1
|
Eleveld N, Esquivel-Franco DC, Drost G, Absalom AR, Zeebregts CJ, de Vries JPPM, Elting JWJ, Maurits NM. The Influence of Extracerebral Tissue on Continuous Wave Near-Infrared Spectroscopy in Adults: A Systematic Review of In Vivo Studies. J Clin Med 2023; 12:jcm12082776. [PMID: 37109113 PMCID: PMC10146120 DOI: 10.3390/jcm12082776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) is a non-invasive technique for measuring regional tissue haemoglobin (Hb) concentrations and oxygen saturation (rSO2). It may be used to monitor cerebral perfusion and oxygenation in patients at risk of cerebral ischemia or hypoxia, for example, during cardiothoracic or carotid surgery. However, extracerebral tissue (mainly scalp and skull tissue) influences NIRS measurements, and the extent of this influence is not clear. Thus, before more widespread use of NIRS as an intraoperative monitoring modality is warranted, this issue needs to be better understood. We therefore conducted a systematic review of published in vivo studies of the influence of extracerebral tissue on NIRS measurements in the adult population. Studies that used reference techniques for the perfusion of the intra- and extracerebral tissues or that selectively altered the intra- or extracerebral perfusion were included. Thirty-four articles met the inclusion criteria and were of sufficient quality. In 14 articles, Hb concentrations were compared directly with measurements from reference techniques, using correlation coefficients. When the intracerebral perfusion was altered, the correlations between Hb concentrations and intracerebral reference technique measurements ranged between |r| = 0.45-0.88. When the extracerebral perfusion was altered, correlations between Hb concentrations and extracerebral reference technique measurements ranged between |r| = 0.22-0.93. In studies without selective perfusion modification, correlations of Hb with intra- and extracerebral reference technique measurements were generally lower (|r| < 0.52). Five articles studied rSO2. There were varying correlations of rSO2 with both intra- and extracerebral reference technique measurements (intracerebral: |r| = 0.18-0.77, extracerebral: |r| = 0.13-0.81). Regarding study quality, details on the domains, participant selection and flow and timing were often unclear. We conclude that extracerebral tissue indeed influences NIRS measurements, although the evidence (i.e., correlation) for this influence varies considerably across the assessed studies. These results are strongly affected by the study protocols and analysis techniques used. Studies employing multiple protocols and reference techniques for both intra- and extracerebral tissues are therefore needed. To quantitatively compare NIRS with intra- and extracerebral reference techniques, we recommend applying a complete regression analysis. The current uncertainty regarding the influence of extracerebral tissue remains a hurdle in the clinical implementation of NIRS for intraoperative monitoring. The protocol was pre-registered in PROSPERO (CRD42020199053).
Collapse
Affiliation(s)
- Nick Eleveld
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Diana C Esquivel-Franco
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Gea Drost
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
- Department of Neurosurgery, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Clark J Zeebregts
- Department of Surgery, Division of Vascular Surgery, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Jean-Paul P M de Vries
- Department of Surgery, Division of Vascular Surgery, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Jan Willem J Elting
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
2
|
Holper L, Lan MJ, Brown PJ, Sublette ME, Burke A, Mann JJ. Brain cytochrome-c-oxidase as a marker of mitochondrial function: A pilot study in major depression using NIRS. Depress Anxiety 2019; 36:766-779. [PMID: 31111623 PMCID: PMC6716511 DOI: 10.1002/da.22913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain mitochondrial dysfunction is implicated in the pathophysiology of mood disorders. Brain cytochrome-c-oxidase (COX) activity is associated with the mitochondrial function. Near-infrared spectroscopy (NIRS) noninvasively measures oxidized COX (oxCOX) and tissue oxygenation index (TOI) reflecting cerebral blood flow and oxygenation. METHODS oxCOX and TOI were assessed in prefrontal cortex (Fp1/2, Brodmann area 10) in patients in a major depressive episode (N = 13) with major depressive disorder (MDD; N = 7) and bipolar disorder (BD; N = 6) compared with the controls (N = 10). One patient with MDD and all the patients with BD were taking medications. Computational modeling estimated oxCOX and TOI related indices of mitochondrial function and cerebral blood flow, respectively. RESULTS oxCOX was lower in patients than controls (p = .014) correlating inversely with depression severity (r = -.72; p = .006), driven primarily by lower oxCOX in BD compared with the controls. Computationally modeled mitochondrial parameters of the electron transport chain, such as the nicotinamide adenine dinucleotide ratio (NAD+ /NADH; p = .001) and the proton leak rate across the inner mitochondrial membrane (klk2 ; p = .008), were also lower in patients and correlated inversely with depression severity. No such effects were found for TOI. CONCLUSIONS In this pilot study, oxCOX and related mitochondrial parameters assessed by NIRS indicate an abnormal cerebral metabolic state in mood disorders proportional to depression severity, potentially providing a biomarker of antidepressant effect. Because the effect was driven by the medicated BD group, findings need to be evaluated in a larger, medication-free population.
Collapse
Affiliation(s)
- L Holper
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, 8032 Zurich, Switzerland
| | - MJ Lan
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - PJ Brown
- Geriatric Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, NY
| | - ME Sublette
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - A Burke
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - JJ Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Radiology, Columbia University, New York, NY
| |
Collapse
|
3
|
Lu K, Xu G, Li W, Huo C, Liu Q, Lv Z, Wang Y, Li Z, Fan Y. Frequency-specific functional connectivity related to the rehabilitation task of stroke patients. Med Phys 2019; 46:1545-1560. [PMID: 30675729 DOI: 10.1002/mp.13398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSES Stroke survivors suffering from deficits in motor control typically show persistent motor symptoms and limited functional abilities, which affect their functional independence in daily life. Active rehabilitation training is commonly applied for stroke patients to recover from motor dysfunction. The global connectivity reflects the synchronization of cardiac and respiratory activities in the cerebral regions. However, the understanding of the patterns of frequency-specific global connectivity (GC) and functional connectivity (FC) when performing active rehabilitation training is still far from comprehensive. This study was conducted to investigate the brain network patterns of stroke patients while performing a four-limb linkage rehabilitation training using the functional near-infrared spectroscopy (fNIRS) method. METHODS Two groups of stroke patients (LH, left hemiplegia; RH, right hemiplegia) and one healthy group were recruited to participate in this study. The wavelet phase coherence (WPCO) method was used to calculate the frequency-specific GC and FC of the brain network in four frequency bands: I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; and IV, 0.021-0.052 Hz. RESULTS Results showed that the healthy group exhibited lower WPCO in the four frequency bands during the task state than during the resting state (P < 0.05). Interestingly, the stroke groups showed increased WPCO in the frequency band II during the task state than during the resting state (P < 0.05). Moreover, significantly lower WPCO values in the frequency bands III (P < 0.05) were found during task state in the RH and LH groups compared with the healthy group. The RH group showed increased WPCO values in the frequency band II during the task state compared with the healthy group (P < 0.05). In addition, the RH group showed increased WPCO in the frequency bands I (P < 0.05) and II (P < 0.05) than the LH group. Notably, the rehabilitation task did not induce significant changes in stroke groups in the frequency band IV, which implied the neurogenic activity. CONCLUSIONS The reductions in FC suggested that the brain impairments caused a disturbed neurovascular coupling regulation in stroke patients. Results in frequency band IV suggested that the limb movement rehabilitation task intrinsically may not produce remarkable effect on the neurogenic activity of stroke patients. Significant differences in WPCO between the LH and RH groups suggested that the rehabilitation task should be specifically designed for individual rehabilitation. The frequency-specific FC methods based on WPCO would provide a potential approach to quantitatively assess the effect of rehabilitation tasks.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China
| | - Qianying Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Zeping Lv
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Yonghui Wang
- Qilu Hospital, ShanDong University, Jinan, 250061, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China.,Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids Beijing, Beijing, 100176, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
4
|
Schecklmann M, Mann A, Langguth B, Ehlis AC, Fallgatter AJ, Haeussinger FB. The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2017; 11:456. [PMID: 28966580 PMCID: PMC5605559 DOI: 10.3389/fnhum.2017.00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background: Extracranial signals are the main source of noise in functional near-infrared spectroscopy (fNIRS) as light is penetrating the cortex but also skin and muscles of the head. Aim: Here we performed three experiments to investigate the contamination of fNIRS measurements by temporal muscle activity. Material and methods: For experiment 1, we provoked temporal muscle activity by instructing 31 healthy subjects to clench their teeth three times. We measured fNIRS signals over left temporal and frontal channels with an interoptode distance of 3 cm, in one short optode distance (SOD) channel (1 cm) and electromyography (EMG) over the edge of the temporal muscle. In experiment 2, we screened resting state fNIRS-fMRI (functional magnetic resonance imaging) data of one healthy subject for temporal muscle artifacts. In experiment 3, we screened a dataset of sound-evoked activity (n = 33) using bi-temporal probe-sets and systematically contrasted subjects presenting vs. not presenting artifacts and blocks/events contaminated or not contaminated with artifacts. Results: In experiment 1, we could demonstrate a hemodynamic-response-like increase in oxygenated (O2Hb) and decrease in deoxygenated (HHb) hemoglobin with a large amplitude and large spatial extent highly exceeding normal cortical activity. Correlations between EMG, SOD, and fNIRS artifact activity showed only limited evidence for associations on a group level with rather clear associations in a sub-group of subjects. The fNIRS-fMRI experiment showed that during the temporal muscle artifact, fNIRS is completely saturated by muscle oxygenation. Experiment 3 showed hints for contamination of sound-evoked oxygenation by the temporal muscle artifact. This was of low relevance in analyzing the whole sample. Discussion: Temporal muscle activity e.g., by clenching the teeth induces a large hemodynamic-like artifact in fNIRS measurements which should be avoided by specific subject instructions. Data should be screened for this artifact might be corrected by exclusion of contaminated blocks/events. The usefulness of established artifact correction methods should be evaluated in future studies. Conclusion: Temporal muscle activity, e.g., by clenching the teeth is one major source of noise in fNIRS measurements.
Collapse
Affiliation(s)
- Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of RegensburgRegensburg, Germany
| | - Alexander Mann
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of RegensburgRegensburg, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| | - Florian B. Haeussinger
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| |
Collapse
|
5
|
Bu L, Li J, Li F, Liu H, Li Z. Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors: an exploratory, experimental study. BMJ Open 2016; 6:e013357. [PMID: 27810980 PMCID: PMC5128848 DOI: 10.1136/bmjopen-2016-013357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The objective of this study was to assess the effects of long-term offshore work on cerebral oxygenation oscillations in sailors based on the wavelet phase coherence (WPCO) of near-infrared spectroscopy (NIRS) signals. METHODS The fatigue severity scale (FSS) was first applied to assess the fatigue level of sailors and age-matched controls. Continuous recordings of NIRS signals were then obtained from the prefrontal lobes in 30 healthy sailors and 30 age-matched controls during the resting state. WPCO between the left and right prefrontal oscillations was analysed and Pearson correlation analysis was used to study the relationship between the FSS and the wavelet amplitude (WA), and between the FSS and the WPCO level. RESULTS The periodic oscillations of Delta (HbO2) signals were identified at six frequency intervals: I (0.6-2 Hz); II (0.145-0.6 Hz); III (0.052-0.145 Hz); IV (0.021-0.052 Hz); V (0.0095-0.021 Hz); and VI (0.005-0.0095 Hz). The WA in intervals I (F=8.823, p=0.004) and III (F=4.729, p=0.034) was significantly lower in sailors than that in the controls. The WPCO values of sailor group were significantly lower in intervals III (F=4.686, p=0.039), IV (F=4.864, p=0.036) and V (F=5.195, p=0.03) than those of the control group. In the sailor group, the WA in interval I (r=-0.799, p<0.01) and in interval III (r=-0.721, p<0.01) exhibited a negative correlation with the FSS. Also, the WPCO exhibited a negative correlation with the FSS in intervals III (r=-0.839, p<0.01), IV (r=-0.765, p<0.01) and V (r=-0.775, p<0.01) in the sailor group. CONCLUSIONS The negative correlation between WA and FSS indicates that the lower oscillatory activities might contribute to the development of fatigue. The low WPCO in intervals III, IV and V represents a reduced phase synchronisation of myogenic, neurogenic and endothelial metabolic activities respectively and this may suggest a decline of cognitive function.
Collapse
Affiliation(s)
- Lingguo Bu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Heshan Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, P. R. China
| |
Collapse
|
6
|
Tan Q, Zhang M, Wang Y, Zhang M, Wang Y, Xin Q, Wang B, Li Z. Frequency-specific functional connectivity revealed by wavelet-based coherence analysis in elderly subjects with cerebral infarction using NIRS method. Med Phys 2015; 42:5391-403. [PMID: 26328988 DOI: 10.1118/1.4928672] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Resting-state functional connectivity in subjects with cerebral infarction (CI) was assessed using wavelet-based coherence analysis of near-infrared spectroscopy (NIRS) signals. METHODS Continuous recordings of NIRS signals were measured from the prefrontal cortex and sensorimotor cortical areas of 12 subjects with CI (CI group) and 16 healthy subjects (healthy group) during the resting state. The channels in these areas were divided into four connection types: homologous connectivity, frontoposterior connectivity, contralateral connectivity, and homolateral connectivity. Wavelet coherence (WCO) and wavelet phase coherence (WPCO) were calculated in six frequency intervals in each channel pair: I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz; and VI, 0.005-0.0095 Hz. RESULTS WCO in the six frequency intervals was significant for all channels in the healthy group. By contrast, WCO in frequency intervals II-VI showed weakened connectivity in the CI group, especially in terms of frontoposterior connectivity. WCO was significantly lower in the CI group than in the healthy group in the following connectivities and frequency intervals: front-posterior, IV-VI (p < 0.05); homologous, III-V (p < 0.01); motor-contralateral, III-V (p < 0.05); and motor-homolateral, III-V (p < 0.05). WPCO in frequency intervals III (F = 5.032, p = 0.033) and IV (F = 11.95, p = 0.002) in frontoposterior connectivity, as well as in intervals III-V in homologous, motor-contralateral and motor-homolateral connectivities were significantly lower (p < 0.05) in the CI group than in the healthy group. However, WPCO in interval I showed significantly higher levels in motor-homolateral connectivity in the CI group than in the healthy group (F = 4.241, p = 0.049). CONCLUSIONS The authors' results suggest that CI causes a frequency-specific disruption in resting-state connectivity. This may be useful for assessing the effectiveness of functional recovery after CI.
Collapse
Affiliation(s)
- Qitao Tan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Yi Wang
- Ji'nan Central Hospital, Jinan 250013, China
| | - Manyu Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yan Wang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, China
| | - Bitan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
7
|
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2015; 120:204-15. [PMID: 26294748 DOI: 10.1152/japplphysiol.00443.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Pharmacotherapy in acute mountain sickness (AMS) for the past half century has largely rested on the use of carbonic anhydrase (CA) inhibitors, such as acetazolamide, and corticosteroids, such as dexamethasone. The benefits of CA inhibitors are thought to arise from their known ventilatory stimulation and resultant greater arterial oxygenation from inhibition of renal CA and generation of a mild metabolic acidosis. The benefits of corticosteroids include their broad-based anti-inflammatory and anti-edemagenic effects. What has emerged from more recent work is the strong likelihood that drugs in both classes act on other pathways and signaling beyond their classical actions to prevent and treat AMS. For the CA inhibitors, these include reduction in aquaporin-mediated transmembrane water transport, anti-oxidant actions, vasodilation, and anti-inflammatory effects. In the case of corticosteroids, these include protection against increases in vascular endothelial and blood-brain barrier permeability, suppression of inflammatory cytokines and reactive oxygen species production, and sympatholysis. The loci of action of both classes of drug include the brain, but may also involve the lung as revealed by benefits that arise with selective administration to the lungs by inhalation. Greater understanding of their pluripotent actions and sites of action in AMS may help guide development of better drugs with more selective action and fewer side effects.
Collapse
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Health Care System, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
8
|
Cui R, Zhang M, Li Z, Xin Q, Lu L, Zhou W, Han Q, Gao Y. Wavelet coherence analysis of spontaneous oscillations in cerebral tissue oxyhemoglobin concentrations and arterial blood pressure in elderly subjects. Microvasc Res 2014; 93:14-20. [PMID: 24594440 DOI: 10.1016/j.mvr.2014.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 11/29/2022]
Abstract
This study aims to assess the relationship between spontaneous oscillations in changes in cerebral tissue oxyhemoglobin concentrations (Delta [HbO2]) and arterial blood pressure (ABP) signals in healthy elderly subjects during the resting state using wavelet coherence analysis. Continuous recordings of near-infrared spectroscopy (NIRS) and ABP signals were obtained from simultaneous measurements in 33 healthy elderly subjects (age: 70.7±7.9 years) and 27 young subjects (age: 25.2±3.7 years) during the resting state. The coherence between Delta [HbO2] and ABP oscillations in six frequency intervals (I, 0.4-2 Hz; II, 0.15-0.4 Hz; III, 0.05-0.15 Hz; IV, 0.02-0.05 Hz, V, 0.005-0.0095 Hz and VI, 0.005-0.0095 Hz) was analyzed using wavelet coherence analysis. In elderly subjects, the Delta [HbO2] and ABP oscillations were significantly wavelet coherent in interval I, and wavelet phase coherent in intervals I, II and IV. The wavelet coherence in interval I was significantly higher (p=0.040), in elderly subjects than in young subjects whereas that in interval V significantly lower (p=0.015). In addition, the wavelet phase coherence in interval IV was significantly higher in elderly subjects than in young subjects (p=0.028). The difference in the wavelet coherence of the elderly subjects and the young subjects indicates an altered cerebral autoregulation caused by aging. This study provides new insight into the dynamics of Delta [HbO2] and ABP oscillations and may be useful in identifying the risk for dynamic cerebral autoregulation processes.
Collapse
Affiliation(s)
- Ruofei Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region P.R. China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China.
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, PR China
| | - Liqian Lu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Weiei Zhou
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Qingyu Han
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Yuanjin Gao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| |
Collapse
|
9
|
Zirak P, Delgado-Mederos R, Dinia L, Martí-Fàbregas J, Durduran T. Microvascular versus macrovascular cerebral vasomotor reactivity in patients with severe internal carotid artery stenosis or occlusion. Acad Radiol 2014; 21:168-74. [PMID: 24439330 DOI: 10.1016/j.acra.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE AND OBJECTIVES In patients with severe internal carotid artery steno-occlusive lesions (ISOL), impaired cerebrovascular reactivity (CVR) is predictive of future ischemic stroke (IS) or transient ischemic attack (TIA). Therefore, the evaluation of CVR in ISOL patients may be a means to evaluate the risk for IS/TIA and decide on an intervention. Our aim was (1) to explore the feasibility of concurrent near-infrared spectroscopy (NIRS-DOS), diffuse correlation spectroscopy, and transcranial Doppler for CVR assessment in ISOL patients, and (2) to compare macrovascular and microvascular CVR in ISOL patients and explore its potential for IS/TIA risk stratification. MATERIALS AND METHODS Twenty-seven ISOL patients were recruited. The changes in continuous microvascular and macrovascular hemodynamics upon acetazolamide injection were used to determine CVR. RESULTS Oxyhemoglobin (HbO2, by near-infrared spectroscopy), microvascular cerebral blood flow (CBF, by diffuse correlation spectroscopy) and CBF velocity (by transcranial Doppler) showed significant increases upon acetazolamide injection in all subjects (P < .03). Only macrovascular CVR (P = .024) and none of the microvascular measures were significantly dependent on the presence of ISOL. In addition, while CBF was significantly correlated with HbO2, neither of these microvascular measures correlated with macrovascular CBF velocity. CONCLUSIONS We demonstrated the simultaneous, continuous, and noninvasive evaluation of CVR at both the microvasculature and macrovasculature. We found that macrovascular CVR response depends on the presence of ISOL, whereas the microvascular CVR did not significantly depend on the ISOL presence, possibly due to the role of collaterals other than those of the circle of Willis. The concurrent microvascular and macrovascular CVR measurement in the ISOL patients might improve future IS/TIA risk assessment.
Collapse
|
10
|
Abstract
Carbonic anhydrase (CA) inhibitors, particularly acetazolamide, have been used at high altitude for decades to prevent or reduce acute mountain sickness (AMS), a syndrome of symptomatic intolerance to altitude characterized by headache, nausea, fatigue, anorexia and poor sleep. Principally CA inhibitors act to further augment ventilation over and above that stimulated by the hypoxia of high altitude by virtue of renal and endothelial cell CA inhibition which oppose the hypocapnic alkalosis resulting from the hypoxic ventilatory response (HVR), which acts to limit the full expression of the HVR. The result is even greater arterial oxygenation than that driven by hypoxia alone and greater altitude tolerance. The severity of several additional diseases of high attitude may also be reduced by acetazolamide, including high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE) and chronic mountain sickness (CMS), both by its CA-inhibiting action as described above, but also by more recently discovered non-CA inhibiting actions, that seem almost unique to this prototypical CA inhibitor and are of most relevance to HAPE. This chapter will relate the history of CA inhibitor use at high altitude, discuss what tissues and organs containing carbonic anhydrase play a role in adaptation and maladaptation to high altitude, explore the role of the enzyme and its inhibition at those sites for the prevention and/or treatment of the four major forms of illness at high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA, USA,
| |
Collapse
|
11
|
Ehlis AC, Schneider S, Dresler T, Fallgatter AJ. Application of functional near-infrared spectroscopy in psychiatry. Neuroimage 2014; 85 Pt 1:478-88. [DOI: 10.1016/j.neuroimage.2013.03.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/14/2022] Open
|
12
|
Wintermark P, Hansen A, Warfield SK, Dukhovny D, Soul JS. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 2013; 85 Pt 1:287-93. [PMID: 23631990 DOI: 10.1016/j.neuroimage.2013.04.072] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. OBJECTIVE The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. DESIGN/METHODS In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. RESULTS Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. CONCLUSIONS NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE.
Collapse
Affiliation(s)
- P Wintermark
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, McGill University, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada; Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
13
|
Li Z, Zhang M, Xin Q, Luo S, Zhou W, Cui R, Lu L. Assessment of cerebral oxygenation oscillations in subjects with hypertension. Microvasc Res 2013; 88:32-41. [PMID: 23583904 DOI: 10.1016/j.mvr.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/06/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
PURPOSE The objective of this study was to assess the spontaneous oscillations in subjects with hypertension based on the wavelet transform of cerebral oxygenation signal measured with near-infrared spectroscopy (NIRS). METHODS Continuous recordings of NIRS and arterial blood pressure (ABP) signals were obtained from simultaneous measurements in 20 healthy subjects (age: 70.8±5.2 years) and 22 subjects with hypertension (age: 72.5±6.8 years). RESULTS Using spectral analysis based on wavelet transform, five frequency intervals were identified (I, 0.4-2 Hz; II, 0.15-0.4 Hz; III, 0.06-0.15 Hz; IV, 0.02-0.06 Hz and V, 0.005-0.02 Hz). The amplitudes of Δ[Hb] and Δ[HbO2] in intervals I, II and III were significantly higher in hypertensive patients, who have increased mean flow velocity in middle cerebral artery (MCA), compared to that in the healthy subjects (p<0.01). The amplitudes of the ABP in frequency intervals III and V were significantly higher in hypertensive patients than in the healthy subjects (p<0.01). CONCLUSIONS The present findings revealed that hypertension and increased mean flow velocity in MCA have significant effect on the cerebral oscillations. The higher cerebral oscillations might be related to the intracerebral atherosclerosis in response to systemic hypertension. In addition, the higher spontaneous oscillations in intervals III and V in ABP indicate a metabolic regulation and myogenic response to hypertension.
Collapse
Affiliation(s)
- Zengyong Li
- School of Mechanical Engineering, Shandong University, Jinan, 250061 PR China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow.
Collapse
|
15
|
Schytz HW, Guo S, Jensen LT, Kamar M, Nini A, Gress DR, Ashina M. A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT. Neurocrit Care 2012; 17:139-45. [PMID: 22610823 DOI: 10.1007/s12028-012-9720-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate changes in CBF using a cerebral blood flow index (CFI). Changes over time for UT-NIRS CFI and 133Xenon single photon emission computer tomography (133Xe-SPECT) CBF data were assessed in 10 healthy volunteers after an intravenous bolus of acetazolamide. UT-NIRS CFI was measured continuously and SPECT CBF was measured at baseline, 15 and 60 min after acetazolamide. We found significant changes over time in CFI by UT-NIRS and CBF by SPECT after acetazolamide (P ≤ 0.001). Post hoc tests showed a significant increase in CFI (P = 0.011) and SPECT CBF (P < 0.001) at 15 min after acetazolamide injection. There was a significant correlation between CFI and SPECT CBF values (r = 0.67 and P ≤ 0.033) at 15 min, but not at 60 min (P ≥ 0.777). UT-NIRS detected an increase in CFI following an acetazolamide bolus, which correlated with CBF measured with 133Xe-SPECT. This study demonstrates that UT-NIRS technology may be a promising new technique for non-invasive and real-time bedside CBF monitoring.
Collapse
Affiliation(s)
- Henrik W Schytz
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, 2600, Glostrup, Denmark.
| | | | | | | | | | | | | |
Collapse
|
16
|
Budohoski KP, Zweifel C, Kasprowicz M, Sorrentino E, Diedler J, Brady KM, Smielewski P, Menon DK, Pickard JD, Kirkpatrick PJ, Czosnyka M. What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. Br J Anaesth 2012; 108:89-99. [PMID: 22037222 PMCID: PMC3236021 DOI: 10.1093/bja/aer324] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2011] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Brain tissue partial oxygen pressure (Pbt(O(2))) and near-infrared spectroscopy (NIRS) are novel methods to evaluate cerebral oxygenation. We studied the response patterns of Pbt(O(2)), NIRS, and cerebral blood flow velocity (CBFV) to changes in arterial pressure (AP) and intracranial pressure (ICP). METHODS Digital recordings of multimodal brain monitoring from 42 head-injured patients were retrospectively analysed. Response latencies and patterns of Pbt(O(2)), NIRS-derived parameters [tissue oxygenation index (TOI) and total haemoglobin index (THI)], and CBFV reactions to fluctuations of AP and ICP were studied. RESULTS One hundred and twenty-one events were identified. In reaction to alterations of AP, ICP reacted first [4.3 s; inter-quartile range (IQR) -4.9 to 22.0 s, followed by NIRS-derived parameters and CBFV (10.9 s; IQR: -5.9 to 39.6 s, 12.1 s; IQR: -3.0 to 49.1 s, 14.7 s; IQR: -8.8 to 52.3 s for THI, CBFV, and TOI, respectively), with Pbt(O(2)) reacting last (39.6 s; IQR: 16.4 to 66.0 s). The differences in reaction time between NIRS parameters and Pbt(O(2)) were significant (P<0.001). Similarly when reactions to ICP changes were analysed, NIRS parameters preceded Pbt(O(2)) (7.1 s; IQR: -8.8 to 195.0 s, 18.1 s; IQR: -20.6 to 80.7 s, 22.9 s; IQR: 11.0 to 53.0 s for THI, TOI, and Pbt(O(2)), respectively). Two main patterns of responses to AP changes were identified. With preserved cerebrovascular reactivity, TOI and Pbt(O(2)) followed the direction of AP. With impaired cerebrovascular reactivity, TOI and Pbt(O(2)) decreased while AP and ICP increased. In 77% of events, the direction of TOI changes was concordant with Pbt(O(2)). CONCLUSIONS NIRS and transcranial Doppler signals reacted first to AP and ICP changes. The reaction of Pbt(O(2)) is delayed. The results imply that the analysed modalities monitor different stages of cerebral oxygenation.
Collapse
Affiliation(s)
- K P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke' s Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li Z, Zhang M, Xin Q, Li J, Chen G, Liu F, Li J. Correlation analysis between prefrontal oxygenation oscillations and cerebral artery hemodynamics in humans. Microvasc Res 2011; 82:304-10. [PMID: 21875605 DOI: 10.1016/j.mvr.2011.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/19/2011] [Accepted: 08/13/2011] [Indexed: 11/30/2022]
Abstract
The objective of this study is to assess the correlation between the prefrontal cerebral oxygenation oscillations measured by near-infrared spectroscopy (NIR) and cerebral artery hemodynamic parameters as measured by transcranial Doppler (TCD). A total of thirty subjects were recruited from the university to participate in this study. The cerebral oxygenation signal and TCD hemodynamic parameters were monitored on separate days. The cerebral oxygenation signal was monitored for 10 min from the left prefrontal lobe using NIRS. TCD monitoring was performed to measure the hemodynamic parameters including end diastolic, peak systolic, and mean cerebral blood flow velocities. Pulsatility index (PI) and resistance index (RI) were calculated automatically. With spectral analysis based on wavelet transform of NIR signal, five frequency intervals were identified (I, 0.005-0.02 Hz, II, 0.02-0.06 Hz, III, 0.06-0.15 Hz, IV, 0.15-0.50 Hz and V, 0.50-2.0 Hz). Significant negative correlation was found between the cerebral [Hb] and [HbO(2)] oscillations in frequency intervals from I to V and the PI or RI in left external carotid artery (ECA) (p<0.005). Also weak negative correlation was found between the cerebral [Hb] and [HbO(2)] oscillations in frequency intervals III, IV, V and the mean velocity in left middle cerebral artery (MCA) (p<0.05). The results suggested that the cerebral oscillations measured from the frontal lobe were closely related to the pulsatility of ECA and reflect partly the vessel stiffness of MCA.
Collapse
Affiliation(s)
- Zengyong Li
- School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Caicedo A, De Smet D, Vanderhaegen J, Naulaers G, Wolf M, Lemmers P, Van Bel F, Ameye L, Van Huffel S. Impaired cerebral autoregulation using near-infrared spectroscopy and its relation to clinical outcomes in premature infants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 701:233-9. [PMID: 21445792 DOI: 10.1007/978-1-4419-7756-4_31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The concordance between the change in the Mean Arterial Blood Pressure (MABP) and the Cerebral Blood Flow (CBF) is studied using the Correlation, Coherence and Partial Coherence methods in order to detect Impaired Cerebral Autoregulation in Neonates. The presence of impaired autoregulation is assessed by the use of the Critical Percentage of Recording Time (CPRT). The changes in CBF are reflected by the measurement of changes in cerebral intravascular oxygenation (HbD), regional cerebral oxygen saturation (rSO(2)), and cerebral tissue oxygenation (TOI), as measured by Near-Infrared Spectroscopy (NIRS) (INVOS4100 and NIRO300). The relation between impaired autoregulation and long term clinical outcomes in premature infants is studied.
Collapse
Affiliation(s)
- Alexander Caicedo
- ESAT/SCD, Dept. of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Minati L, Visani E, Dowell NG, Medford N, Critchley HD. Variability comparison of simultaneous brain near-infrared spectroscopy and functional magnetic resonance imaging during visual stimulation. J Med Eng Technol 2011; 35:370-6. [PMID: 21780948 PMCID: PMC3182558 DOI: 10.3109/03091902.2011.595533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional magnetic resonance imaging (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We concluded that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties, which may be better accounted for by emerging NIRS technology.
Collapse
Affiliation(s)
- Ludovico Minati
- Department of Psychiatry, Brighton & Sussex Medical School (BSMS), Falmer, UK.
| | | | | | | | | |
Collapse
|
20
|
Subudhi AW, Dimmen AC, Julian CG, Wilson MJ, Panerai RB, Roach RC. Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia. J Appl Physiol (1985) 2011; 110:1219-25. [PMID: 21393464 DOI: 10.1152/japplphysiol.01393.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous attempts to detect global cerebral hemodynamic differences between those who develop headache, nausea, and fatigue following rapid exposure to hypoxia [acute mountain sickness (AMS)] and those who remain healthy have been inconclusive. In this study, we investigated the effects of two drugs known to reduce symptoms of AMS to determine if a common cerebral hemodynamic mechanism could explain the prophylactic effect within individuals. With the use of randomized, placebo-controlled, double-blind, crossover design, 20 healthy volunteers were given oral acetazolamide (250 mg), dexamethasone (4 mg), or placebo every 8 h for 24 h prior to and during a 10-h exposure to a simulated altitude of 4,875 m in a hypobaric chamber, which included 2 h of exercise at 50% of altitude-specific VO(2max). Cerebral hemodynamic parameters derived from ultrasound assessments of dynamic cerebral autoregulation and vasomotor reactivity were recorded 15 h prior to and after 9 h of hypoxia. AMS symptoms were scored using the Lake Louise Questionnaire (LLQ). It was found that both drugs prevented AMS in those who became ill on placebo (~70% decrease in LLQ), yet a common cerebral hemodynamic mechanism was not identified. Compared with placebo, acetazolamide reduced middle cerebral artery blood flow velocity (11%) and improved dynamic cerebral autoregulation after 9 h of hypoxia, but these effects appeared independent of AMS. Dexamethasone had no measureable cerebral hemodynamic effects in hypoxia. In conclusion, global cerebral hemodynamic changes resulting from hypoxia may not explain the development of AMS.
Collapse
Affiliation(s)
- Andrew W Subudhi
- Altitude Research Center, University of Colorado Anschutz Medical Campus, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ. Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 2011; 54:2922-36. [PMID: 21029781 DOI: 10.1016/j.neuroimage.2010.10.058] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022] Open
|
22
|
Zirak P, Delgado-Mederos R, Martí-Fàbregas J, Durduran T. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study. BIOMEDICAL OPTICS EXPRESS 2010; 1:1443-1459. [PMID: 21258561 PMCID: PMC3018112 DOI: 10.1364/boe.1.001443] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/07/2010] [Accepted: 11/07/2010] [Indexed: 05/24/2023]
Abstract
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.
Collapse
Affiliation(s)
- Peyman Zirak
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology
Park, 08860 Castelldefels, Barcelona, Spain
| | | | - Joan Martí-Fàbregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau,
Barcelona, Spain
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology
Park, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
23
|
Cerebral Oxygenation in the Frontal Lobe Cortex during Incremental Exercise Tests: The Regional Changes Influenced by Volitional Exhaustion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 662:257-63. [DOI: 10.1007/978-1-4419-1241-1_37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Tisdall MM, Taylor C, Tachtsidis I, Leung TS, Pritchard C, Elwell CE, Smith M. The effect on cerebral tissue oxygenation index of changes in the concentrations of inspired oxygen and end-tidal carbon dioxide in healthy adult volunteers. Anesth Analg 2009; 109:906-13. [PMID: 19690266 PMCID: PMC2742623 DOI: 10.1213/ane.0b013e3181aedcdc] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND A variety of near-infrared spectroscopy devices can be used to make noninvasive measurements of cerebral tissue oxygen saturation (ScO2). The ScO2 measured by the NIRO 300 spectrometer (Hamamatsu Photonics, Japan) is called the cerebral tissue oxygenation index (TOI) and is an assessment of the balance between cerebral oxygen delivery and utilization. We designed this study to investigate the effect of systemic and intracranial physiological changes on TOI. METHODS Fifteen healthy volunteers were studied during isocapneic hyperoxia and hypoxemia, and normoxic hypercapnea and hypocapnea. Absolute cerebral TOI and changes in oxy- and deoxyhemoglobin concentrations were measured using a NIRO 300 spectrometer. Changes in arterial oxygen saturation (SaO2), ETCO2, heart rate, mean arterial blood pressure (MBP), and middle cerebral artery blood flow velocity (Vmca) were also measured during these physiological challenges. Changes in cerebral blood volume (CBV) were subsequently calculated from changes in total cerebral hemoglobin concentration. RESULTS Baseline TOI was 67.3% with an interquartile range (IQR) of 65.2%-71.9%. Hypoxemia was associated with a median decrease in TOI of 7.1% (IQR -9.1% to -5.4%) from baseline (P < 0.0001) and hyperoxia with a median increase of 2.3% (IQR 2.0%-2.5%) (P < 0.0001). Hypocapnea caused a reduction in TOI of 2.1% (IQR -3.3% to -1.3%) from baseline (P < 0.0001) and hypercapnea an increase of 2.6% (IQR 1.4%-3.7%) (P < 0.0001). Changes in SaO2 (P < 0.0001), ETCO2 (P < 0.0001), CBV (P = 0.0003), and MBP (P = 0.03) were significant variables affecting TOI. Changes in Vmca (P = 0.7) and heart rate (P = 0.2) were not significant factors. CONCLUSION TOI is an easy-to-monitor variable that provides real-time, multisite, and noninvasive assessment of the balance between cerebral oxygen delivery and utilization. However, TOI is a complex variable that is affected by SaO2 and ETCO2, and, to a lesser extent, by MBP and CBV. Clinicians need to be aware of the systemic and cerebral physiological changes that can affect TOI to interpret changes in this variable during clinical monitoring.
Collapse
Affiliation(s)
- Martin M Tisdall
- Department of Neuroanaesthesia & Neurocritical Care, The National Hospital for Neurology & Neurosurgery, University College London Hospitals
| | - Christopher Taylor
- Department of Neuroanaesthesia & Neurocritical Care, The National Hospital for Neurology & Neurosurgery, University College London Hospitals
| | - Ilias Tachtsidis
- Department of Medical Physics and Bioengineering, University College London
| | - Terence S Leung
- Department of Medical Physics and Bioengineering, University College London
| | - Caroline Pritchard
- Department of Neuroanaesthesia & Neurocritical Care, The National Hospital for Neurology & Neurosurgery, University College London Hospitals
| | - Clare E Elwell
- Department of Medical Physics and Bioengineering, University College London
| | - Martin Smith
- Department of Neuroanaesthesia & Neurocritical Care, The National Hospital for Neurology & Neurosurgery, University College London Hospitals
- Department of Medical Physics and Bioengineering, University College London
| |
Collapse
|
25
|
Assessment of cerebral oxygenation during prolonged simulated driving using near infrared spectroscopy: its implications for fatigue development. Eur J Appl Physiol 2009; 107:281-7. [DOI: 10.1007/s00421-009-1122-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2009] [Indexed: 12/01/2022]
|
26
|
Khadra MA, McConnell K, VanDyke R, Somers V, Fenchel M, Quadri S, Jefferies J, Cohen AP, Rutter M, Amin R. Determinants of regional cerebral oxygenation in children with sleep-disordered breathing. Am J Respir Crit Care Med 2008; 178:870-5. [PMID: 18658114 DOI: 10.1164/rccm.200802-321oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE An association between neurocognitive deficits and pediatric sleep-disordered breathing has been suggested; however, weak correlations between disease severity and functional outcomes underscore the lack of knowledge regarding factors modulating cognitive morbidity of sleep-disordered breathing. OBJECTIVES To identify the parameters affected by sleep-disordered breathing that modulate cerebral oxygenation, an important determinant of cognition. A further objective was to use these parameters with demographic data to develop a predictive statistical model of pediatric cerebral oxygenation. METHODS Ninety-two children (14 control subjects, 32 with primary snoring, and 46 with obstructive sleep apnea) underwent polysomnography with continuous monitoring of cerebral oxygenation and blood pressure. Analysis of covariance was used to relate the blood pressure, sleep diagnostic parameters, and demographic characteristics to regional cerebral oxygenation. MEASUREMENTS AND MAIN RESULTS To account for anatomic variability, an index of cerebral oxygenation during sleep was derived by referencing the measurement obtained during sleep to that obtained during wakefulness. In a repeated measures model predicting the index of cerebral oxygenation, mean arterial pressure, rapid eye movement (REM) sleep, female sex, age, and oxygen saturation had a positive effect on cerebral oxygenation levels, whereas arousal index and non-REM (NREM) sleep had a negative effect. CONCLUSIONS Increasing mean arterial pressure, age, oxygen saturation, and REM sleep augment cerebral oxygenation, while sleep-disordered breathing, male sex, arousal index, and NREM sleep diminish it. The proposed model may explain the sources of variability in cognitive function of children with sleep-disordered breathing.
Collapse
|