1
|
Ndinguri M, Middleton L, Unrine J, Lui S, Rollins J, Nienaber E, Spease C, Williams A, Cormier L. Therapeutic dosing and targeting efficacy of Pt-Mal-LHRH towards triple negative breast cancer. PLoS One 2023; 18:e0287151. [PMID: 37816015 PMCID: PMC10564129 DOI: 10.1371/journal.pone.0287151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/31/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE Pt-Mal-LHRH is a newly synthesized chemotherapeutic agent that was designed to selectively target the luteinizing hormone-releasing hormone (LHRH) receptor expressed by triple negative breast cancer (TNBC). The aim of this study was to evaluate the therapeutic dosing, tumor reduction efficacy, and selective distribution of Pt-Mal-LHRH in-vivo. METHODS AND RESULTS LHRH tissue expression levels in-vivo were investigated using western blotting and LHRH was found to be increased in reproductive tissues (mammary, ovary, uterus). Further, Pt-Mal-LHRH was found to have increased TNBC tumor tissue platinum accumulation compared to carboplatin by inductively coupled plasma mass spectrometry analysis. The platinum family, compound carboplatin, was selected for comparison due to its similar chemical structure and molar equivalent doses were evaluated. Moreover, in-vivo distribution data indicated selective targeting of Pt-Mal-LHRH by enhanced reproductive tissue accumulation compared to carboplatin. Further, TNBC tumor growth was found to be significantly attenuated by Pt-Mal-LHRH compared to carboplatin in both the 4T1 and MDA-MB-231 tumor models. There was a significant reduction in tumor volume in the 4T1 tumor across Pt-Mal-LHRH doses (2.5-20 mg/kg/wk) and in the MDA-MB-231 tumor at the dose of 10 mg/kg/wk in models conducted by an independent contract testing laboratory. CONCLUSION Our data indicates Pt-Mal-LHRH is a targeting chemotherapeutic agent towards the LHRH receptor and reduces TNBC tumor growth in-vivo. This study supports drug conjugation design models using the LHRH hormone for chemotherapeutic delivery as Pt-Mal-LHRH was found to be a more selective and efficacious than carboplatin. Further examination of Pt-Mal-LHRH is warranted for its clinical use in TNBCs, along with, other reproductive cancers overexpressing the LHRH receptor.
Collapse
Affiliation(s)
- Margaret Ndinguri
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, United States of America
| | - Lisa Middleton
- Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, United States of America
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shu Lui
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph Rollins
- Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, United States of America
| | - Emma Nienaber
- Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, United States of America
| | - Cassidy Spease
- Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, United States of America
| | - Aggie Williams
- Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, United States of America
| | - Lindsay Cormier
- Department of Biological Sciences, Eastern Kentucky University, Richmond, Kentucky, United States of America
| |
Collapse
|
2
|
Uzonwanne VO, Navabi A, Obayemi JD, Hu J, Salifu AA, Ghahremani S, Ndahiro N, Rahbar N, Soboyejo W. Triptorelin-functionalized PEG-coated biosynthesized gold nanoparticles: Effects of receptor-ligand interactions on adhesion to triple negative breast cancer cells. BIOMATERIALS ADVANCES 2022; 136:212801. [PMID: 35929297 DOI: 10.1016/j.bioadv.2022.212801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 11/29/2022]
Abstract
This paper presents the results of an experimental and computational study of the adhesion of triptorelin-conjugated PEG-coated biosynthesized gold nanoparticles (GNP-PEG-TRP) to triple-negative breast cancer (TNBC) cells. The adhesion is studied at the nanoscale using a combination of atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. The AFM measurements showed that the triptorelin-functionalized gold nanoparticles (GNP-TRP and GNP-PEG-TRP) have higher adhesion to triple-negative breast cancer cells (TNBC) than non-tumorigenic breast cells. The increased adhesion of GNP-TRP and GNP-PEG-TRP to TNBC is also attributed to the overexpression of LHRH receptors on the surfaces of both TNBC. Finally, the molecular dynamics model reveals insights into the effects of receptor density, molecular configuration, and receptor-ligand docking characteristics on the interactions of triptorelin-functionalized PEG-coated gold nanoparticles with TNBC. A three to nine-fold increase in the adhesion is predicted between triptorelin-functionalized PEG-coated gold nanoparticles and TNBC cells. The implications of the results are then discussed for the specific targeting of TNBC.
Collapse
Affiliation(s)
- Vanessa O Uzonwanne
- Department of Materials Science and Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
| | - Arvand Navabi
- Department of Civil Engineering, Worcester Polytechnic Institute (WPI), Kaven Hall, 100 Institute Road, Worcester, MA 01609, USA
| | - John D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA
| | - Jingjie Hu
- Division of Vascular and Interventional Radiology, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | - Ali A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA
| | - Shahnaz Ghahremani
- Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA
| | - Nelson Ndahiro
- Department of Chemical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
| | - Nima Rahbar
- Department of Civil Engineering, Worcester Polytechnic Institute (WPI), Kaven Hall, 100 Institute Road, Worcester, MA 01609, USA
| | - Winston Soboyejo
- Department of Materials Science and Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
De K. Decapeptide Modified Doxorubicin Loaded Solid Lipid Nanoparticles as Targeted Drug Delivery System against Prostate Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13194-13207. [PMID: 34723562 DOI: 10.1021/acs.langmuir.1c01370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Growing instances of prostate cancer with poor prognosis have become a challenging task in cancer therapy. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in prostate cancer cells. Polyethylene glycol (PEG) conjugated lipids exhibit superiority in terms of retention/circulation in biological systems. PEGylated dipalmitoylphosphatedylethanolamine (DPPE-PEG), covalently linked with 6-hydrazinopyridine-3-carboxylic-acid, was conjugated with new LHRH-receptor positive peptide analog (DPPE-PEG-HYNIC-d-Glu-His-Trp-Ser-Tyr-d-Asn-Leu-d-Gln-Pro-Gly-NH2). Surface modified doxorubicin (DOX) loaded solid lipid nanoparticle (SLN) was prepared using soylecithin, stearic acid and Poloxamer-188 by solvent emulsification/evaporation method for targeted delivery of DOX into prostate cancer cells. SLN, DOX loaded SLN (DSLN) and surface modified DSLN (M-DSLN) were characterized by means of their size, zeta potential, morphology, storage time, drug payload, and subsequent release kinetics studies. Homogeneity of surface morphology, upon modification of SLN, was revealed from the dynamic light scattering, atomic force microscopy, and scanning electron microscopic studies. Homogeneous adsolubilization of DOX throughout the hydrophobic moiety of SLN was established by the differential scanning calorimetric studies. Release of DOX were sustained in DSLN and M-DSLN. Cellular uptake and in vitro activities of formulations against LHRH positive PC3/SKBR3 cancer cell lines revealed higher cellular internalization, cytotoxicity that followed the sequence DOX < DSLN < M-DSLN. Dye staining and flow cytometry studies revealed higher apoptosis in cancer cells. Such receptor specific drug delivery systems are considered to have substantial potential in prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal India
| |
Collapse
|
4
|
Zuccolo M, Arrighetti N, Perego P, Colombo D. Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds. Curr Med Chem 2021; 29:2566-2601. [PMID: 34365939 DOI: 10.2174/0929867328666210806110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) drugs, including cisplatin, are widely used for the treatment of solid tumors. Despite the clinical success, side effects and occurrence of resistance represent major limitations to the use of clinically available Pt drugs. To overcome these problems, a variety of derivatives have been designed and synthetized. Here, we summarize the recent progress in the development of Pt(II) and Pt(IV) complexes with bioactive ligands. The development of Pt(II) and Pt(IV) complexes with targeting molecules, clinically available agents, and other bioactive molecules is an active field of research. Even if none of the reported Pt derivatives has been yet approved for clinical use, many of these compounds exhibit promising anticancer activities with an improved pharmacological profile. Thus, planning hybrid compounds can be considered as a promising approach to improve the available Pt-based anticancer agents and to obtain new molecular tools to deepen the knowledge of cancer progression and drug resistance mechanisms.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| |
Collapse
|
5
|
Varshosaz J, Sarrami N, Aghaei M, Aliomrani M, Azizi R. LHRH Targeted Chonderosomes of Mitomycin C in Breast Cancer: An In Vitro/ In Vivo Study. Anticancer Agents Med Chem 2019; 19:1405-1417. [PMID: 30987576 DOI: 10.2174/1871520619666190415165849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mitomycin C (MMC) is an anti-cancer drug used for the treatment of breast cancer with limited therapeutic index, extreme gastric adverse effects and bone marrow suppression. The purpose of the present study was the preparation of a dual-targeted delivery system of MMC for targeting CD44 and LHRH overexpressed receptors of breast cancer. METHODS MMC loaded LHRH targeted chonderosome was prepared by precipitation method and was characterized for their physicochemical properties. Cell cycle arrest and cytotoxicity tests were studied on cell lines of MCF-7, MDA-MB231 and 4T1 (as CD44 and LHRH positive cells) and BT-474 cell line (as CD44 negative receptor cells). The in vivo histopathology and antitumor activity of MMC-loaded chonderosomes were compared with free MMC in 4T1 cells inducing breast cancer in Balb-c mice. RESULTS MMC loaded LHRH targeted chonderosomes caused 3.3 and 5.5 fold more cytotoxicity on MCF-7 and 4T1 cells than free MMC at concentrations of 100μM and 10μM, respectively. However, on BT-474 cells the difference was insignificant. The cell cycle test showed no change for MMC mechanism of action when it was loaded in chonderosomes compared to free MMC. The in vivo antitumor studies showed that MMC loaded LHRH targeted chonderosomes were 6.5 fold more effective in the reduction of tumor volume than free MMC with the most severe necrosis compared to non-targeted chonderosomes in pathological studies on harvested tumors. CONCLUSION The developed MMC loaded LHRH targeted chonderosomes were more effective in tumor growth suppression and may be promising for targeted delivery of MMC in breast cancer.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Sarrami
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Azizi
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Nian D, Shi P, Sun J, Ren L, Hao X, Han J. Application of luteinizing hormone-releasing hormone-ferrosoferric oxide nanoparticles in targeted imaging of breast tumors. J Int Med Res 2019; 47:1749-1757. [PMID: 30880516 PMCID: PMC6460613 DOI: 10.1177/0300060519834457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Ferrosoferric oxide (Fe3O4) nanoparticles are a commonly used magnetic resonance imaging (MRI) reagent. Luteinizing hormone-releasing hormone (LHRH) is highly expressed on the surfaces of tumors, but its expression is low or absent in the corresponding normal tissues, allowing it to be used for targeted imaging and treatment. Methods We prepared Fe3O4 nanoparticles using a chemical co-precipitation method, performed coupling with chitosan to prepare LHRH-Fe3O4 nanoparticles, and explored the application value of LHRH-Fe3O4 nanoparticles in targeted imaging and treatment of breast tumors through in vitro and in vivo experiments. Results The particle size of the LHRH-Fe3O4 nanoparticles was 10 nm, and they could be taken in by human MCF-7 breast cancer cells. The nanomaterial had low cytotoxicity. In vivo MRI experiments showed that LHRH-Fe3O4 could effectively concentrate on the tumor under the action of a magnetic field. It also had a good negative enhancement effect that significantly reduced the signal intensity of the T2 field, allowing it to be used as a contrast agent of the T2 field. Conclusion LHRH-Fe3O4 nanoparticles serve the purpose of targeting contrast agents to target sites and are expected to be used for targeted imaging and treatment of cancers with high LHRH expression.
Collapse
Affiliation(s)
- Di Nian
- 1 Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
| | - Peng Shi
- 2 Department of Neurology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Sun
- 1 Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
| | - Li Ren
- 1 Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
| | - Xiaona Hao
- 1 Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
| | - Junwei Han
- 1 Department of Medical Laboratory, Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine 2018; 13:7669-7680. [PMID: 30538451 PMCID: PMC6251469 DOI: 10.2147/ijn.s184634] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Considering the increase in cancer cases and number of deaths per year worldwide, development of potential therapeutics is imperative. Mesoporous silica nanoparticles (MSNPs) are among the potential nanocarriers having unique properties for drug delivery. Doxorubicin (DOX), being the most commonly used drug, can be efficiently delivered to gonadotropin-releasing hormone (GnRH)-overexpressing cancer cells using functionalized MSNPs. AIM We report the development of decapeptide-conjugated MSNPs loaded with DOX for the targeted drug delivery in breast and prostate cancer cells. MATERIALS AND METHODS MSNPs were synthesized and subsequently functionalized with an analog of GnRH by using a heterobifunctional polyethylene glycol as a linker. These targeted MSNPs were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. An anticancer drug DOX was loaded and then characterized for drug loading. DOX-loaded nanocarriers were then studied for their cellular uptake using confocal microscopy. The cytotoxicity of DOX-loaded targeted MSNPs and DOX-loaded bare MSNPs was studied by performing MTT assay on MCF-7 (breast cancer) and LNCaP (prostate cancer) cells. Further, acridine orange/ethidium bromide staining, as well as flow cytometry, was performed to confirm the apoptotic mode of cancer cell death. RESULTS MSNPs were conjugated with polyethylene glycol as well as an agonist of GnRH and subsequently loaded with DOX. These targeted and bare MSNPs showed excellent porous structure and loading of DOX. Further, higher uptake of DOX-loaded targeted MSNPs was observed as compared to DOX-loaded bare MSNPs in GnRH-overexpressing breast (MCF-7) and prostate (LNCaP) cancer cells. The targeted MSNPs also showed significantly higher (P<0.001) cytotoxicity than DOX-loaded bare MSNPs at different time points. After 48 hours of treatment, the IC50 value for DOX-loaded targeted MSNPs was found to be 0.44 and 0.43 µM in MCF-7 and LNCaP cells, respectively. Acridine orange/ethidium bromide staining and flow cytometry analysis further confirmed the pathway of cell death through apoptosis. CONCLUSION This study suggests GnRH analog-conjugated targeted MSNPs can be the suitable and promising approach for targeted drug delivery in all hormone-dependent cancer cells.
Collapse
Affiliation(s)
- Prajakta Tambe
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| |
Collapse
|
8
|
Roy J, Kaake M, Srinivasarao M, Low PS. Targeted Tubulysin B Hydrazide Conjugate for the Treatment of Luteinizing Hormone-Releasing Hormone Receptor-Positive Cancers. Bioconjug Chem 2018; 29:2208-2214. [DOI: 10.1021/acs.bioconjchem.8b00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Hu J, Youssefian S, Obayemi J, Malatesta K, Rahbar N, Soboyejo W. Investigation of adhesive interactions in the specific targeting of Triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells. Acta Biomater 2018; 71:363-378. [PMID: 29458110 DOI: 10.1016/j.actbio.2018.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
The understanding of adhesive interaction at the nanoscale between functionalized nanoparticles and biological cells is of great importance to develop effective theranostic nanocarriers for targeted cancer therapy. Here, we report a combination of experimental and computational approaches to evaluate the adhesion between Triptorelin (a Luteinizing Hormone-Releasing Hormone (LHRH) agonist)-conjugated poly-(ethylene glycol) (PEG)-coated magnetite nanoparticles (Triptorelin-MNPs) and breast cells. The adhesion forces between Triptorelin-MNPs and normal/cancerous breast cells are obtained using atomic force microscopy. The corresponding work of adhesion is then estimated using Johnson-Kendall-Roberts model. Our results demonstrate that Triptorelin-MNPs have a fourteen-fold greater work of adhesion to breast cancer cells than to normal breast cells. In addition, the work of adhesion between Triptorelin-MNPs and breast cancer cells is found to be three times more than that between unmodified MNPs and breast cancer cells. Hence, the experimental observation indicates that Triptorelin ligands facilitate the specific targeting of breast cancer cells. Furthermore, molecular dynamics simulations are performed to investigate the molecular origins of the adhesive interactions. The simulations reveal that the interactions between molecules (e.g. Triptorelin and PEG) and LHRH receptors are dominated by van der Waals energies, while the interactions of these molecules with cell membrane are dominated by electrostatic interactions. Moreover, both experimental and computational results reveal that PEG serves as an effective coating that enhances adhesive interactions to breast cancer cells that over-express LHRH receptors, while reduces the adhesion to normal breast cells. Our results highlight the potential to develop Triptorelin-MNPs into tumor-specific MRI contrast agents and drug carriers. STATEMENT OF SIGNIFICANCE Systematic investigation of adhesive interactions between functionalized nanoparticles and cancer cells is of great importance in developing effective theranostic nanocarriers for targeted cancer therapy. Herein, we use a combination of atomic force microscopy technique and molecular dynamics simulations approach to explore the adhesive interactions at the nanoscale between Triptorelin-conjugated polyethylene glycol (PEG)-coated magnetite nanoparticles and normal/cancerous breast cells. This study characterizes and quantifies the work of adhesion, as well as adhesion forces, at the nanocarrier/cell interfaces, unravels the molecular origins of adhesive interactions and highlights the effectiveness of PEG coatings and Triptorelin ligands in the specific targeting of breast cancer cells. Our findings expand the fundamental understanding of nanoparticle/cell adhesion and provide guidelines for the design of more rational nanocarriers.
Collapse
|
10
|
Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|
11
|
Calderon LE, Keeling JK, Rollins J, Black CA, Collins K, Arnold N, Vance DE, Ndinguri MW. Pt-Mal-LHRH, a Newly Synthesized Compound Attenuating Breast Cancer Tumor Growth and Metastasis by Targeting Overexpression of the LHRH Receptor. Bioconjug Chem 2016; 28:461-470. [PMID: 27997127 DOI: 10.1021/acs.bioconjchem.6b00610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new targeting chemotherapeutic agent, Pt-Mal-LHRH, was synthesized by linking activated cisplatin to luteinizing hormone releasing hormone (LHRH). The compound's efficacy and selectivity toward 4T1 breast cancer cells were evaluated. Carboplatin was selected as the comparative platinum complex, since the Pt-Mal-LHRH malonate linker chelates platinum in a similar manner to carboplatin. Breast cancer and normal cell viability were analyzed by an MTT assay comparing Pt-Mal-LHRH with carboplatin. Cells were also treated with either Pt-Mal-LHRH or carboplatin to evaluate platinum uptake by ICP-MS and cell migration using an in vitro scratch-migration assay. Tumor volume and metastasis were evaluated using an in vivo 4T1 mouse tumor model. Mice were administered Pt-Mal-LHRH (carboplatin molar equivalent dosage) through ip injection and compared to those treated with carboplatin (5 (mg/kg)/week), no treatment, and LHRH plus carboplatin (unbound) controls. An MTT assay showed a reduction in cell viability (p < 0.01) in 4T1 and MDA-MB-231 breast cancer cells treated with Pt-Mal-LHRH compared to carboplatin. Pt-Mal-LHRH was confirmed to be cytotoxic by flow cytometry using a propidium iodide stain. Pt-Mal-LHRH displayed a 20-fold increase in 4T1 cellular uptake compared to carboplatin. There was a decrease (p < 0.0001) in 4T1 cell viability compared to 3T3 normal fibroblast cells. Treatment with Pt-Mal-LHRH also resulted in a significant decrease in cell-migration compared to carboplatin. In vivo testing found a significant reduction in tumor volume (p < 0.05) and metastatic tumor colonization in the lungs with Pt-Mal-LHRH compared to carboplatin. There was a slight decrease in lung weight and no difference in liver weight between treatment groups. Together, our data indicate that Pt-Mal-LHRH is a more potent and selective chemotherapeutic agent than untargeted carboplatin.
Collapse
Affiliation(s)
- Lindsay E Calderon
- Department of Biology, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Jonathan K Keeling
- Department of Chemistry, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Joseph Rollins
- Department of Biology, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Carrie A Black
- Department of Chemistry, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Kendall Collins
- Department of Biology, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Nova Arnold
- Department of Biology, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Diane E Vance
- Department of Chemistry, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| | - Margaret W Ndinguri
- Department of Chemistry, Eastern Kentucky University , Richmond, Kentucky 40475, United States
| |
Collapse
|
12
|
Varshosaz J, Hassanzadeh F, Aliabadi HS, Khoraskani FR, Mirian M, Behdadfar B. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int J Biol Macromol 2016; 93:1192-1205. [DOI: 10.1016/j.ijbiomac.2016.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 10/20/2022]
|
13
|
Varshosaz J, Jahanian-Najafabadi A, Ghazzavi J. Luteinizing hormone-releasing hormone targeted poly(methyl vinyl ether maleic acid) nanoparticles for doxorubicin delivery to MCF-7 breast cancer cells. IET Nanobiotechnol 2016; 10:206-14. [PMID: 27463791 PMCID: PMC8676489 DOI: 10.1049/iet-nbt.2015.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/12/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to design a targeted anti-cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross-linking method using Zn(2+) ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1-ethyl-3-(3-dimethylaminopropyl) carboiimid HCl as cross-linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier-transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non-targeted ones were studied on MCF-7 cells which overexpress luteinizing hormone-releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF-7 cells compared to free DOX and non-targeted NPs.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jila Ghazzavi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Lin CJ, Kuan CH, Wang LW, Wu HC, Chen Y, Chang CW, Huang RY, Wang TW. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials 2016; 90:12-26. [DOI: 10.1016/j.biomaterials.2016.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/12/2023]
|
15
|
Wayua C, Roy J, Putt KS, Low PS. Selective Tumor Targeting of Desacetyl Vinblastine Hydrazide and Tubulysin B via Conjugation to a Cholecystokinin 2 Receptor (CCK2R) Ligand. Mol Pharm 2015; 12:2477-83. [PMID: 26043355 PMCID: PMC4674820 DOI: 10.1021/acs.molpharmaceut.5b00218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
As the delivery of selectively targeted
cytotoxic agents via antibodies
or small molecule ligands to malignancies has begun to show promise
in the clinic, the need to identify and validate additional cellular
targets for specific therapeutic delivery is critical. Although a
multitude of cancers have been targeted using the folate receptor,
PSMA, bombesin receptor, somatostatin receptor, LHRH, and αvβ3, there is a notable lack of specific small
molecule ligand/receptor pairs to cellular targets found within cancers
of the GI tract. Because of the selective GI tract expression of the
cholecystokinin 2 receptor (CCK2R), we undertook the creation of conjugates
that would deliver microtubule-disrupting drugs to malignancies through
the specific targeting of CCK2R via a high affinity small molecule
ligand. The cytotoxic activity of these conjugates were shown to be
receptor mediated in vitro and in vivo with xenograft mouse models
exhibiting delayed growth or regression of tumors that expressed CCK2R.
Overall, this work demonstrates that ligands to CCK2R can be used
to create selectively targeted therapeutic conjugates.
Collapse
Affiliation(s)
- Charity Wayua
- †Department of Chemistry and ‡Center for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jyoti Roy
- †Department of Chemistry and ‡Center for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karson S Putt
- †Department of Chemistry and ‡Center for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- †Department of Chemistry and ‡Center for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res 2013; 118:1-59. [PMID: 23768509 DOI: 10.1016/b978-0-12-407173-5.00002-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active-targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple-targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes.
Collapse
Affiliation(s)
- Angela A Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wendy S Vanden Berg-Foels
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xuejun Wen
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Institute for Biomedical Engineering and Nanotechnology, Tongji University School of Medicine, Shanghai, China.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
17
|
Xu P, Chen J, Chen Z, Zhou S, Hu P, Chen X, Huang M. Receptor-targeting phthalocyanine photosensitizer for improving antitumor photocytotoxicity. PLoS One 2012; 7:e37051. [PMID: 22693566 PMCID: PMC3365043 DOI: 10.1371/journal.pone.0037051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 04/17/2012] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapeutic modality which uses a photosensitizer to capture visible light resulting in phototoxicity in the irradiated region. PDT has been used in a number of pathological indications, including tumor. A key desirable feature of the photosensitizer is the high phototoxicity on tumor cells but not on normal cells. In this study, we conjugate a gonadotropin-releasing hormone (GnRH) to a photosensitizer, Zinc phthalocyanine (ZnPc), in order to enhance its specificity to breast cancer, which over-expresses GnRH receptor. ZnPc has unique advantages over other photosensitizers, but is difficult to derivatize and purify as a single isomer. We previously developed a straight-forward way to synthesize mono-substituted β-carboxy-phthalocyanine zinc (ZnPc-COOH). Photophysical and photochemical parameters of this ZnPc-GnRH conjugate including fluorescence quantum yield (Фf), fluorescence decay time (τs) and singlet oxygen quantum yield (ФΔ) were evaluated and found comparable with that of ZnPc, indicating that addition of a GnRH peptide does not significantly alter the generation of singlet oxygen from ZnPc. Cellular uptakes and phototoxicities of this conjugate were tested and found significantly enhanced on human breast cancer cell lines overexpressing GnRH receptors (MDA-MB-231 and MCF-7 cells) compared to cells with low levels of GnRH receptors, such as human embryonic lung fibroblast (HELF) and human liver carcinoma (HepG2) cells. In addition, the cellular uptake of this conjugate toward MCF-7 cells were found clearly alleviated by a GnRH receptor blocker Cetrorelix, suggesting that the cellular uptake of this conjugate was GnRH receptor-mediated. Put together, these findings revealed that coupling ZnPc with GnRH analogue was an effective way to improve the selectivity of ZnPc towards tumors with over-expressed GnRH receptors.
Collapse
Affiliation(s)
- Peng Xu
- Danish-Chinese Centre for Proteases and Cancer, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Jincan Chen
- Danish-Chinese Centre for Proteases and Cancer, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Zhuo Chen
- Danish-Chinese Centre for Proteases and Cancer, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
- * E-mail: (ZC); (MH)
| | - Shanyong Zhou
- Danish-Chinese Centre for Proteases and Cancer, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Ping Hu
- Danish-Chinese Centre for Proteases and Cancer, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Xueyuan Chen
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Mingdong Huang
- Danish-Chinese Centre for Proteases and Cancer, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
- * E-mail: (ZC); (MH)
| |
Collapse
|
18
|
He Y, Zhang L, Song C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int J Nanomedicine 2010; 5:697-705. [PMID: 20957221 PMCID: PMC2948949 DOI: 10.2147/ijn.s12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Indexed: 11/23/2022] Open
Abstract
A sterically stabilized, mitoxantrone-loaded liposome, tailored to target luteinizing hormone-releasing hormone (LHRH) receptor overexpressing cells, was developed to promote the efficiency of intracellular delivery of mitoxantrone through receptor-mediated endocytosis. Liposomes were prepared by lipid film hydration and an ultrasound dispersion process. Thiolated gonadorelin with affinity for the LHRH receptor was chemically coupled to N-[(3-maleimide-1-oxopropyl) aminopropyl polyethylene glycol-carbamyl] distearoyl-l-phosphatidyl-ethanolamine via a thioether bond and subsequently inserted into polyethylene glycol-grafted liposomes. The liposome was characterized in terms of its size, ligand density, drug loading, and leakage properties. The targeting nature and antitumor effects of the liposomes were evaluated in vitro using cultured MCF-7 breast cancer cells. A protein assay of ligand coupling to the liposomal surface indicated that more than 60% of the LHRH peptides were inserted into the liposome bilayer. Up to 1.0 mg/mL of stable liposomal mitoxantrone loading was achieved, with approximately 98% of this being entrapped within the liposomes. In vitro cell culture studies revealed that the gonadorelin-modified liposomes bound to their target cells had significantly higher affinity and better antitumor efficiency than generic drug-loaded liposomes. These events were presumed to occur through specific interactions of the LHRH with its cognate receptors on the cell surface. It was concluded that the targeting properties of the delivery system would potentially improve the therapeutic benefits of mitoxantrone, as compared with nontargeted liposomes.
Collapse
Affiliation(s)
- Yingna He
- Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Limited accessibility of drugs to the tumor tissues, the requirement of high doses, intolerable cytotoxicity, the development of multiple drug resistance and non-specific targeting are obstacles to the clinical use of cancer drugs and cancer therapy. OBJECTIVE Drug delivery through carrier systems to cancerous tissue is no longer simply wrapping up cancer drugs in a new formulation for different routes of delivery, rather the focus is on targeted cancer therapy. METHODS This review summarizes the exploitation of drug-loaded nanocarrier conjugates with various targeting moieties for the delivery and targeting of anticancer drugs and describes the current status of and challenges in the field of nanocarrier-aided drug delivery and drug targeting. CONCLUSION The discovery of targeting ligand to cancer cells and the development of ligand-targeted therapy will help us to improve therapeutic efficacy and reduce side effects. Unlike other forms of therapy, it will allow us to maintain quality of life for patients, while efficiently attacking the cancer tissue. It indicates that ligands have a pivotal role in cancer cell targeting.
Collapse
Affiliation(s)
- Manasi Das
- Laboratory for Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Orissa, India
| | | | | |
Collapse
|
20
|
Rozanova N, Zhang JZ. Metal and Magnetic Nanostructures for Cancer Detection, Imaging, and Therapy. J Biomed Nanotechnol 2008. [DOI: 10.1166/jbn.2008.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|