rest (PaO2 < 10 kPa), shunt fraction (Qs/Qt) greater than 5%, elevated alveolar-arterial difference of PO2 (AaPO2), and with transthoracic contrast echocardiography performed within 3 months. RESULTS Among 263 patients with precapillary PH, 34 patients were included: pulmonary arterial hypertension, 21%; PH associated with lung disease, 47% (chronic obstructive pulmonary disease, 23%; interstitial lung disease, 9%; other, 15%); chronic thromboembolic PH, 26%; miscellaneous causes, 6%. Mean pulmonary artery pressure, cardiac index, and pulmonary vascular resistance were 45.8 +/- 10.8 mmHg, 2.2 +/- 0.6 L/min/m2, and 469 +/- 275 dyn.s.cm-5, respectively. PaO2 in room air was 6.8 +/- 1.3 kPa. Qs/Qt was 10.2 +/- 4.2%. AaPO2 under 100% oxygen was 32.5 +/- 12.4 kPa. Positive contrast was present at transthoracic contrast echocardiography in 6/34 (18%) of patients, including only 4/34 (12%) with intracardiac RL shunting. Qs/Qt did not correlate with hemodynamic parameters. Patients' characteristics did not differ according to the result of contrast echocardiography. CONCLUSION When present in patients with precapillary PH, RL shunting is usually not related to reopening of patent foramen ovale, whatever the etiology of PH.
Collapse
Affiliation(s)
- Jean-Frédéric Vodoz
- Service de pneumologie et centre de référence des maladies orphelines pulmonaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Calbet JA, Robach P, Lundby C, Boushel R. Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output? Appl Physiol Nutr Metab 2008; 33:593-600. [DOI: 10.1139/h08-010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise in humans, the alveolar–arterial O2 tension difference ((A–a)DO2) increases with exercise intensity and is an important factor determining the absolute level of oxygen binding to hemoglobin and therefore the level of systemic oxygen transport. During exercise in hypoxia, the (A–a)DO2 is accentuated. Using the multiple inert gas elimination technique it has been shown that during exercise in acute hypoxia the contribution of ventilation–perfusion inequality to (A–a)DO2 is rather small and in the absence of pulmonary edema intrapulmonary shunts can be ruled out. This implies that the main mechanism limiting pulmonary gas exchange is diffusion limitation. It is presumed that an elevation of cardiac output during exercise in acute hypoxia should increase the (A–a)DO2. However, no studies have examined how variations in cardiac output independently affect pulmonary diffusion with increases in exercise intensity. We have consistently observed that during steady-state, submaximal (100–120 W) exercise on the cycle ergometer in hypoxia the lung can accommodate an increase in cardiac output of ~2 L·min–1 without any significant effect on pulmonary gas exchange. This result contrasts with the predicted effect of cardiac output on (A–a)DO2 using the model of Piiper and Scheid, and thus indicates that an elevation of cardiac output is not necessarily accompanied by a reduction of mean transit time and (or) diffusion limitation during submaximal exercise in acute hypoxia. It remains to be determined what is the influence of changes in cardiac output per se on pulmonary gas exchange during high-intensity exercise.
Collapse
Affiliation(s)
- José A.L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Spain
- The Copenhagen Muscle Research Centre, Rigshospitalet, Denmark
- École Nationale de Ski et d’Alpinisme, Chamonix, France
- Laboratoire “Réponses cellulaires et fonctionnelles à l’hypoxie”, EA 2363, Université Paris 13, Bobigny, France
- Department of Sport Science, Århus Universitet, Katrinebjergvej 89C, Denmark
| | - Paul Robach
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Spain
- The Copenhagen Muscle Research Centre, Rigshospitalet, Denmark
- École Nationale de Ski et d’Alpinisme, Chamonix, France
- Laboratoire “Réponses cellulaires et fonctionnelles à l’hypoxie”, EA 2363, Université Paris 13, Bobigny, France
- Department of Sport Science, Århus Universitet, Katrinebjergvej 89C, Denmark
| | - Carsten Lundby
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Spain
- The Copenhagen Muscle Research Centre, Rigshospitalet, Denmark
- École Nationale de Ski et d’Alpinisme, Chamonix, France
- Laboratoire “Réponses cellulaires et fonctionnelles à l’hypoxie”, EA 2363, Université Paris 13, Bobigny, France
- Department of Sport Science, Århus Universitet, Katrinebjergvej 89C, Denmark
| | - Robert Boushel
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Spain
- The Copenhagen Muscle Research Centre, Rigshospitalet, Denmark
- École Nationale de Ski et d’Alpinisme, Chamonix, France
- Laboratoire “Réponses cellulaires et fonctionnelles à l’hypoxie”, EA 2363, Université Paris 13, Bobigny, France
- Department of Sport Science, Århus Universitet, Katrinebjergvej 89C, Denmark
| |
Collapse
|
17
|
Lovering AT, Romer LM, Haverkamp HC, Pegelow DF, Hokanson JS, Eldridge MW. Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy humans. J Appl Physiol (1985) 2008; 104:1418-25. [DOI: 10.1152/japplphysiol.00208.2007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exercise-induced intrapulmonary arteriovenous shunting, as detected by saline contrast echocardiography, has been demonstrated in healthy humans. We have previously suggested that increases in both pulmonary pressures and blood flow associated with exercise are responsible for opening these intrapulmonary arteriovenous pathways. In the present study, we hypothesized that, although cardiac output and pulmonary pressures would be higher in hypoxia, the potent pulmonary vasoconstrictor effect of hypoxia would actually attenuate exercise-induced intrapulmonary shunting. Using saline contrast echocardiography, we examined nine healthy men during incremental (65 W + 30 W/2 min) cycle exercise to exhaustion in normoxia and hypoxia (fraction of inspired O2 = 0.12). Contrast injections were made into a peripheral vein at rest and during exercise and recovery (3–5 min postexercise) with pulmonary gas exchange measured simultaneously. At rest, no subject demonstrated intrapulmonary shunting in normoxia [arterial Po2 (PaO2) = 98 ± 10 Torr], whereas in hypoxia (PaO2 = 47 ± 5 Torr), intrapulmonary shunting developed in 3/9 subjects. During exercise, ∼90% (8/9) of the subjects shunted during normoxia, whereas all subjects shunted during hypoxia. Four of the nine subjects shunted at a lower workload in hypoxia. Furthermore, all subjects continued to shunt at 3 min, and five subjects shunted at 5 min postexercise in hypoxia. Hypoxia has acute effects by inducing intrapulmonary arteriovenous shunt pathways at rest and during exercise and has long-term effects by maintaining patency of these vessels during recovery. Whether oxygen tension specifically regulates these novel pathways or opens them indirectly via effects on the conventional pulmonary vasculature remains unclear.
Collapse
|
18
|
Imray CHE, Pattinson KTS, Myers S, Chan CW, Hoar H, Brearey S, Collins P, Wright AD. Intrapulmonary and Intracardiac Shunting With Exercise at Altitude. Wilderness Environ Med 2008; 19:199-204. [DOI: 10.1580/07-weme-br-162.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Lovering AT, Stickland MK, Kelso AJ, Eldridge MW. Direct demonstration of 25- and 50-microm arteriovenous pathways in healthy human and baboon lungs. Am J Physiol Heart Circ Physiol 2007; 292:H1777-81. [PMID: 17142338 DOI: 10.1152/ajpheart.01024.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Postmortem microsphere studies in adult human lungs have demonstrated the existence of intrapulmonary arteriovenous pathways using nonphysiological conditions. The aim of the current study was to determine whether large diameter (>25 and 50 microm) intrapulmonary arteriovenous pathways are functional in human and baboon lungs under physiological perfusion and ventilation pressures. We used fresh healthy human donor lungs obtained for transplantation and fresh lungs from baboons (Papio c. anubis). Lungs were ventilated with room air by using a peak inflation pressure of 15 cm H(2)O and a positive end-expiratory pressure of 5 cm H(2)O. Lungs were perfused between 10 and 20 cm H(2)O by using a phosphate-buffered saline solution with 5% albumin. We infused a mixture of 25- and 50-microm microspheres (0.5 and 1 million total for baboons and human studies, respectively) into the pulmonary artery and collected the entire pulmonary venous outflow. Under these conditions, evidence of intrapulmonary arteriovenous anastomoses was found in baboon (n = 3/4) and human (n = 4/6) lungs. In those lungs showing evidence of arteriovenous pathways, 50-microm microspheres were always able to traverse the pulmonary circulation, and the fraction of transpulmonary passage ranged from 0.0003 to 0.42%. These data show that intrapulmonary arteriovenous pathways >50 microm in diameter are functional under physiological ventilation and perfusion pressures in the isolated lung. These pathways provide an alternative conduit for pulmonary blood flow that likely bypasses the areas of gas exchange at the capillary-alveolar interface that could compromise both gas exchange and the ability of the lung to filter out microemboli.
Collapse
Affiliation(s)
- Andrew T Lovering
- John Rankin Laboratory of Pulmonary Medicine, Univ. of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1532, USA.
| | | | | | | |
Collapse
|
20
|
Severinghaus JW. Sightings. High Alt Med Biol 2007. [DOI: 10.1089/ham.2006.0813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|