1
|
New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:molecules22081282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
|
2
|
Writer MJ, Kyrtatos PG, Bienemann AS, Pugh JA, Lowe AS, Villegas-Llerena C, Kenny GD, White EA, Gill SS, McLeod CW, Lythgoe MF, Hart SL. Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. J Control Release 2012; 162:340-8. [PMID: 22800579 PMCID: PMC3657147 DOI: 10.1016/j.jconrel.2012.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
Gadolinium-labelled nanocomplexes offer prospects for the development of real-time, non-invasive imaging strategies to visualise the location of gene delivery by MRI. In this study, targeted nanoparticle formulations were prepared comprising a cationic liposome (L) containing a Gd-chelated lipid at 10, 15 and 20% by weight of total lipid, a receptor-targeted, DNA-binding peptide (P) and plasmid DNA (D), which electrostatically self-assembled into LPD nanocomplexes. The LPD formulation containing the liposome with 15% Gd-chelated lipid displayed optimal peptide-targeted, transfection efficiency. MRI conspicuity peaked at 4h after incubation of the nanocomplexes with cells, suggesting enhancement by cellular uptake and trafficking. This was supported by time course confocal microscopy analysis of transfections with fluorescently-labelled LPD nanocomplexes. Gd-LPD nanocomplexes delivered to rat brains by convection-enhanced delivery were visible by MRI at 6 h, 24 h and 48 h after administration. Histological brain sections analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) confirmed that the MRI signal was associated with the distribution of Gd(3+) moieties and differentiated MRI signals due to haemorrhage. The transfected brain cells near the injection site appeared to be mostly microglial. This study shows the potential of Gd-LPD nanocomplexes for simultaneous delivery of contrast agents and genes for real-time monitoring of gene therapy in the brain.
Collapse
Affiliation(s)
- Michele J. Writer
- Molecular Immunology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Panagiotis G. Kyrtatos
- Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Alison S. Bienemann
- The Functional Neurosurgery Research Group, Bristol University, Institute of Clinical Neurosciences, Southmead Hospital, Bristol BS16 1LE, UK
| | - John A. Pugh
- Centre For Analytical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew S. Lowe
- Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, London WC1E 6DD, UK
| | | | - Gavin D. Kenny
- Molecular Immunology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Edward A. White
- The Functional Neurosurgery Research Group, Bristol University, Institute of Clinical Neurosciences, Southmead Hospital, Bristol BS16 1LE, UK
| | - Steven S. Gill
- The Functional Neurosurgery Research Group, Bristol University, Institute of Clinical Neurosciences, Southmead Hospital, Bristol BS16 1LE, UK
| | - Cameron W. McLeod
- Centre For Analytical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Stephen L. Hart
- Molecular Immunology Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|