1
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
2
|
Saeedi-Boroujeni A, Mahmoudian-Sani MR, Bahadoram M, Alghasi A. COVID-19: A Case for Inhibiting NLRP3 Inflammasome, Suppression of Inflammation with Curcumin? Basic Clin Pharmacol Toxicol 2020; 128:37-45. [PMID: 33099890 DOI: 10.1111/bcpt.13503] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Curcumin is the effective ingredient of turmeric, sometimes used as a painkiller in traditional medicine. It has extensive biological properties such as anti-inflammatory and antioxidant activities. SARS-CoV-2 is a betacoronavirus developing severe pneumonitis. Inflammasome is one of the most important components of innate immunity, which exacerbates inflammation by increasing IL-1β and IL-18 production. Studies on viral infections have shown overactivity of inflammasome and thus the occurrence of destructive and systemic inflammation in patients. NLRP3 inflammasome has been shown to play a key role in the pathogenesis of viral diseases. The proliferation of SARS-CoV-2 in a wide range of cells can be combined with numerous observations of direct and indirect activation of inflammasome by other coronaviruses. Activation of the inflammasome is likely to be involved in the formation of cytokine storm. Curcumin regulates several molecules in the intracellular signal transduction pathways involved in inflammation, including IBB, NF-kBERK1,2, AP-1, TGF-β, TXNIP, STAT3, PPARγ, JAK2-STAT3, NLRP3, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Due to anti-inflammatory and anti-inflammasome properties without any special side effects, curcumin can potentially play a role in the treatment of COVID-19 infection along with other drug regimens.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Abadan School of Medical Sciences, Abadan, Iran.,ImmunologyToday, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Alghasi
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Blaber EA, Parker GC. Special Issue: Stem Cells and Microgravity. Stem Cells Dev 2019; 27:783-786. [PMID: 29882739 DOI: 10.1089/scd.2018.29001.bla] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Elizabeth A Blaber
- 1 Universities Space Research Association , Mountain View, California.,2 NASA Ames Research Center , Moffett Field, California
| | - Graham C Parker
- 3 Department of Pediatrics and Children's Hospital of Michigan, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
4
|
Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol 2017; 144:285-294. [PMID: 29197967 DOI: 10.1007/s00432-017-2555-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a high mortality rate. Since nutraceuticals may exert beneficial effects on tumor biology, here, effects of four of these compounds [resveratrol, genistein, curcumin and epigallocatechin-3-gallate (EGCG)] on ATC cell lines were investigated. METHODS Two ATC-derived cell lines were used: SW1736 and 8505C. Cell viability and in vitro aggressiveness was tested by MTT and soft agar assays. Apoptosis was investigated by Western Blot, using an anti-cleaved-PARP antibody. mRNA and miRNA levels were quantified by real-time PCR. RESULTS All tested nutraceuticals caused in both cell lines decrease of cell viability and increase of apoptosis. In contrast, only curcumin reduced in vitro aggressiveness in both SW1736 and 8505C cell lines, while genistein and EGCG determined a reduction of colony formation only in 8505C cells. Effects on genes related to the thyroid-differentiated phenotype were also tested: resveratrol and genistein administration determined the increment of almost all tested mRNAs in both cell lines. Instead curcumin and EGCG treatments had opposite effects in the two cell lines, causing the increment of almost all the mRNAs in 8505C cells and their reduction in SW1736. Finally, effects of nutraceuticals on levels of several miRNAs, known as important in thyroid cancer progression (hsa-miR-221, hsa-miR-222, hsa-miR-21, hsa-miR-146b, hsa-miR-204), were tested. Curcumin induced a strong and significant reduction of all miR analyzed, except for has-miR-204, in both cell lines. CONCLUSIONS Altogether, our results clearly indicate the anti-cancer proprieties of curcumin, suggesting the promising use of this nutraceutical in ATC treatment. Resveratrol, genistein and EGCG have heterogeneous effects on molecular features of ATC cells.
Collapse
|
5
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
6
|
Resveratrol inhibits proliferation of myometrial and leiomyoma cells and decreases extracellular matrix-associated protein expression. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
MA LIJIE, WANG RUIXUAN, NAN YANDONG, LI WANGPING, WANG QINGWEI, JIN FAGUANG. Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int J Oncol 2015; 48:843-53. [DOI: 10.3892/ijo.2015.3304] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 11/06/2022] Open
|
8
|
Lu H, Gao F, Shu G, Xia G, Shao Z, Lu H, Cheng K. Wogonin inhibits the proliferation of myelodysplastic syndrome cells through the induction of cell cycle arrest and apoptosis. Mol Med Rep 2015; 12:7285-92. [PMID: 26398525 PMCID: PMC4626188 DOI: 10.3892/mmr.2015.4353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to assess the effects of the flavonoid, wogonin, and its underlying mechanism on myelodysplastic syndrome (MDS) in SKM-1 cells. In the present study, wogonin inhibited the cell proliferation of SKM‑1 cells in a dose‑ and time‑dependent manner, with the concentration required to yield a half maximal inhibitory concentration (IC50) of 212.1 µmol/l at 24 h, and 43.4 µmol/l at 72 h. Furthermore, wogonin induced cell cycle arrest at the G0/G1 phase and induced the apoptosis of the SKM‑1 cells, which possibly accounted for the antiproliferative effects of wogonin. Notably, the data in the present study revealed that wogonin upregulated the expression of p21Cip1 and p27Kip1, and downregulated the expression of cyclin D1 and cyclin‑dependent kinase 4, causing a G0/G1 phase arrest, halting cell cycle progression, and inducing apoptosis in the MDS cells, which was mediated by the mitochondrial pathway through a modulation of the ratio of Bcl‑2 to Bax. Therefore, the present study suggests that wogonin may be a logical therapeutic target in the treatment of MDS.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Clinical Laboratory Medicine of Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng Gao
- Department of Laboratory Medicine of Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guofang Shu
- Department of Clinical Laboratory Medicine of Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guohua Xia
- Department of Laboratory Medicine of Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zeye Shao
- Department of Laboratory Medicine of Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hangqin Lu
- Department of Laboratory Medicine of Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Keping Cheng
- Department of Clinical Laboratory Medicine of Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Regulation of microRNAs by natural agents: new strategies in cancer therapies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:804510. [PMID: 25254214 PMCID: PMC4165563 DOI: 10.1155/2014/804510] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3′-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients.
Collapse
|
10
|
Gong WY, Wu JF, Liu BJ, Zhang HY, Cao YX, Sun J, Lv YB, Wu X, Dong JC. Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int J Oncol 2014; 44:1561-70. [PMID: 24604573 DOI: 10.3892/ijo.2014.2320] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/12/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the therapeutic efficacy of flavonoid components in Scutellaria baicalensis on proliferation, metastasis and lung cancer-associated inflammation during nicotine induction in the A549 and H1299 lung cancer cell lines. After experimental period, augmentation of proliferation was observed, accompanied by marked decrease in apoptotic cells in nicotine-induced lung cancer cells; additionally, nicotine-exposed cells exhibited increased invasive and migratory abilities based on invasion and wound-healing assay. Flavones in Scutellaria, baicalin, baicalein and wogonin significantly counteracted the above deleterious changes. Moreover, assessment of tumor apoptotic and metastatic factors on mRNA levels by quantitative PCR and protein levels by western blotting revealed that these phytochemical treatments effectively negated nicotine-induced upregulated expression of bcl-2, bcl-2/bax ratio, caspase-3, matrix metalloproteinase (MMP)-2 and MMP-9 as well as downregulated expression of bax. Further analysis of inflammatory markers such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in cell culture supernatant and mRNA and protein expression of nuclear transcription factor-kappaB (NF-κB) and I kappa B-alpha (IκB-α) was carried out to substantiate the anti-inflammatory effect of flavones in Scutellaria in nicotine-exposed lung cancer cells. The therapeutic effects observed in the present study are attributed to the potent potential against proliferation, metastasis and inflammatory microenvironment by flavonoid components in Scutellaria in nicotine-induced lung cancer cells.
Collapse
Affiliation(s)
- Wei-Yi Gong
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Jin-Feng Wu
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Bao-Jun Liu
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Hong-Ying Zhang
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Yu-Xue Cao
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Jing Sun
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Yu-Bao Lv
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Xiao Wu
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| | - Jing-Cheng Dong
- Institute of Integrative Medicine, Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200041, P.R. China
| |
Collapse
|
11
|
Ucisik MH, Küpcü S, Schuster B, Sleytr UB. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology 2013; 11:37. [PMID: 24314310 PMCID: PMC4029586 DOI: 10.1186/1477-3155-11-37] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes. RESULTS CurcuEmulsomes are spherical solid nanoparticles with an average size of 286 nm and a zeta potential of 37 mV. Encapsulation increases the bioavailability of curcumin by up to 10,000 fold corresponding to a concentration of 0.11 mg/mL. Uptaken by HepG2 human liver carcinoma cell line, CurcuEmulsomes show a significantly prolonged biological activity and demonstrated therapeutic efficacy comparable to free curcumin against HepG2 in vitro - with a delay in response, as assessed by cell viability, apoptosis and cell cycle studies. The delay is attributed to the solid character of the nanocarrier prolonging the release of curcumin inside the HepG2 cells. CONCLUSIONS Incorporation of curcumin into emulsomes results in water-soluble and stable CurcuEmulsome nanoformulations. CurcuEmulsomes do not only successfully facilitate the delivery of curcumin into the cell in vitro, but also enable curcumin to reach its effective concentrations inside the cell. The enhanced solubility of curcumin and the promising in vitro efficacy of CurcuEmulsomes highlight the potential of the system for the delivery of lipophilic drugs. Moreover, high degree of compatibility, prolonged release profile and tailoring properties feature CurcuEmulsomes for further therapeutic applications in vivo.
Collapse
Affiliation(s)
- Mehmet H Ucisik
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures,
University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse
11, Vienna 1190, Austria
| | - Seta Küpcü
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures,
University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse
11, Vienna 1190, Austria
| | - Bernhard Schuster
- Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures,
University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse
11, Vienna 1190, Austria
| | - Uwe B Sleytr
- Department of Nanobiotechnology, Institute for Biophysics, University of
Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 11, Vienna
1190, Austria
| |
Collapse
|
12
|
Curic S, Wu Y, Shan B, Schaaf C, Utpadel D, Lange M, Kuhlen D, Perone MJ, Arzt E, Stalla GK, Renner U. Curcumin acts anti-proliferative and pro-apoptotic in human meningiomas. J Neurooncol 2013; 113:385-96. [DOI: 10.1007/s11060-013-1148-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/06/2013] [Indexed: 12/25/2022]
|
13
|
Soffar A, Storch K, Aleem E, Cordes N. CDK2 knockdown enhances head and neck cancer cell radiosensitivity. Int J Radiat Biol 2013; 89:523-31. [PMID: 23461792 DOI: 10.3109/09553002.2013.782108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Cyclin-dependent kinase 2 (CDK2) is critically involved in cell cycling and has been proposed as a potential cancer target. It remains largely elusive whether CDK2 targeting alters the tumor cell radiosensitivity. MATERIALS AND METHODS CDK2(-/-) and wild type (WT) mouse embryonic fibroblasts (MEF) as well as six human head and neck squamous cell carcinoma (HNSCC) cell lines (SAS, FaDu, Cal-33, HSC-4, UTSCC-5, UTSCC-8) were used. Upon CDK2 knockdown using small interfering technology, colony formation, DNA double-strand breaks (DSB), cell cycle distribution and expression and phosphorylation of major proteins regulating cell cycle and DNA damage repair were examined. RESULTS CDK2(-/-) MEF and CDK2 HNSCC knockdown cell cultures were more radiosensitive than the corresponding controls. Repair of DSB was attenuated under CDK2 knockout or knockdown. In contrast to data in MEF, combined CDK2 knockdown with irradiation showed no cell cycling alterations in SAS and FaDu cultures. Importantly, CDK2 knockdown failed to radiosensitize SAS and FaDu when cultured in a more physiological three-dimensional (3D) extracellular matrix environment. CONCLUSIONS Our findings suggest that targeting of CDK2 radiosensitizes HNSCC cells growing as monolayer. Additional studies performed under more physiological conditions are warranted to clarify the potential of CDK2 as target in radiotherapy.
Collapse
Affiliation(s)
- Ahmed Soffar
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
14
|
Lee SJ, Langhans SA. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis. BMC Cancer 2012; 12:44. [PMID: 22280307 PMCID: PMC3296673 DOI: 10.1186/1471-2407-12-44] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/26/2012] [Indexed: 12/16/2022] Open
Abstract
Background Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin.
Collapse
Affiliation(s)
- Seung Joon Lee
- Nemours/Alfred I, duPont Hospital for Children, Wilmington, DE 19803, USA
| | | |
Collapse
|
15
|
Bielak-Zmijewska A, Sikora-Polaczek M, Nieznanski K, Mosieniak G, Kolano A, Maleszewski M, Styrna J, Sikora E. Curcumin disrupts meiotic and mitotic divisions via spindle impairment and inhibition of CDK1 activity. Cell Prolif 2010; 43:354-64. [PMID: 20590660 DOI: 10.1111/j.1365-2184.2010.00684.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Curcumin, a natural compound, is a potent anti-cancer agent, which inhibits cell division and/or induces cell death. It is believed that normal cells are less sensitive to curcumin than malignant cells; however, the mechanism(s) responsible for curcumin's effect on normal cells are poorly understood. The aim of this study was to verify the hypothesis that curcumin affects normal cell division by influencing microtubule stability, using mouse oocyte and early embryo model systems. MATERIALS AND METHODS Maturating mouse oocytes and two-cell embryos were treated with different concentrations of curcumin (10-50 microm), and meiotic resumption and mitotic cleavage were analysed. Spindle and chromatin structure were visualized using confocal microscopy. In addition, acetylation and in vitro polymerization of tubulin, in the presence of curcumin, were investigated and the damage to double-stranded DNA was studied using gammaH2A.X. CDK1 activity was measured. RESULTS AND CONCLUSIONS We have shown for the first time, that curcumin, in a dose-dependent manner, delays and partially inhibits meiotic resumption of oocytes and inhibits meiotic and mitotic divisions by causing disruption of spindle structure and does not induce DNA damage. Our analysis indicated that curcumin affects CDK1 kinase activity but does not directly affect microtubule polymerization and tubulin acetylation. As our study showed that curcumin impairs generative and somatic cell division, its future clinical use or of its derivatives with improved bioavailability after oral administration, should take into consideration the possibility of extensive side-effects on normal cells.
Collapse
Affiliation(s)
- A Bielak-Zmijewska
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 2010; 399:1-6. [PMID: 20627087 DOI: 10.1016/j.bbrc.2010.07.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 12/27/2022]
Abstract
Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186 * in A549/DDP. In addition, transfection of cells with a miR-186 * inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186 * significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186 * may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Smith MR, Gangireddy SR, Narala VR, Hogaboam CM, Standiford TJ, Christensen PJ, Kondapi AK, Reddy RC. Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 298:L616-25. [PMID: 20061443 DOI: 10.1152/ajplung.00002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease for which no effective therapy has been identified. The disease is characterized by excessive collagen deposition, possibly in response to dysregulated wound healing. Mediators normally involved in would healing induce proliferation of fibroblasts and their differentiation to myofibroblasts that actively secrete collagen. Curcumin, a polyphenolic compound from turmeric, has been shown to exert a variety of biological effects. Effects on IPF and associated cell types remain unclear, however. We accordingly tested the ability of curcumin to inhibit proliferation and differentiation to myofibroblasts by human lung fibroblasts, including those from IPF patients. To further examine the potential usefulness of curcumin in IPF, we examined its ability to reduce fibrosis in bleomycin-treated mice. We show that curcumin effectively reduces profibrotic effects in both normal and IPF fibroblasts in vitro and that this reduction is accompanied by inhibition of key steps in the transforming growth factor-β (TGF-β) signaling pathway. In vivo, oral curcumin treatment showed no effect on important measures of bleomycin-induced injury in mice, whereas intraperitoneal curcumin administration effectively inhibited inflammation and collagen deposition along with a trend toward improved survival. Intraperitoneal curcumin reduced fibrotic progression even when administered after the acute bleomycin-induced inflammation had subsided. These results encourage further research on alternative formulations and routes of administration for this potentially attractive IPF therapy.
Collapse
Affiliation(s)
- Monica R Smith
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Harbor, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li S, Shi H, Ji F, Wang B, Feng Q, Feng X, Jia Z, Zhao Q, Qian G. The Human Lung Cancer Drug Resistance-Related Gene BC006151 Regulates Chemosensitivity in H446/CDDP Cells. Biol Pharm Bull 2010; 33:1285-90. [PMID: 20686220 DOI: 10.1248/bpb.33.1285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shujun Li
- State Key Laboratory of Cancer Biology and Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, People's Republic of China
| | - Hai Shi
- State Key Laboratory of Cancer Biology and Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, People's Republic of China
| | - Fuyun Ji
- Department of Respiratory Medicine, Xinqiao Hospital, The Third Military Medical University, People's Republic of China
| | - Biaoluo Wang
- State Key Laboratory of Cancer Biology and Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, People's Republic of China
| | - Quanxin Feng
- State Key Laboratory of Cancer Biology and Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, People's Republic of China
| | - Xiangying Feng
- State Key Laboratory of Cancer Biology and Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, People's Republic of China
| | - Zhiyu Jia
- Department of Oral and Maxillafacial Surgery, The Second Hospital of Hebei Medical University
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and Department of Gastrointestinal Surgery, Xijing Hospital, The Fourth Military Medical University, People's Republic of China
| | - Guisheng Qian
- Department of Respiratory Medicine, Xinqiao Hospital, The Third Military Medical University, People's Republic of China
| |
Collapse
|
19
|
Aroui S, Brahim S, De Waard M, Bréard J, Kenani A. Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett 2009; 285:28-38. [DOI: 10.1016/j.canlet.2009.04.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/14/2009] [Accepted: 04/27/2009] [Indexed: 11/25/2022]
|
20
|
Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 2009; 11:495-510. [PMID: 19590964 PMCID: PMC2758121 DOI: 10.1208/s12248-009-9128-x] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/17/2009] [Indexed: 02/03/2023] Open
Abstract
Cancer is a hyperproliferative disorder that is usually treated by chemotherapeutic agents that are toxic not only to tumor cells but also to normal cells, so these agents produce major side effects. In addition, these agents are highly expensive and thus not affordable for most. Moreover, such agents cannot be used for cancer prevention. Traditional medicines are generally free of the deleterious side effects and usually inexpensive. Curcumin, a component of turmeric (Curcuma longa), is one such agent that is safe, affordable, and efficacious. How curcumin kills tumor cells is the focus of this review. We show that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway (DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK). How curcumin selectively kills tumor cells, and not normal cells, is also described in detail.
Collapse
Affiliation(s)
- Jayaraj Ravindran
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, BOX 143, Houston, TX 77030 USA
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, BOX 143, Houston, TX 77030 USA
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, BOX 143, Houston, TX 77030 USA
| |
Collapse
|
21
|
Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: Cellular and molecular perspectives of skin ageing. Int J Cosmet Sci 2008; 30:313-22. [DOI: 10.1111/j.1468-2494.2008.00454.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|