1
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
2
|
Gao X, Dang X, Yan F, Li Y, Xu J, Tian S, Li Y, Huang K, Lin W, Lin D, Wang Z, Wang A. ANGUSTIFOLIA negatively regulates resistance to Sclerotinia sclerotiorum via modulation of PTI and JA signalling pathways in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:1091-1106. [PMID: 35426480 PMCID: PMC9276947 DOI: 10.1111/mpp.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xie Dang
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fengting Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuhua Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jing Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yaling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Kun Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenwei Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Deshu Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Marine and Agricultural Biotechnology CenterInstitute of OceanographyMinjiang UniversityFuzhouChina
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
3
|
Liu C, Liu Q, Mou Z. A direct link between BR and SA signaling: Negative regulation of TGA4 by BIN2. MOLECULAR PLANT 2022; 15:1254-1256. [PMID: 35689390 DOI: 10.1016/j.molp.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Zhu W, Yu M, Xu R, Bi K, Yu S, Xiong C, Liu Z, Sharon A, Jiang D, Wu M, Gu Q, Gong L, Chen W, Wei W. Botrytis cinerea BcSSP2 protein is a late infection phase, cytotoxic effector. Environ Microbiol 2022; 24:3420-3435. [PMID: 35170184 DOI: 10.1111/1462-2920.15919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/14/2023]
Abstract
Botrytis cinerea is a broad-host-range necrotrophic phytopathogen responsible for serious diseases in leading crops. To facilitate infection, B. cinerea secretes a large number of effectors that induce plant cell death. In screening secretome data of B. cinerea during infection stage, we identified a phytotoxic protein (BcSSP2) that can also induce immune resistance in plants. BcSSP2 is a small, cysteine-rich protein without any known domains. Transient expression of BcSSP2 in leaves caused chlorosis that intensifies with time and eventually leads to death. Point mutations in eight of 10 cysteine residues abolished phytotoxicity, but residual toxic activity remained after heating treatment, suggesting contribution of unknown epitopes to protein phytotoxicity. The expression of bcssp2 was low during the first 36 h after inoculation and increased sharply upon transition to late infection stage. Deletion of bcssp2 did not cause statistically significant changes in lesions size on bean and tobacco leaves. Further analyses indicated that the phytotoxicity of BcSSP2 is negatively regulated by the receptor-like kinases BAK1 and SOBIR1. Collectively, our findings show that BcSSP2 is an effector protein that toxifies the host cells, but is also recognized by the plant immune system.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Mengxue Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Kai Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Shuang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiongnan Gu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Ling Gong
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Weidong Chen
- Department of Plant Pathology/United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Wei Wei
- Department of Plant Pathology/United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Wang D, Chen JY, Song J, Li JJ, Klosterman SJ, Li R, Kong ZQ, Subbarao KV, Dai XF, Zhang DD. Cytotoxic function of xylanase VdXyn4 in the plant vascular wilt pathogen Verticillium dahliae. PLANT PHYSIOLOGY 2021; 187:409-429. [PMID: 34618145 PMCID: PMC8418393 DOI: 10.1093/plphys/kiab274] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
Phytopathogen xylanases play critical roles in pathogenesis, likely due to their ability to degrade plant structural barriers and manipulate host immunity. As an invader of plant xylem vessels, the fungus Verticillium dahliae is thought to deploy complex cell wall degrading enzymes. Comparative genomics analyses revealed that the V. dahliae genome encodes a family of six xylanases, each possessing a glycosyl hydrolase 11 domain, but the functions of these enzymes are undetermined. Characterizing gene deletion mutants revealed that only V. dahliae xylanase 4 (VdXyn4) degraded the plant cell wall and contributed to the virulence of V. dahliae. VdXyn4 displayed cytotoxic activity and induced a necrosis phenotype during the late stages of infection, leading to vein and petiole collapse that depended on the enzyme simultaneously localizing to nuclei and chloroplasts. The internalization of VdXyn4 was in conjunction with that of the plasma membrane complexLeucine-rich repeat (LRR)-receptor-like kinase suppressor of BIR1-1 (SOBIR1)/LRR-RLK BRI1-associated kinase-1 (BAK1), but we could not rule out the possibility that VdXyn4 may also act as an apoplastic effector. Immune signaling (in the SA-JA pathways) induced by VdXyn4 relative to that induced by known immunity effectors was substantially delayed. While cytotoxic activity could be partially suppressed by known effectors, they failed to impede necrosis in Nicotiana benthamiana. Thus, unlike typical effectors, cytotoxicity of VdXyn4 plays a crucial intracellular role at the late stages of V. dahliae infection and colonization, especially following pathogen entry into the xylem; this cytotoxic activity is likely conserved in the corresponding enzyme families in plant vascular pathogens.
Collapse
Affiliation(s)
- Dan Wang
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie-Yin Chen
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Song
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Steven J. Klosterman
- Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, California, USA
| | - Ran Li
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Qiang Kong
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, California, USA
| | - Xiao-Feng Dai
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Zhu J, Zhu K, Li L, Li Z, Qin W, Park Y, He Y. Proteomics of the Honeydew from the Brown Planthopper and Green Rice Leafhopper Reveal They Are Rich in Proteins from Insects, Rice Plant and Bacteria. INSECTS 2020; 11:insects11090582. [PMID: 32882811 PMCID: PMC7564128 DOI: 10.3390/insects11090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Honeydew is a watery fluid excreted by plant sap-feeding insects. It is a waste product for the insect hosts. However, it plays important roles for other organisms, such as serving as a nutritional source for beneficial insects and bacteria, as well as elicitors and effectors modulating plant responses. In this study, shotgun LC-MS/MS analyses were used to identify the proteins in the honeydew from two important rice hemipteran pests, the brown planthopper (Nilaparvata lugens, BPH) and green rice leafhopper (Nephotettix cincticeps, GRH). A total of 277 and 210 proteins annotated to insect proteins were identified in the BPH and GRH honeydews, respectively. These included saliva proteins that may have similar functions as the saliva proteins, such as calcium-binding proteins and apolipophorin, involved in rice plant defenses. Additionally, a total of 52 and 32 Oryza proteins were identified in the BPH and GRH honeydews, respectively, some of which are involved in the plant immune system, such as Pathogen-Related Protein 10, ascorbate peroxidase, thioredoxin and glutaredoxin. Coincidently, 570 and 494 bacteria proteins were identified from the BPH and GRH honeydews, respectively, which included several well-known proteins involved in the plant immune system: elongation factor Tu, flagellin, GroEL and cold-shock proteins. The results of our study indicate that the insect honeydew is a complex fluid cocktail that contains abundant proteins from insects, plants and microbes, which may be involved in the multitrophic interactions of plants-insects-microbes.
Collapse
Affiliation(s)
- Jinghua Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Kunmiao Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Liang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Zengxin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Weiwei Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
- Correspondence: ; Tel.: +86-13554408979
| |
Collapse
|
7
|
Toum L, Conti G, Guerriero FC, Conforte VP, Garolla FA, Asurmendi S, Vojnov AA, Gudesblat GE. Single-stranded oligodeoxynucleotides induce plant defence in Arabidopsis thaliana. ANNALS OF BOTANY 2020; 126:413-422. [PMID: 32266377 PMCID: PMC7424753 DOI: 10.1093/aob/mcaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Single-stranded DNA oligodeoxynucleotides (ssODNs) have been shown to elicit immune responses in mammals. In plants, RNA and genomic DNA can activate immunity, although the exact mechanism through which they are sensed is not clear. The aim of this work was to study the possible effect of ssODNs on plant immunity. KEY RESULTS The ssODNs IMT504 and 2006 increased protection against the pathogens Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea but not against tobacco mosaic virus-Cg when infiltrated in Arabidopsis thaliana. In addition, ssODNs inhibited root growth and promoted stomatal closure in a concentration-dependent manner, with half-maximal effective concentrations between 0.79 and 2.06 µm. Promotion of stomatal closure by ssODNs was reduced by DNase I treatment. It was also diminished by the NADPH oxidase inhibitor diphenyleneiodonium and by coronatine, a bacterial toxin that inhibits NADPH oxidase-dependent reactive oxygen species (ROS) synthesis in guard cells. In addition it was found that ssODN-mediated stomatal closure was impaired in bak1-5, bak1-5/bkk1, mpk3 and npr1-3 mutants. ssODNs also induced early expression of MPK3, WRKY33, PROPEP1 and FRK1 genes involved in plant defence, an effect that was reduced in bak1-5 and bak1-5/bkk1 mutants. CONCLUSIONS ssODNs are capable of inducing protection against pathogens through the activation of defence genes and promotion of stomatal closure through a mechanism similar to that of other elicitors of plant immunity, which involves the BAK1 co-receptor, and ROS synthesis.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA – Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina
| | - Francesca Coppola Guerriero
- Departamento de Fisiología, Biología Molecular y Celular ‘Profesor Héctor Maldonado’ – Instituto de Biociencias, Biotecnología y Biología Translacional (IB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Argentina
| | - Valeria P Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, Argentina
| | - Franco A Garolla
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA – Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina
| | - Adrián A Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, Argentina
| | - Gustavo E Gudesblat
- Departamento de Fisiología, Biología Molecular y Celular ‘Profesor Héctor Maldonado’ – Instituto de Biociencias, Biotecnología y Biología Translacional (IB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Argentina
- For correspondence. E-mail:
| |
Collapse
|
8
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
9
|
Post-Translational Modifications of Proteins Have Versatile Roles in Regulating Plant Immune Responses. Int J Mol Sci 2019; 20:ijms20112807. [PMID: 31181758 PMCID: PMC6600372 DOI: 10.3390/ijms20112807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
To protect themselves from pathogens, plants have developed an effective innate immune system. Plants recognize pathogens and then rapidly alter signaling pathways within individual cells in order to achieve an appropriate immune response, including the generation of reactive oxygen species, callose deposition, and transcriptional reprogramming. Post-translational modifications (PTMs) are versatile regulatory changes critical for plant immune response processes. Significantly, PTMs are involved in the crosstalk that serves as a fine-tuning mechanism to adjust cellular responses to pathogen infection. Here, we provide an overview of PTMs that mediate defense signaling perception, signal transduction in host cells, and downstream signal activation.
Collapse
|
10
|
Trempel F, Kajiura H, Ranf S, Grimmer J, Westphal L, Zipfel C, Scheel D, Fujiyama K, Lee J. Altered glycosylation of exported proteins, including surface immune receptors, compromises calcium and downstream signaling responses to microbe-associated molecular patterns in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:31. [PMID: 26822404 PMCID: PMC4730752 DOI: 10.1186/s12870-016-0718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Calcium, as a second messenger, transduces extracellular signals into cellular reactions. A rise in cytosolic calcium concentration is one of the first plant responses after exposure to microbe-associated molecular patterns (MAMPs). We reported previously the isolation of Arabidopsis thaliana mutants with a "changed calcium elevation" (cce) response to flg22, a 22-amino-acid MAMP derived from bacterial flagellin. RESULTS Here, we characterized the cce2 mutant and its weaker allelic mutant, cce3. Besides flg22, the mutants respond with a reduced calcium elevation to several other MAMPs and a plant endogenous peptide that is proteolytically processed from pre-pro-proteins during wounding. Downstream defense-related events such flg22-induced mitogen-activated protein kinase activation, accumulation of reactive oxygen species and growth arrest are also attenuated in cce2/cce3. By genetic mapping, next-generation sequencing and allelism assay, CCE2/CCE3 was identified to be ALG3 (Asparagine-linked glycosylation 3). This encodes the α-1,3-mannosyltransferase responsible for the first step of core oligosaccharide Glc3Man9GlcNAc2 glycan assembly on the endoplasmic reticulum (ER) luminal side. Complementation assays and glycan analysis in yeast alg3 mutant confirmed the reduced enzymatic function of the proteins encoded by the cce2/cce3 alleles - leading to accumulation of M5(ER), the immature five mannose-containing oligosaccharide structure found in the ER. Proper protein glycosylation is required for ER/Golgi processing and trafficking of membrane proteins to the plasma membrane. Endoglycosidase H-insensitivity of flg22 receptor, FLS2, in the cce2/cce3 mutants suggests altered glycan structures in the receptor. CONCLUSION Proper glycosylation of MAMP receptors (or other exported proteins) is required for optimal responses to MAMPs and is important for immune signaling of host plants.
Collapse
Affiliation(s)
- Fabian Trempel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany.
| | - Hiroyuki Kajiura
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565, Japan.
| | - Stefanie Ranf
- Current address: Phytopathology, TUM School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 2, D-85350, Freising-Weihenstephan, Germany.
| | - Julia Grimmer
- Current address: Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle, Germany.
| | - Lore Westphal
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany.
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany.
| | - Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565, Japan.
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany.
| |
Collapse
|
11
|
Abstract
Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.
Collapse
Affiliation(s)
- Monika Zulawski
- Max Planck Institute of molecular Plant Physiology, 14470, Potsdam, Germany
| | | |
Collapse
|
12
|
Antolín-Llovera M, Petutsching EK, Ried MK, Lipka V, Nürnberger T, Robatzek S, Parniske M. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence. THE NEW PHYTOLOGIST 2014; 204:791-802. [PMID: 25367611 DOI: 10.1111/nph.13117] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/17/2014] [Indexed: 05/19/2023]
Abstract
The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function.
Collapse
|
13
|
Endocytosis: At the Crossroads of Pattern Recognition Immune Receptors and Pathogen Effectors. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-41787-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. THE NEW PHYTOLOGIST 2013; 200:847-860. [PMID: 23865782 PMCID: PMC3797164 DOI: 10.1111/nph.12408] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.
Collapse
Affiliation(s)
- Christopher R. Clarke
- Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Sarah R. Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Fumiko Taguchi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | - Ryuji Miki
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; and Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Scotland Leman
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Georg Felix
- Zentrum für Molekularbiologie der Pflanzen, University Tübingen, 72076, Germany
| | - Boris A. Vinatzer
- Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Iwashkiw JA, Vozza NF, Kinsella RL, Feldman MF. Pour some sugar on it: the expanding world of bacterial proteinO-linked glycosylation. Mol Microbiol 2013; 89:14-28. [DOI: 10.1111/mmi.12265] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Jeremy A. Iwashkiw
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Nicolas F. Vozza
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Rachel L. Kinsella
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| | - Mario F. Feldman
- Alberta Glycomics Centre; Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building; Edmonton; Alberta; Canada; T6G 2E9
| |
Collapse
|
16
|
|
17
|
Afzal AJ, da Cunha L, Mackey D. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. THE PLANT CELL 2011; 23:3798-811. [PMID: 21984695 PMCID: PMC3229150 DOI: 10.1105/tpc.111.088708] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RPM1-interacting protein 4 (RIN4) is a multifunctional Arabidopsis thaliana protein that regulates plant immune responses to pathogen-associated molecular patterns (PAMPs) and bacterial type III effector proteins (T3Es). RIN4, which is targeted by multiple defense-suppressing T3Es, provides a mechanistic link between PAMP-triggered immunity (PTI) and effector-triggered immunity and effector suppression of plant defense. Here we report on a structure-function analysis of RIN4-mediated suppression of PTI. Separable fragments of RIN4, including those produced when the T3E AvrRpt2 cleaves RIN4 and each containing a plant-specific nitrate-induced (NOI) domain, suppress PTI. The N-terminal and C-terminal NOIs each contribute to PTI suppression and are evolutionarily conserved. Native RIN4 is anchored to the plasma membrane by C-terminal acylation. Nonmembrane-tethered derivatives of RIN4 activate a cell death response in wild-type Arabidopsis and are hyperactive PTI suppressors in a mutant background that lacks the cell death response. Our results indicate that RIN4 is a multifunctional suppressor of PTI and that a virulence function of AvrRpt2 may include cleaving RIN4 into active defense-suppressing fragments.
Collapse
Affiliation(s)
- Ahmed J. Afzal
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - Luis da Cunha
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
- Address correspondence to
| |
Collapse
|
18
|
Qi Y, Tsuda K, Glazebrook J, Katagiri F. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2011; 12:702-8. [PMID: 21726371 PMCID: PMC6640369 DOI: 10.1111/j.1364-3703.2010.00704.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants possess two distinct types of immune receptor. The first type, pattern recognition receptors (PRRs), recognizes microbe-associated molecular patterns (MAMPs) and initiates pattern-triggered immunity (PTI) on recognition. FLS2 is a PRR, which recognizes a part of bacterial flagellin. The second type, resistance (R) proteins, recognizes pathogen effectors and initiates effector-triggered immunity (ETI) on recognition. RPM1, RPS2 and RPS5 are R proteins. Here, we provide evidence that FLS2 is physically associated with all three R proteins. Our findings suggest that signalling interactions occur between PTI and ETI at very early stages and/or that FLS2 forms a PTI signalling complex, some components of which are guarded by R proteins.
Collapse
Affiliation(s)
- Yiping Qi
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
19
|
LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PLoS One 2011; 6:e21614. [PMID: 21789174 PMCID: PMC3138743 DOI: 10.1371/journal.pone.0021614] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains.
Collapse
|
20
|
Müller B, Grossniklaus U. Model organisms--A historical perspective. J Proteomics 2010; 73:2054-63. [PMID: 20727995 DOI: 10.1016/j.jprot.2010.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/03/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022]
Abstract
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Bruno Müller
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
21
|
Abstract
The mucosal immune system is charged with defending the host's vast interfaces with the outside world from the enormous and diverse group of microbes that colonizes these surfaces. A key means by which the mucosal immune system protects the host from such diverse microbes is using germ-line-encoded receptors that target structurally conserved motifs that mediate important bacterial functions. This review focuses on one embodiment of this notion, namely, the mucosal innate immune targeting of flagellin, the primary structural component of flagella, which afford bacteria the ability of directed locomotion. Specifically, we discuss the mechanisms by which flagellin is recognized by the innate immune system, their role in host defense, chronic inflammatory disease, and potential approaches to pharmacologically manipulate these pathways to benefit the host. Discussion will focus on the intestinal tract but will also incorporate key findings in other mucosal surfaces.
Collapse
|
22
|
Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Bart R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, Song WY. A rice kinase-protein interaction map. PLANT PHYSIOLOGY 2009; 149:1478-92. [PMID: 19109415 PMCID: PMC2649385 DOI: 10.1104/pp.108.128298] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/18/2008] [Indexed: 05/19/2023]
Abstract
Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.
Collapse
Affiliation(s)
- Xiaodong Ding
- Department of Plant Pathology , University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ebine K, Ueda T. Unique mechanism of plant endocytic/vacuolar transport pathways. JOURNAL OF PLANT RESEARCH 2009; 122:21-30. [PMID: 19082690 DOI: 10.1007/s10265-008-0200-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/23/2008] [Indexed: 05/08/2023]
Abstract
The post-Golgi traffic network in plant cells is highly complex, which is correlated with the large number of genes related to this function. RABs and SNAREs are key regulators of tethering and fusion of transport vesicles to target membranes, and the numbers of these regulators have also expanded in plant lineages. In addition to this increase in the net number of genes, plants also seem to have evolved new gene families tailored to fulfill plant-unique functions. In this article, we summarize recent progress in studies on plant-unique RABs and SNAREs functioning in post-Golgi trafficking, with a special focus on the endocytic pathway.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
24
|
Luiz WB, Cavalcante RCM, Paccez JD, Souza RD, Sbrogio-Almeida ME, Ferreira RCC, Ferreira LCS. Boosting systemic and secreted antibody responses in mice orally immunized with recombinant Bacillus subtilis strains following parenteral priming with a DNA vaccine encoding the enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae B subunit. Vaccine 2008; 26:3998-4005. [PMID: 18597902 DOI: 10.1016/j.vaccine.2008.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/05/2008] [Accepted: 05/12/2008] [Indexed: 12/28/2022]
Abstract
Recombinant Bacillus subtilis strains, either spores or vegetative cells, may be employed as safe and low cost orally delivered live vaccine vehicles. In this study, we report the use of an orally delivered B. subtilis vaccine strain to boost systemic and secreted antibody responses in mice i.m. primed with a DNA vaccine encoding the structural subunit (CfaB) of the CFA/I fimbriae encoded by enterotoxigenic Escherichia coli (ETEC), an important etiological agent of diarrhea among travelers and children living in endemic regions. DBA/2 female mice submitted to the prime-boost immunization regimen developed synergic serum (IgG) and mucosal (IgA) antibody responses to the target CfaB antigen. Moreover, in contrast to mice immunized only with one vaccine formulation, sera harvested from prime-boosted vaccinated individuals inhibited adhesion of ETEC cells to human red blood cells. Additionally, vaccinated dams conferred full passive protection to suckling newborn mice challenged with a virulent ETEC strain. Taken together the present results further demonstrate the potential use of recombinant B. subtilis strains as an alternative live vaccine vehicle.
Collapse
Affiliation(s)
- Wilson B Luiz
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Melotto M, Underwood W, He SY. Role of stomata in plant innate immunity and foliar bacterial diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:101-22. [PMID: 18422426 PMCID: PMC2613263 DOI: 10.1146/annurev.phyto.121107.104959] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pathogen entry into host tissue is a critical first step in causing infection. For foliar bacterial plant pathogens, natural surface openings, such as stomata, are important entry sites. Historically, these surface openings have been considered as passive portals of entry for plant pathogenic bacteria. However, recent studies have shown that stomata can play an active role in limiting bacterial invasion as part of the plant innate immune system. As a counter-defense, the plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the virulence factor coronatine to actively open stomata. In nature, many foliar bacterial disease outbreaks require high humidity, rain, or storms, which could favor stomatal opening and/or bypass stomatal defense by creating wounds as alternative entry sites. Further studies on microbial and environmental regulation of stomatal closure and opening could fill gaps in our understanding of bacterial pathogenesis, disease epidemiology, and microbiology of the phyllosphere.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Biology, University of Texas at Arlington, TX, 76019, USA; e-mail: .
| | - William Underwood
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; e-mail: .
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; e-mail: .
| |
Collapse
|
26
|
Altenbach D, Robatzek S. Pattern recognition receptors: from the cell surface to intracellular dynamics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1031-9. [PMID: 17849705 DOI: 10.1094/mpmi-20-9-1031] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Detection of potentially infectious microorganisms is essential for plant immunity. Microbial communities growing on plant surfaces are constantly monitored according to their conserved microbe-associated molecular patterns (MAMPs). In recent years, several pattern-recognition receptors, including receptor-like kinases and receptor-like proteins, and their contribution to disease resistance have been described. MAMP signaling must be carefully controlled and seems to involve receptor endocytosis. As a further surveillance layer, plants are able to specifically recognize microbial effector molecules via nucleotide-binding site leucine-rich repeat receptors (NB-LRR). A number of recent studies show that NB-LRR translocate to the nucleus in order to exert their activity. In this review, current knowledge regarding the recognition of MAMPs by surface receptors, receptor activation, signaling, and subcellular redistribution are discussed.
Collapse
|