1
|
Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, Feng G, Yu R, Chen L. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front Immunol 2022; 12:766560. [PMID: 35003080 PMCID: PMC8734595 DOI: 10.3389/fimmu.2021.766560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis (AS), one of the most common types of cardiovascular disease, has initially been attributed to the accumulation of fats and fibrous materials. However, more and more researchers regarded it as a chronic inflammatory disease nowadays. Infective disease, such as periodontitis, is related to the risk of atherosclerosis. Porphyromonas gingivalis (P. gingivalis), one of the most common bacteria in stomatology, is usually discovered in atherosclerotic plaque in patients. Furthermore, it was reported that P. gingivalis can promote the progression of atherosclerosis. Elucidating the underlying mechanisms of P. gingivalis in atherosclerosis attracted attention, which is thought to be crucial to the therapy of atherosclerosis. Nevertheless, the pathogenesis of atherosclerosis is much complicated, and many kinds of cells participate in it. By summarizing existing studies, we find that P. gingivalis can influence the function of many cells in atherosclerosis. It can induce the dysfunction of endothelium, promote the formation of foam cells as well as the proliferation and calcification of vascular smooth muscle cells, and lead to the imbalance of regulatory T cells (Tregs) and T helper (Th) cells, ultimately promoting the occurrence and development of atherosclerosis. This article summarizes the specific mechanism of atherosclerosis caused by P. gingivalis. It sorts out the interaction between P. gingivalis and AS-related cells, which provides a new perspective for us to prevent or slow down the occurrence and development of AS by inhibiting periodontal pathogens.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Hasegawa Y, Nagano K. Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:190-200. [PMID: 34691295 PMCID: PMC8512630 DOI: 10.1016/j.jdsr.2021.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
In general, the periodontal pathogen Porphyromonas gingivalis expresses distinct FimA and Mfa1 fimbriae. Each of these consists of five FimA–E and five Mfa1–5 proteins encoded by the fim and mfa gene clusters, respectively. The main shaft portion comprises FimA and Mfa1, whereas FimB and Mfa2 are localized on the basal portion and function as anchors and elongation terminators. FimC–E and Mfa3–5 participate in the assembly of an accessory protein complex on the tips of each fimbria. Hence, they serve as ligands for the receptors on host cells and other oral bacterial species. The crystal structures of FimA and Mfa1 fimbrial proteins were recently elucidated and new insights into the localization, function, and biogenesis of these proteins have been reported. Several studies indicated a correlation between P. gingivalis pathogenicity and the fimA genotype but not the mfa1 genotype. We recently revealed polymorphisms of all genes in the fim and mfa gene clusters. Intriguingly, mfa5 occurred in numerous different forms and underwent duplication. Detailed structural and functional knowledge of the fimbrial proteins in the context of the entire filament could facilitate the development of innovative therapeutic strategies for structure-based drug design.
Collapse
Affiliation(s)
- Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
3
|
Erdei A, Kovács KG, Nagy-Baló Z, Lukácsi S, Mácsik-Valent B, Kurucz I, Bajtay Z. New aspects in the regulation of human B cell functions by complement receptors CR1, CR2, CR3 and CR4. Immunol Lett 2021; 237:42-57. [PMID: 34186155 DOI: 10.1016/j.imlet.2021.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The involvement of complement in the regulation of antibody responses has been known for long. By now several additional B cell functions - including cytokine production and antigen presentation - have also been shown to be regulated by complement proteins. Most of these important activities are mediated by receptors interacting with activation fragments of the central component of the complement system C3, such as C3b, iC3b and C3d, which are covalently attached to antigens and immune complexes. This review summarizes the role of complement receptors interacting with these ligands, namely CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18) and CR4 (CD11c/CD18) expressed by B cells in health and disease. Although we focus on human B lymphocytes, we also aim to call the attention to important differences between human and mouse systems.
Collapse
Affiliation(s)
- Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.
| | - Kristóf G Kovács
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Nagy-Baló
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Lukácsi
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - István Kurucz
- MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
5
|
Porphyromonas gingivalis Mfa1 Induces Chemokine and Cell Adhesion Molecules in Mouse Gingival Fibroblasts via Toll-Like Receptors. J Clin Med 2020; 9:jcm9124004. [PMID: 33322059 PMCID: PMC7764148 DOI: 10.3390/jcm9124004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis Mfa1 fimbriae are thought to act as adhesion factors and to direct periodontal tissue destruction but their immunomodulatory actions are poorly understood. Here, we investigated the effect of Mfa1 stimulation on the immune and metabolic mechanisms of gingival fibroblasts from periodontal connective tissue. We also determined the role of Toll-like receptor (TLR) 2 and TLR4 in Mfa1 recognition. Mfa1 increased the expression of genes encoding chemokine (C-X-C motif) ligand (CXCL) 1, CXCL3, intercellular adhesion molecule (ICAM) 1 and Selectin endothelium (E) in gingival fibroblasts, but did not have a significant effect on genes that regulate metabolism. Mfa1-stimulated up-regulation of genes was significantly suppressed in Tlr4 siRNA-transfected cells compared with that in control siRNA-transfected cells, which indicates that recognition by TLR4 is essential for immunomodulation by Mfa1. Additionally, suppression of Tlr2 expression partially attenuated the stimulatory effect of Mfa1. Overall, these results help explain the involvement of P. gingivalis Mfa1 fimbriae in the progression of periodontal disease.
Collapse
|
6
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
7
|
Identification of PGN_1123 as the Gene Encoding Lipid A Deacylase, an Enzyme Required for Toll-Like Receptor 4 Evasion, in Porphyromonas gingivalis. J Bacteriol 2019; 201:JB.00683-18. [PMID: 30782639 DOI: 10.1128/jb.00683-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Removal of one acyl chain from bacterial lipid A by deacylase activity is a mechanism used by many pathogenic bacteria to evade the host's Toll-like receptor 4 (TLR4)-mediated innate immune response. In Porphyromonas gingivalis, a periodontal pathogen, lipid A deacylase activity converts a majority of the initially synthesized penta-acylated lipid A, a TLR4 agonist, to tetra-acylated structures, which effectively evade TLR4 sensing by being either inert or antagonistic at TLR4. In this paper, we report successful identification of the gene that encodes the P. gingivalis lipid A deacylase enzyme. This gene, PGN_1123 in P. gingivalis 33277, is highly conserved within P. gingivalis, and putative orthologs are phylogenetically restricted to the Bacteroidetes phylum. Lipid A of ΔPGN_1123 mutants is penta-acylated and devoid of tetra-acylated structures, and the mutant strain provokes a strong TLR4-mediated proinflammatory response, in contrast to the negligible response elicited by wild-type P. gingivalis Heterologous expression of PGN_1123 in Bacteroides thetaiotaomicron promoted lipid A deacylation, confirming that PGN_1123 encodes the lipid A deacylase enzyme.IMPORTANCE Periodontitis, commonly referred to as gum disease, is a chronic inflammatory condition that affects a large proportion of the population. Porphyromonas gingivalis is a bacterium closely associated with periodontitis, although how and if it is a cause for the disease are not known. It has a formidable capacity to dampen the host's innate immune response, enabling its persistence in diseased sites and triggering microbial dysbiosis in animal models of infection. P. gingivalis is particularly adept at evading the host's TLR4-mediated innate immune response by modifying the structure of lipid A, the TLR4 ligand. In this paper, we report identification of the gene encoding lipid A deacylase, a key enzyme that modifies lipid A to TLR4-evasive structures.
Collapse
|
8
|
Koyata Y, Watanabe K, Toyama T, Sasaki H, Hamada N. Purification and characterization of a fimbrial protein from Porphyromonas salivosa ATCC 49407. J Vet Med Sci 2019; 81:916-923. [PMID: 31019151 PMCID: PMC6612485 DOI: 10.1292/jvms.19-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Periodontal disease is a significant problem in companion animals such as dogs and cats.
However, there is little information available about fimbriae association of periodontal
disease in companion animals. In this study, we have purified and characterized a fimbriae
from Porphyromonas salivosa ATCC 49407. The molecular mass of this
protein was approximately 60-kDa, as estimated by SDS-PAGE. Immunogold electron microscopy
revealed that anti-60-kDa fimbrial serum bound to fimbria on the cell surface of
P. salivosa ATCC 49407. However, fimbriae of P.
gingivalis and P. gulae were not labeled with the same
antibody. Immunoelectron-microscopic studies and immunoblot analysis revealed that
antigenicity and molecular weight were distinct from previously reported
Porphyromonas fimbrial proteins. The amino acid sequence of the
N-terminal 15 residues of the 60-kDa fimbrillin protein revealed only 3 of 15 residues
identical to other Porphyromonas species fimbrillin proteins. Thus, the
N-terminal amino acid sequence of the 60-kDa fimbrillin protein of P.
salivosa clearly differed from previously reported fimbrillin proteins. The
level of adherence of the P. salivosa was 1.81%. It was confirmed that
P. salivosa can adheres to human cells. These results suggest that the
60-kDa fimbriae of P. salivosa ATCC 49407 is a new type of fimbria and
may have an important factor in the adherence host cells. We suggest that the surface
structure of P. salivosa may have a role in the colonization of this
organism in periodontal pockets in companion animals.
Collapse
Affiliation(s)
- Yasunori Koyata
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Kiyoko Watanabe
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Toshizo Toyama
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Haruka Sasaki
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | - Nobushiro Hamada
- Division of Microbiology, Department of Oral Science, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
9
|
Hou L, Wang K, Zhang C, Sun F, Che Y, Zhao X, Zhang D, Li H, Wang Q. Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biol 2018; 14:250-260. [PMID: 28978491 PMCID: PMC5975223 DOI: 10.1016/j.redox.2017.09.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023] Open
Abstract
Microglial NADPH oxidase (Nox2) plays a key role in chronic neuroinflammation and related dopaminergic neurodegeneration in Parkinson's disease (PD). However, the mechanisms behind Nox2 activation remain unclear. Here, we revealed the critical role of complement receptor 3 (CR3), a microglia-specific pattern recognition receptor, in Nox2 activation and subsequent dopaminergic neurodegeneration by using paraquat and maneb-induced PD model. Suppression or genetic deletion of CR3 impeded paraquat and maneb-induced activation of microglial Nox2, which was associated with attenuation of dopaminergic neurodegeneration. Mechanistic inquiry revealed that blocking CR3 reduced paraquat and maneb-induced membrane translocation of Nox2 cytosolic subunit p47phox, an essential step for Nox2 activation. Src and Erk (extracellular regulated protein kinases) were subsequently recognized as the downstream signals of CR3. Moreover, inhibition of Src or Erk impaired Nox2 activation in response to paraquat and maneb co-exposure. Finally, we found that CR3-deficient mice were more resistant to paraquat and maneb-induced Nox2 activation and nigral dopaminergic neurodegeneration as well as motor dysfunction than the wild type controls. Taken together, our results showed that CR3 regulated Nox2 activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway in a two pesticide-induced PD model, providing novel insights into the immune pathogenesis of PD.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Ke Wang
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Cong Zhang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Fuqiang Sun
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Yuning Che
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, China
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huihua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, No. 9W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
10
|
Sochalska M, Potempa J. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis. Front Cell Infect Microbiol 2017; 7:197. [PMID: 28589098 PMCID: PMC5440471 DOI: 10.3389/fcimb.2017.00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of the chronic periodontal disease is associated with a skewed host inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis, that accounts for the majority of periodontal tissue damage. Neutrophils are the most abundant leukocytes in periodontal pockets and depending on the stage of the disease, also plentiful PMNs are present in the inflamed gingival tissue and the gingival crevice. They are the most efficient phagocytes and eliminate pathogens by a variety of means, which are either oxygen-dependent or -independent. However, these secretory lethal weapons do not strictly discriminate between pathogens and host tissue. Current studies describe conflicting findings about neutrophil involvement in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils are the main immune cell type responsible for this observed tissue damage and disease progression. Deregulation of neutrophil survival and functions, such as chemotaxis, migration, secretion of antimicrobial peptides or enzymes, and production of reactive oxygen species, contribute to observed tissue injury and the clinical signs of periodontal disease. On the other hand neutrophils deficiencies in patients and mice also result in periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that manipulates the immune responses of PMNs, employing several virulence factors, such as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up studies devoted to understanding different strategies utilized by P. gingivalis to manipulate PMNs survival and functions in order to inhibit killing by a granular content, prolong inflammation, and gain access to nutrient resources.
Collapse
Affiliation(s)
- Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of LouisvilleLouisville, KY, United States
| |
Collapse
|
11
|
Purified Streptococcus pneumoniae Endopeptidase O (PepO) Enhances Particle Uptake by Macrophages in a Toll-Like Receptor 2- and miR-155-Dependent Manner. Infect Immun 2017; 85:IAI.01012-16. [PMID: 28193634 DOI: 10.1128/iai.01012-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Insights into the host-microbial virulence factor interaction, especially the immune signaling mechanisms, could provide novel prevention and treatment options for pneumococcal diseases. Streptococcus pneumoniae endopeptidase O (PepO) is a newly discovered and ubiquitously expressed pneumococcal virulence protein. A PepO-mutant strain showed impaired adherence to and invasion of host cells compared with the isogenic wild-type strain. It is still unknown whether PepO is involved in the host defense response to pneumococcal infection. Here, we demonstrated that PepO could enhance phagocytosis of Streptococcus pneumoniae and Staphylococcus aureus by peritoneal exudate macrophages (PEMs). Further studies showed that PepO stimulation upregulated the expression of microRNA-155 (miR-155) in PEMs in a time- and dose-dependent manner. PepO-induced enhanced phagocytosis was decreased in cells transfected with an inhibitor of miR-155, while it was increased in cells transfected with a mimic of miR-155. We also revealed that PepO-induced upregulation of miR-155 in PEMs was mediated by Toll-like receptor 2 (TLR2)-NF-κB signaling and that the increased expression of miR-155 downregulated expression of SHIP1. Taken together, these results indicate that PepO induces upregulation of miR-155 in PEMs, contributing to enhanced phagocytosis and host defense response to pneumococci and Staphylococcus aureus.
Collapse
|
12
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
13
|
Ikai R, Hasegawa Y, Izumigawa M, Nagano K, Yoshida Y, Kitai N, Lamont RJ, Yoshimura F, Murakami Y. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis. PLoS One 2015; 10:e0139454. [PMID: 26437277 PMCID: PMC4593637 DOI: 10.1371/journal.pone.0139454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/13/2015] [Indexed: 12/23/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.
Collapse
Affiliation(s)
- Ryota Ikai
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Yoshiaki Hasegawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
- * E-mail:
| | - Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Noriyuki Kitai
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
14
|
Sasaki H, Watanabe K, Toyama T, Koyata Y, Hamada N. Porphyromonas gulae 41-kDa fimbriae induced osteoclast differentiation and cytokine production. J Vet Med Sci 2014; 77:265-71. [PMID: 25421499 PMCID: PMC4383771 DOI: 10.1292/jvms.14-0463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porphyromonas gulae is considered to be associated with canine periodontitis. We have previously reported that the P. gulae American Type Culture Collection (ATCC) 51700 comprised 41-kDa fimbriae. The purpose of the present study was to demonstrate the roles of 41-kDa fimbrial protein in periodontal disease. In this study, we examined the involvement of the 41-kDa fimbrial protein in osteoclast differentiation and cytokine production in murine macrophages. Furthermore, alveolar bone resorption induced by P. gulae infection in rats was evaluated. To estimate osteoclast differentiation, bone marrow cells and MC3T3-G2/PA6 cells were cultured with or without the 41-kDa fimbrial protein for 7 days. BALB/c mouse peritoneal macrophages were stimulated with the 41-kDa fimbrial protein, and the levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α production were determined by enzyme-linked immunosorbent assay. Osteoclast differentiation was significantly enhanced by treatment with the 41-kDa fimbrial protein in a dose-dependent manner. The total area of pits formed on the dentine slices with osteoclasts incubated with the 41-kDa fimbrial protein was significantly greater than that of the control. The purified 41-kDa fimbrial protein induced IL-1β and TNF-α production in BALB/c mouse peritoneal macrophages after 6 hr of incubation in a dose-dependent manner. The bone loss level in rats infected with P. gulae was significantly higher than that of the sham-infected rats. These results suggest that P. gulae 41-kDa fimbriae play important roles in the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Haruka Sasaki
- Department of Microbiology, Kanagawa Dental University, Yokosuka, Kanagawa 238-8580, Japan
| | | | | | | | | |
Collapse
|
15
|
Nagano K. FimA Fimbriae of the Periodontal Disease-associated Bacterium Porphyromonas gingivalis. YAKUGAKU ZASSHI 2013; 133:963-74. [DOI: 10.1248/yakushi.13-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
16
|
Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog 2013; 9:e1003114. [PMID: 23359218 PMCID: PMC3554622 DOI: 10.1371/journal.ppat.1003114] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 11/19/2012] [Indexed: 12/11/2022] Open
Abstract
Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tularensis and CR3 is an important receptor for its phagocytosis. Here we confirm that efficient attachment and uptake of the highly virulent Type A F. tularensis spp. tularensis strain Schu S4 by human monocyte-derived macrophages (hMDMs) requires complement C3 opsonization and CR3. However, despite a>40-fold increase in uptake following C3 opsonization, Schu S4 induces limited pro-inflammatory cytokine production compared with non-opsonized Schu S4 and the low virulent F. novicida. This suggests that engagement of CR3 by opsonized Schu S4 contributes specifically to the immune suppression during and shortly following phagocytosis which we demonstrate by CD11b siRNA knockdown in hMDMs. This immune suppression is concomitant with early inhibition of ERK1/2, p38 MAPK and NF-κB activation. Furthermore, TLR2 siRNA knockdown shows that pro-inflammatory cytokine production and MAPK activation in response to non-opsonized Schu S4 depends on TLR2 signaling providing evidence that CR3-TLR2 crosstalk mediates immune suppression for opsonized Schu S4. Deletion of the CD11b cytoplasmic tail reverses the CR3-mediated decrease in ERK and p38 activation during opsonized Schu-S4 infection. The CR3-mediated signaling pathway involved in this immune suppression includes Lyn kinase and Akt activation, and increased MKP-1, which limits TLR2-mediated pro-inflammatory responses. These data indicate that while the highly virulent F. tularensis uses CR3 for efficient uptake, optimal engagement of this receptor down-regulates TLR2-dependent pro-inflammatory responses by inhibiting MAPK activation through outside-in signaling. CR3-linked immune suppression is an important mechanism involved in the pathogenesis of F. tularensis infection.
Collapse
|
17
|
Murakami Y, Machino M, Fujisawa S. Porphyromonas gingivalis Fimbria-Induced Expression of Inflammatory Cytokines and Cyclooxygenase-2 in Mouse Macrophages and Its Inhibition by the Bioactive Compounds Fibronectin and Melatonin. ISRN DENTISTRY 2012; 2012:350859. [PMID: 22545218 PMCID: PMC3321536 DOI: 10.5402/2012/350859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/29/2012] [Indexed: 01/06/2023]
Abstract
Porphyromonas gingivalis (Pg) fimbriae, in addition to lipopolysaccharide, are involved in the pathogenesis of periodontal disease. At the same time, bioactive compounds such as fibronectin (FN) and melatonin in saliva and gingival crevicular fluid have been reported to exert a preventive effect against periodontitis. Here, we review current knowledge regarding the potent inhibitory effects of FN and melatonin against Pg fimbria-induced induction of proinflammatory cytokines, cyclooxygenase-2 (COX-2) expression, and NF-kappa B activation in mouse macrophages and discuss their possible clinical application for prevention of periodontal diseases induced by oral bacteria.
Collapse
Affiliation(s)
- Yukio Murakami
- Division of Oral Diagnosis, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-City, Saitama 350-0283, Japan
| | | | | |
Collapse
|
18
|
Carter C. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System. Int J Alzheimers Dis 2011; 2011:501862. [PMID: 22254144 PMCID: PMC3255168 DOI: 10.4061/2011/501862] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction.
Collapse
Affiliation(s)
- Chris Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK
| |
Collapse
|
19
|
Hayashi C, Gudino CV, Gibson FC, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 2011; 25:305-16. [PMID: 20883220 DOI: 10.1111/j.2041-1014.2010.00582.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hallmark of infection with the gram-negative pathogen Porphyromonas gingivalis is the induction of a chronic inflammatory response. P. gingivalis induces a local chronic inflammatory response that results in oral inflammatory bone destruction, which manifests as periodontal disease. In addition to chronic inflammation at the initial site of infection, mounting evidence has accumulated supporting a role for P. gingivalis-mediated periodontal disease as a risk factor for several systemic diseases including, diabetes, preterm birth, stroke, and atherosclerotic cardiovascular disease. A growing number of in vitro studies have demonstrated that P. gingivalis infection stimulates cell activation commensurate with expected responses paralleling inflammatory atherosclerotic-type responses. Furthermore, various mouse models have been used to examine the ability of P. gingivalis to stimulate chronic inflammatory plaque accumulation and recent studies have pointed to a pivotal role for innate immune signaling via the Toll-like receptors in the chronic inflammation associated with P. gingivalis infection. In this review we discuss the pathogen and host cell specificity of these responses and discuss possible mechanisms by which this oral pathogen can induce and maintain a chronic state of inflammation at sites distant from oral infection.
Collapse
Affiliation(s)
- C Hayashi
- Department of Medicine, Sections of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
20
|
Yu WH, Hu H, Zhou Q, Xia Y, Amar S. Bioinformatics analysis of macrophages exposed to Porphyromonas gingivalis: implications in acute vs. chronic infections. PLoS One 2010; 5:e15613. [PMID: 21203416 PMCID: PMC3009741 DOI: 10.1371/journal.pone.0015613] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 11/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Periodontitis is the most common human infection affecting tooth-supporting structures. It was shown to play a role in aggravating atherosclerosis. To deepen our understanding of the pathogenesis of this disease, we exposed human macrophages to an oral bacteria, Porphyromonas gingivalis (P. gingivalis), either as live bacteria or its LPS or fimbria. Microarray data from treated macrophages or control cells were analyzed to define molecular signatures. Changes in genes identified in relevant pathways were validated by RT-PCR. METHODOLOGY/PRINCIPAL FINDINGS We focused our analysis on three important groups of genes. Group PG (genes differentially expressed by live bacteria only); Group LFG (genes differentially expressed in response to exposure to LPS and/or FimA); Group CG (core gene set jointly activated by all 3 stimulants). A total of 842 macrophage genes were differentially expressed in at least one of the three conditions compared to naïve cells. Using pathway analysis, we found that group CG activates the initial phagocytosis process and induces genes relevant to immune response, whereas group PG can de-activate the phagocytosis process associated with phagosome-lysosome fusion. LFG mostly affected RIG-I-like receptor signaling pathway. CONCLUSION/SIGNIFICANCE In light of the fact that acute infections involve live bacteria while chronic infections involve a combination of live bacteria and their byproducts, group PG could represent acute P. gingivalis infection while group LFG could represent chronic P. gingivalis infection. Group CG may be associated with core immune pathways, triggered irrespective of the specific stimulants and indispensable to mount an appropriate immune response. Implications in acute vs. chronic infection are discussed.
Collapse
Affiliation(s)
- Wen-Han Yu
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
| | - Han Hu
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Qingde Zhou
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Yu Xia
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
| | - Salomon Amar
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect Immun 2010; 79:67-74. [PMID: 21041492 DOI: 10.1128/iai.00361-10] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of the minor fimbrial antigen (Mfa) with streptococcal antigen I/II (e.g., SspB) facilitates colonization of the dental biofilm by Porphyromonas gingivalis. We previously showed that a 27-mer peptide derived from SspB (designated BAR) resembles the nuclear receptor (NR) box protein-protein interacting domain and potently inhibits this interaction in vitro. Here, we show that the EXXP motif upstream of the NR core α-helix contributes to the Mfa-SspB interaction and that BAR reduces P. gingivalis colonization and alveolar bone loss in vivo in a murine model of periodontitis. Substitution of Gln for Pro(1171) or Glu(1168) increased the α-helicity of BAR and reduced its inhibitory activity in vitro by 10-fold and 2-fold, respectively. To determine if BAR prevents P. gingivalis infection in vivo, mice were first infected with Streptococcus gordonii and then challenged with P. gingivalis in the absence and presence of BAR. Animals that were infected with either 10(9) CFU of S. gordonii DL-1 or 10(7) CFU of P. gingivalis 33277 did not show a statistically significant increase in alveolar bone resorption over sham-infected controls. However, infection with 10(9) CFU of S. gordonii followed by 10(7) CFU of P. gingivalis induced significantly greater bone loss (P < 0.01) than sham infection or infection of mice with either organism alone. S. gordonii-infected mice that were subsequently challenged with 10(7) CFU of P. gingivalis in the presence of BAR exhibited levels of bone resorption similar to those of sham-infected animals. Together, these results indicate that both EXXP and the NR box are important for the Mfa-SspB interaction and that BAR peptide represents a potential therapeutic that may limit colonization of the oral cavity by P. gingivalis.
Collapse
|
22
|
Hajishengallis G. Complement and periodontitis. Biochem Pharmacol 2010; 80:1992-2001. [PMID: 20599785 DOI: 10.1016/j.bcp.2010.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Although the complement system is centrally involved in host defense, its overactivation or deregulation (e.g., due to inherent host genetic defects or due to pathogen subversion) may excessively amplify inflammation and contribute to immunopathology. Periodontitis is an oral infection-driven chronic inflammatory disease which exerts a systemic impact on health. This paper reviews evidence linking complement to periodontal inflammation and pathogenesis. Clinical and histological observations show a correlation between periodontal inflammatory activity and local complement activation. Certain genetic polymorphisms or deficiencies in specific complement components appear to predispose to increased susceptibility to periodontitis. Animal model studies and in vitro experiments indicate that periodontal bacteria can either inhibit or activate distinct components of the complement cascade. Porphyromonas gingivalis, a keystone species in periodontitis, subverts complement receptor 3 and C5a anaphylatoxin receptor signaling in ways that promote its adaptive fitness in the presence of non-productive inflammation. Overall, available evidence suggests that complement activation or subversion contributes to periodontal pathogenesis, although not all complement pathways or functions are necessarily destructive. Effective complement-targeted therapeutic intervention in periodontitis would require determining the precise roles of the various inductive or effector complement pathways. This information is essential as it may reveal which specific pathways need to be blocked to counteract microbial evasion and inflammatory pathology or, conversely, kept intact to promote host immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Loueisville, KY 40292, USA.
| |
Collapse
|
23
|
Krauss JL, Potempa J, Lambris JD, Hajishengallis G. Complementary Tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontol 2000 2010; 52:141-62. [PMID: 20017800 DOI: 10.1111/j.1600-0757.2009.00324.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 2010; 31:154-63. [PMID: 20153254 DOI: 10.1016/j.it.2010.01.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/09/2010] [Accepted: 01/14/2010] [Indexed: 02/08/2023]
Abstract
The Toll-like receptors (TLRs) and complement are key innate defense systems that are triggered rapidly upon infection. Although both systems have been investigated primarily as separate entities, an emerging body of evidence indicates extensive crosstalk between complement and TLR signaling pathways. Analysis of these data suggests that the complement-TLR interplay reinforces innate immunity or regulates excessive inflammation, through synergistic or antagonistic interactions, respectively. However, the facility of complement and TLRs for communication is exploited by certain pathogens as a means to modify the host response in ways that favor the persistence of the pathogens. Further elucidation of regulatory links between complement and TLRs is essential for understanding their complex roles in health and disease.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Louisville School of Dentistry, Division of Oral Health and Systemic Disease, Louisville, KY, USA.
| | | |
Collapse
|
25
|
Yilmaz O, Sater AA, Yao L, Koutouzis T, Pettengill M, Ojcius DM. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cell Microbiol 2009; 12:188-98. [PMID: 19811501 DOI: 10.1111/j.1462-5822.2009.01390.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Production of IL-1beta typically requires two-separate signals. The first signal, from a pathogen-associated molecular pattern, promotes intracellular production of immature cytokine. The second signal, derived from a danger signal such as extracellular ATP, results in assembly of an inflammasome, activation of caspase-1 and secretion of mature cytokine. The inflammasome component, Nalp3, plays a non-redundant role in caspase-1 activation in response to ATP binding to P2X(7) in macrophages. Gingival epithelial cells (GECs) are an important component of the innate-immune response to periodontal bacteria. We had shown that GECs express a functional P2X(7) receptor, but the ability of GECs to secrete IL-1beta during infection remained unknown. We find that GECs express a functional Nalp3 inflammasome. Treatment of GECs with LPS or infection with the periodontal pathogen, Porphyromonas gingivalis, induced expression of the il-1beta gene and intracellular accumulation of IL-1beta protein. However, IL-1beta was not secreted unless LPS-treated or infected cells were subsequently stimulated with ATP. Conversely, caspase-1 is activated in GECs following ATP treatment but not P. gingivalis infection. Furthermore, depletion of Nalp3 by siRNA abrogated the ability of ATP to induce IL-1beta secretion in infected cells. The Nalp3 inflammasome is therefore likely to be an important mediator of the inflammatory response in gingival epithelium.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hajishengallis G, Wang M, Liang S. Induction of distinct TLR2-mediated proinflammatory and proadhesive signaling pathways in response to Porphyromonas gingivalis fimbriae. THE JOURNAL OF IMMUNOLOGY 2009; 182:6690-6. [PMID: 19454663 DOI: 10.4049/jimmunol.0900524] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oral pathogen Porphyromonas gingivalis, as well as its purified fimbriae, are known to activate TLR2 and induce proinflammatory and proadhesive effects. The TLR2 proinflammatory pathway induces NF-kappaB-dependent inflammatory cytokines, whereas the TLR2 proadhesive pathway is characterized by inside-out signaling that transactivates beta(2) integrin adhesive activities. In this article, using dominant-negative or pharmacological approaches, we show that the two pathways bifurcate and proceed independently downstream of TLR2. Whereas the proinflammatory pathway is dependent on the adaptor molecules Toll/IL-1 receptor domain-containing adaptor protein (also known as Mal) and MyD88, the proadhesive pathway is Toll/IL-1 receptor domain-containing adaptor protein/MyD88-independent and proceeds through PI3K-mediated signaling. Although the Ser/Thr kinase Akt is a major downstream target of PI3K and was activated by P. gingivalis fimbriae in a TLR2- and PI3K-dependent way, Akt was shown not to play a role in the proadhesive pathway. In contrast, another PI3K downstream target, cytohesin-1, was shown to mediate P. gingivalis fimbria-induced activation of beta(2) integrin for ICAM-1 binding. Therefore, P. gingivalis fimbriae activate two distinct TLR2 pathways mediating proinflammatory or proadhesive effects. The delineation of these signaling pathways may provide appropriate targets for selectively inhibiting or enhancing specific activities, depending on whether they undermine or promote the host defense.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Periodontics/Oral Health and Systemic Disease, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | | | | |
Collapse
|
27
|
Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol 2009; 46:2753-66. [PMID: 19477527 DOI: 10.1016/j.molimm.2009.04.027] [Citation(s) in RCA: 523] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/28/2009] [Indexed: 12/16/2022]
Abstract
The anaphylatoxin (AT) C3a, C5a and C5a-desArg are generally considered pro-inflammatory polypeptides generated after proteolytic cleavage of C3 and C5 in response to complement activation. Their well-appreciated effector functions include chemotaxis and activation of granulocytes, mast cells and macrophages. Recent evidence suggests that ATs are also generated locally within tissues by pathogen-, cell-, or contact system-derived proteases. This local generation of ATs is important for their pleiotropic biologic effects beyond inflammation. The ATs exert most of the biologic activities through ligation of three cognate receptors, i.e. the C3a receptor, the C5a receptor and the C5a receptor-like, C5L2. Here, we will discuss recent findings suggesting that ATs regulate cell apoptosis, lipid metabolism as well as innate and adaptive immune responses through their impact on antigen-presenting cells and T cells. As we will outline, such regulatory functions of ATs and their receptors play important roles in the pathogenesis of allergy, autoimmunity, neurodegenerative diseases, cancer and infections with intracellular pathogens.
Collapse
Affiliation(s)
- Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, MHH, Germany
| | | | | | | | | | | |
Collapse
|