1
|
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2023; 25:43. [PMID: 36875184 PMCID: PMC9970140 DOI: 10.1007/s11051-023-05690-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC Canada
| | - Ghazal Shineh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| |
Collapse
|
2
|
Dutta P, Kumari A, Mahanta M, Biswas KK, Dudkiewicz A, Thakuria D, Abdelrhim AS, Singh SB, Muthukrishnan G, Sabarinathan KG, Mandal MK, Mazumdar N. Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Front Microbiol 2022; 13:935193. [PMID: 35847105 PMCID: PMC9279558 DOI: 10.3389/fmicb.2022.935193] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plant viruses cause enormous losses in agricultural production accounting for about 47% of the total overall crop losses caused by plant pathogens. More than 50% of the emerging plant diseases are reported to be caused by viruses, which are inevitable or unmanageable. Therefore, it is essential to devise novel and effective management strategies to combat the losses caused by the plant virus in economically important crops. Nanotechnology presents a new tendency against the increasing challenges in the diagnosis and management of plant viruses as well as plant health. The application of nanotechnology in plant virology, known as nanophytovirology, includes disease diagnostics, drug delivery, genetic transformation, therapeutants, plant defense induction, and bio-stimulation; however, it is still in the nascent stage. The unique physicochemical properties of particles in the nanoscale allow greater interaction and it may knock out the virus particles. Thus, it opens up a novel arena for the management of plant viral diseases. The main objective of this review is to focus on the mounting collection of tools and techniques involved in the viral disease diagnosis and management and to elucidate their mode of action along with toxicological concerns.
Collapse
|
3
|
Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria. Appl Environ Microbiol 2019; 85:AEM.01379-19. [PMID: 31519658 PMCID: PMC6821961 DOI: 10.1128/aem.01379-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Aerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well-characterized strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alphaproteobacterial methanotrophs, respectively, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium-containing particulates. Both conversions can be harnessed for the bioremediation of selenium pollution using biological or fossil methane as the feedstock, and these organisms could be used to produce selenium-containing particles for food and biotechnological applications. Using an extensive suite of techniques, we identified precursors of selenium nanoparticle formation and also found that these nanoparticles are made up of eight-membered mixed selenium and sulfur rings. A wide range of microorganisms have been shown to transform selenium-containing oxyanions to reduced forms of the element, particularly selenium-containing nanoparticles. Such reactions are promising for the detoxification of environmental contamination and the production of valuable selenium-containing products, such as nanoparticles for application in biotechnology. It has previously been shown that aerobic methane-oxidizing bacteria, including Methylococcus capsulatus (Bath), are able to perform the methane-driven conversion of selenite (SeO32−) to selenium-containing nanoparticles and methylated selenium species. Here, the biotransformation of selenite by Mc. capsulatus (Bath) has been studied in detail via a range of imaging, chromatographic, and spectroscopic techniques. The results indicate that the nanoparticles are produced extracellularly and have a composition distinct from that of nanoparticles previously observed from other organisms. The spectroscopic data from the methanotroph-derived nanoparticles are best accounted for by a bulk structure composed primarily of octameric rings in the form Se8 −xSx with an outer coat of cell-derived biomacromolecules. Among a range of volatile methylated selenium and selenium-sulfur species detected, methyl selenol (CH3SeH) was found only when selenite was the starting material, although selenium nanoparticles (both biogenic and chemically produced) could be transformed into other methylated selenium species. This result is consistent with methyl selenol being an intermediate in the methanotroph-mediated biotransformation of selenium to all the methylated and particulate products observed. IMPORTANCE Aerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well-characterized strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alphaproteobacterial methanotrophs, respectively, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium-containing particulates. Both conversions can be harnessed for the bioremediation of selenium pollution using biological or fossil methane as the feedstock, and these organisms could be used to produce selenium-containing particles for food and biotechnological applications. Using an extensive suite of techniques, we identified precursors of selenium nanoparticle formation and also found that these nanoparticles are made up of eight-membered mixed selenium and sulfur rings.
Collapse
|
4
|
Clement S, Gardner B, Razali WAW, Coleman VA, Jämting ÅK, Catchpoole HJ, Goldys EM, Herrmann J, Zvyagin A. Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method. NANOTECHNOLOGY 2017; 28:475702. [PMID: 28925376 DOI: 10.1088/1361-6528/aa8d89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The estimation of nanoparticle number concentration in colloidal suspensions is a prerequisite in many procedures, and in particular in multi-stage, low-yield reactions. Here, we describe a rapid, non-destructive method based on optical extinction and dynamic light scattering (DLS), which combines measurements using common bench-top instrumentation with a numerical algorithm to calculate the particle size distribution (PSD) and concentration. These quantities were derived from Mie theory applied to measurements of the optical extinction spectrum of homogeneous, non-absorbing nanoparticles, and the relative PSD of a colloidal suspension. The work presents an approach to account for PSDs achieved by DLS which, due to the underlying model, may not be representative of the true sample PSD. The presented approach estimates the absolute particle number concentration of samples with mono-, bi-modal and broad size distributions with <50% precision. This provides a convenient and practical solution for number concentration estimation required during many applications of colloidal nanomaterials.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shoeibi S, Mozdziak P, Golkar-Narenji A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Top Curr Chem (Cham) 2017; 375:88. [PMID: 29124492 DOI: 10.1007/s41061-017-0176-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se2-) to SeNPs without charge (Se0). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.
Collapse
Affiliation(s)
- Sara Shoeibi
- Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC, USA
| | - Afsaneh Golkar-Narenji
- Department of Genetic, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Bahrami F, Maisonneuve M, Meunier M, Montazeri AO, Kim Y, Kherani NP, Aitchison JS, Mojahedi M. Kinetic analysis of nanoparticle-protein interactions using a plasmon waveguide resonance. JOURNAL OF BIOPHOTONICS 2017; 10:271-277. [PMID: 26871886 DOI: 10.1002/jbio.201500267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/19/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
A plasmon waveguide resonance (PWR) sensor is proposed for studying the interaction between gold nanoparticles and proteins. The ability of the PWR sensor to operate in both TM and TE Polarizations, i.e. its polarization diversity, facilitates the simultaneous spectroscopy of the nanoparticles surface reactions using both polarizations. The response of each polarization to streptavidin-biotin binding at the surface of gold nanoparticles is investigated in real time. Finally, using the principles of multimode spectroscopy, the nanoparticle's surface reactions are decoupled from the bulk solution refractive index variations. Schematic diagram of the NP-modified PWR sensor.
Collapse
Affiliation(s)
- Farshid Bahrami
- Department of Electrical and Computer Engineering, University of Toronto, Ontario, M5S 3G4, Canada
| | - Mathieu Maisonneuve
- Department of Engineering Physics, EcolePolytechnique de Montreal, Montreal, H3C 3A7, Canada
| | - Michel Meunier
- Department of Engineering Physics, EcolePolytechnique de Montreal, Montreal, H3C 3A7, Canada
| | - Arthur O Montazeri
- Department of Electrical and Computer Engineering, University of Toronto, Ontario, M5S 3G4, Canada
| | - Yujin Kim
- Department of Electrical and Computer Engineering, University of Toronto, Ontario, M5S 3G4, Canada
| | - Nazir P Kherani
- Department of Electrical and Computer Engineering, University of Toronto, Ontario, M5S 3G4, Canada
| | - J Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, Ontario, M5S 3G4, Canada
| | - Mo Mojahedi
- Department of Electrical and Computer Engineering, University of Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
7
|
Guo Y, Terazzi E, Seemann R, Fleury JB, Baulin VA. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer. SCIENCE ADVANCES 2016; 2:e1600261. [PMID: 27847863 PMCID: PMC5099980 DOI: 10.1126/sciadv.1600261] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/29/2016] [Indexed: 05/21/2023]
Abstract
Hydrophobic nanoparticles introduced into living systems may lead to increased toxicity, can activate immune cells, or can be used as nanocarriers for drug or gene delivery. It is generally accepted that small hydrophobic nanoparticles are blocked by lipid bilayers and accumulate in the bilayer core, whereas big nanoparticles can only penetrate cells through slow energy-dependent processes, such as endocytosis, lasting minutes. In contrast to expectations, we demonstrate that lipid-covered hydrophobic nanoparticles may translocate through lipid membranes by direct penetration within milliseconds. We identified the threshold size for translocation: nanoparticles with diameters smaller than 5 nm stay trapped in the bilayer, whereas those with diameters larger than 5 nm insert into the bilayer, opening pores in the bilayer. The direct proof of this size-dependent translocation was provided by an in situ observation of a single event of a nanoparticle quitting the bilayer. This was achieved with a specially designed microfluidic device combining optical fluorescence microscopy with simultaneous electrophysiological measurements. A quantitative analysis of the kinetic pathway of a single nanoparticle translocation event demonstrated that the translocation is irreversible and that the nanoparticle can translocate only once. This newly discovered one-way translocation mechanism provides numerous opportunities for biotechnological applications, ranging from targeted biomaterial elimination and/or delivery to precise and controlled trapping of nanoparticles.
Collapse
Affiliation(s)
- Yachong Guo
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 26 Avinguda dels Països Catalans, 43007 Tarragona, Spain
| | - Emmanuel Terazzi
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Ralf Seemann
- Experimental Physics, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | | | - Vladimir A. Baulin
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 26 Avinguda dels Països Catalans, 43007 Tarragona, Spain
- Corresponding author.
| |
Collapse
|
8
|
Schein P, Ashcroft CK, O'Dell D, Adam IS, DiPaolo B, Sabharwal M, Shi C, Hart R, Earhart C, Erickson D. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces. JOURNAL OF LIGHTWAVE TECHNOLOGY : A JOINT IEEE/OSA PUBLICATION 2015; 33:3494-3502. [PMID: 26855473 PMCID: PMC4736750 DOI: 10.1109/jlt.2015.2440216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.
Collapse
Affiliation(s)
- Perry Schein
- Sibley School of Mechanical and Aerospace Engineering at Cornell University, Ithaca, NY 14853, USA
| | | | - Dakota O'Dell
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Ian S Adam
- Optofluidics, Inc., Philadelphia, PA 19104
| | | | | | - Ce Shi
- Optofluidics, Inc., Philadelphia, PA 19104
| | | | | | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering at Cornell University, Ithaca, NY 14853, USA. Contact: David Erickson
| |
Collapse
|