1
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Wan J, Zhang R, Jia Y, Xie T, Dai L, Yao Q, Zhang W, Xiao H, Gao X, Huang J, Bei W, Liu F. The two-component system CpxAR is required for the high potassium stress survival of Actinobacillus pleuropneumoniae. Front Microbiol 2023; 14:1259935. [PMID: 37822748 PMCID: PMC10562621 DOI: 10.3389/fmicb.2023.1259935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Actinobacillus pleuropneumoniae is an important respiratory pathogen, which can cause porcine contagious pleuropneumonia and lead to great economic losses to worldwide swine industry. High potassium is an adverse environment for bacteria, which is not conducive to providing turgor pressure for cell growth and division. Two-component system CpxAR is an important regulatory system of bacteria in response to environmental changes, which is involved in a variety of biological activities, such as antibiotic resistance, periplasmic protein folding, peptidoglycan metabolism and so on. Methods However, little is known about the role of CpxAR in high potassium stress in A. pleuropneumoniae. Here, we showed that CpxAR is critical for cell division of A. pleuropneumoniae under high potassium (K+) stress. Results qRT-PCR analysis found that CpxAR positively regulated the cell division genes ftsEX. In addition, we also demonstrated that CpxR-P could directly bind the promoter region of the cell division gene ftsE by EMSA. Discussion In conclusion, our results described a mechanism where CpxAR adjusts A. pleuropneumoniae survival under high-K+ stress by upregulating the expression of the cell division proteins FtsE and FtsX. These findings are the first to directly demonstrate CpxAR-mediated high-K+ tolerance, and to investigate the detailed molecular mechanism.
Collapse
Affiliation(s)
- Jiajia Wan
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Rui Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Yizhen Jia
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Tingting Xie
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Lu Dai
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Wendie Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Huasong Xiao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Jing Huang
- College of Arts and Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng Liu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Ma K, Wang H, Lv Z, Hu Y, Wang H, Shu F, Zhu C, Xue T. The Two-Component System CpxRA Affects Antibiotic Susceptibility and Biofilm Formation in Avian Pathogenic Escherichia coli. Animals (Basel) 2023; 13:ani13030383. [PMID: 36766272 PMCID: PMC9913434 DOI: 10.3390/ani13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the common extraintestinal infectious disease pathogens in chickens, geese, and other birds. It can cause a variety of infections, and even the death of poultry, causing enormous economic losses. However, the misuse and abuse of antibiotics in the poultry industry have led to the development of drug resistance in the gut microbes, posing a challenge for the treatment of APEC infections. It has been reported that the CpxRA two-component system has an effect on bacterial drug resistance, but the specific regulatory mechanism remains unclear. In this study, the regulatory mechanism of CpxRA on APEC biofilm formation and EmrKY efflux pump was investigated. The cpxRA knockout strain of E. coli APEC40 was constructed, and the molecular regulatory mechanism of CpxR on biofilms and efflux pump-coding genes were identified by biofilm formation assays, drug susceptibility test, real-time reverse transcription quantitative PCR, and electrophoretic mobility shift assay (EMSA). The results indicated that CpxR can directly bind to the promoter region of emrKY and negatively regulate the sensitivity of bacteria to ofloxacin and erythromycin. These results confirm the important regulatory role of the CpxRA two-component system under antibiotic stress in APEC.
Collapse
|
4
|
Abstract
The two-component system CpxRA can sense environmental stresses and regulate transcription of a wide range of genes for the purpose of adaptation. Despite extensive research on this system, the identification of the CpxR regulon is not systematic or comprehensive. Herein, genome-wide screening was performed using a position-specific scoring matrix, resulting in the discovery of more than 10,000 putative CpxR binding sites, which provides an extensive and selective set of targets based on sequence. More than half of the candidate genes ultimately selected (73/97) were experimentally confirmed to be CpxR-regulated genes through experimental analysis. These genes are involved in various physiological functions, indicating that the CpxRA system regulates complex cellular processes. The study also found for the first time that the CpxR-regulated genes ydeE, xylE, alx, and galP contribute to Escherichia coli resistance to acid stress, whereas prlF, alx, casA, yacH, ydeE, sbmA, and ampH contribute to E. coli resistance to cationic antimicrobial peptide stress. Among these CpxR-regulated genes, ydeE and alx responded to both stressors. In a similar way, a cationic antimicrobial peptide is capable of directly activating the periplasmic domain of CpxA kinase in vitro, which is consistent with the CpxA response to acid stress. These results greatly expand our understanding of the CpxRA-dependent stress response network in E. coli. IMPORTANCE CpxRA system is found in many pathogens and plays an essential role in sensing environmental signals and transducing information inside cells for adaptation. It usually regulates expression of specific genes in response to different environmental stresses and is important for bacterial pathogenesis. However, systematically identifying CpxRA-regulated genes and elucidating the regulative role of CpxRA in bacteria responding to environmental stress remains challenging. This study discovered more than 10,000 putative CpxR binding sites based on sequence. This bioinformatics approach, combined with experimental assays, allowed the identification of many previously unknown CpxR-regulated genes. Among the novel 73 CpxRA-regulated genes identified in this study, the role of nine of them in contributing to E. coli resistance to acid or cationic antimicrobial peptide stress was studied. The potential correlation between these two environmental stress responses provides insight into the CpxRA-dependent stress response network. This also improves our understanding of environment-bacterium interaction and Gram-negative pathogenesis.
Collapse
|
5
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Patterson-West J, Tai CH, Son B, Hsieh ML, Iben JR, Hinton DM. Overexpression of the Bacteriophage T4 motB Gene Alters H-NS Dependent Repression of Specific Host DNA. Viruses 2021; 13:v13010084. [PMID: 33435393 PMCID: PMC7827196 DOI: 10.3390/v13010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The bacteriophage T4 early gene product MotB binds tightly but nonspecifically to DNA, copurifies with the host Nucleoid Associated Protein (NAP) H-NS in the presence of DNA and improves T4 fitness. However, the T4 transcriptome is not significantly affected by a motB knockdown. Here we have investigated the phylogeny of MotB and its predicted domains, how MotB and H-NS together interact with DNA, and how heterologous overexpression of motB impacts host gene expression. We find that motB is highly conserved among Tevenvirinae. Although the MotB sequence has no homology to proteins of known function, predicted structure homology searches suggest that MotB is composed of an N-terminal Kyprides-Onzonis-Woese (KOW) motif and a C-terminal DNA-binding domain of oligonucleotide/oligosaccharide (OB)-fold; either of which could provide MotB’s ability to bind DNA. DNase I footprinting demonstrates that MotB dramatically alters the interaction of H-NS with DNA in vitro. RNA-seq analyses indicate that expression of plasmid-borne motB up-regulates 75 host genes; no host genes are down-regulated. Approximately 1/3 of the up-regulated genes have previously been shown to be part of the H-NS regulon. Our results indicate that MotB provides a conserved function for Tevenvirinae and suggest a model in which MotB functions to alter the host transcriptome, possibly by changing the association of H-NS with the host DNA, which then leads to conditions that are more favorable for infection.
Collapse
Affiliation(s)
- Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - Chin-Hsien Tai
- Center for Cancer Research, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Bokyung Son
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
- Correspondence: ; Tel.: +1-301-496-9885
| |
Collapse
|
7
|
van Hoek ML, Hoang KV, Gunn JS. Two-Component Systems in Francisella Species. Front Cell Infect Microbiol 2019; 9:198. [PMID: 31263682 PMCID: PMC6584805 DOI: 10.3389/fcimb.2019.00198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bacteria alter gene expression in response to changes in their environment through various mechanisms that include signal transduction systems. These signal transduction systems use membrane histidine kinase with sensing domains to mediate phosphotransfer to DNA-binding proteins that alter the level of gene expression. Such regulators are called two-component systems (TCSs). TCSs integrate external signals and information from stress pathways, central metabolism and other global regulators, thus playing an important role as part of the overall regulatory network. This review will focus on the knowledge of TCSs in the Gram-negative bacterium, Francisella tularensis, a biothreat agent with a wide range of potential hosts and a significant ability to cause disease. While TCSs have been well-studied in several bacterial pathogens, they have not been well-studied in non-model organisms, such as F. tularensis and its subspecies, whose canonical TCS content surprisingly ranges from few to none. Additionally, of those TCS genes present, many are orphan components, including KdpDE, QseC, QseB/PmrA, and an unnamed two-component system (FTN_1452/FTN_1453). We discuss recent advances in this field related to the role of TCSs in Francisella physiology and pathogenesis and compare the TCS genes present in human virulent versus. environmental species and subspecies of Francisella.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Ky V Hoang
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
8
|
Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol 2017; 8:1878. [PMID: 29067003 PMCID: PMC5641358 DOI: 10.3389/fmicb.2017.01878] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.
Collapse
Affiliation(s)
- Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed B. Jamal
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed S. Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Biochemistry Group, Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Paulo V. S. D. Carvalho
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sintia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Thiago L. P. Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Haley KP, Gaddy JA. Metalloregulation of Helicobacter pylori physiology and pathogenesis. Front Microbiol 2015; 6:911. [PMID: 26388855 PMCID: PMC4557348 DOI: 10.3389/fmicb.2015.00911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes over half of the world's population. Chronic H. pylori infection is associated with increased risk for numerous disease outcomes including gastritis, dysplasia, neoplasia, B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma), and invasive adenocarcinoma. The complex interactions that occur between pathogen and host are dynamic and exquisitely regulated, and the relationship between H. pylori and its human host are no exception. To successfully colonize, and subsequently persist, within the human stomach H. pylori must temporally regulate numerous genes to ensure localization to the gastric lumen and coordinated expression of virulence factors to subvert the host's innate and adaptive immune response. H. pylori achieves this precise gene regulation by sensing subtle environmental changes including host-mediated alterations in nutrient availability and responding with dramatic global changes in gene expression. Recent studies revealed that the presence or absence of numerous metal ions encountered in the lumen of the stomach, or within host tissues, including nickel, iron, copper and zinc, can influence regulatory networks to alter gene expression in H. pylori. These expression changes modulate the deployment of bacterial virulence factors that can ultimately influence disease outcome. In this review we will discuss the environmental stimuli that are detected by H. pylori as well as the trans regulatory elements, specifically the transcription regulators and transcription factors, that allow for these significant transcriptional shifts.
Collapse
Affiliation(s)
- Kathryn P Haley
- Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| |
Collapse
|
10
|
Molecular Mechanism of Transcriptional Cascade Initiated by the EvgS/EvgA System inEscherichia coliK-12. Biosci Biotechnol Biochem 2014; 73:870-8. [DOI: 10.1271/bbb.80795] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Kawada-Matsuo M, Yoshida Y, Zendo T, Nagao J, Oogai Y, Nakamura Y, Sonomoto K, Nakamura N, Komatsuzawa H. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus. PLoS One 2013; 8:e69455. [PMID: 23894484 PMCID: PMC3718698 DOI: 10.1371/journal.pone.0069455] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/10/2013] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE) regulated by BraRS and one transporter (VraFG) regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.
Collapse
Affiliation(s)
- Miki Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuuma Yoshida
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Junichi Nagao
- Department of Functional Bioscience, Section of Infection Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasunori Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
12
|
Ünal CM, Singh B, Fleury C, Singh K, Chávez de Paz L, Svensäter G, Riesbeck K. QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism. Int J Med Microbiol 2012; 302:261-9. [DOI: 10.1016/j.ijmm.2012.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 06/02/2012] [Accepted: 07/08/2012] [Indexed: 12/24/2022] Open
|
13
|
Utsumi R, Igarashi M. [Two-component signal transduction as attractive drug targets in pathogenic bacteria]. YAKUGAKU ZASSHI 2012; 132:51-8. [PMID: 22214580 DOI: 10.1248/yakushi.132.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). TCS consists of a histidine kinase (HK) and a response regulator (RR). TCSs are attractive as drug targets for antimicrobials because many HK and RR genes are coded on the bacterial genome though few are found in lower eukaryotes. The HK/RR signal transduction system is distinct from serine/threonine and tyrosine phosphorylation in higher eukaryotes. Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets.
Collapse
Affiliation(s)
- Ryutaro Utsumi
- Department of Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| | | |
Collapse
|
14
|
Zhang H, Du H, Ji X, Ni B, Mao L, Xu S, Sheng X, Xu H, Huang X. OmpR may regulate the putative YehU/YehT two-component system in Salmonella enterica serovar Typhi under hypotonic growth condition. Curr Microbiol 2011; 64:283-9. [PMID: 22179129 DOI: 10.1007/s00284-011-0066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/02/2011] [Indexed: 02/04/2023]
Abstract
Decreased expression (twofold) of a putative yehUTS operon of which yehUT encodes a putative YehU/YehT two-component system in the ompR mutant from Salmonella enterica serovar Typhi (S. Typhi) GIFU10007 under hypotonic growth condition was observed by qRT-PCR. Purified recombinant protein OmpR(His6) of GIFU10007 was shown to bind the upstream region of the yehU gene by the gel-shift assay. In addition, the yehT deletion mutant (ΔyehT) displayed differential expression (twofold or higher) of 26 genes under the condition by the DNA microarray analysis. Altogether, OmpR might regulate the YehUT system in S. Typhi under hypotonic growth condition.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Biochemistry and Molecular Biology, School of Medical Technology, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Guarnieri MT, Blagg BSJ, Zhao R. A high-throughput TNP-ATP displacement assay for screening inhibitors of ATP-binding in bacterial histidine kinases. Assay Drug Dev Technol 2010; 9:174-83. [PMID: 21050069 DOI: 10.1089/adt.2010.0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial histidine kinases (HK) are members of the GHKL superfamily, which share a unique adenosine triphosphate (ATP)-binding Bergerat fold. Our previous studies have shown that Gyrase, Hsp90, MutL (GHL) inhibitors bind to the ATP-binding pocket of HK and may provide lead compounds for the design of novel antibiotics targeting these kinases. In this article, we developed a competition assay using the fluorescent ATP analog, 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. The method can be used for high-throughput screening of compound libraries targeting HKs or other ATP-binding proteins. We utilized the assay to screen a library of GHL inhibitors targeting the bacterial HK PhoQ, and discuss the applications of the 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate competition assay beyond GHKL inhibitor screening.
Collapse
Affiliation(s)
- Michael T Guarnieri
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, 80045, USA
| | | | | |
Collapse
|
16
|
Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 2010; 13:232-9. [PMID: 20138000 DOI: 10.1016/j.mib.2010.01.008] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022]
Abstract
Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets.
Collapse
Affiliation(s)
- Yasuhiro Gotoh
- Department of Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | |
Collapse
|