1
|
Qu Z, Gong Z, Olajide JS, Wang J, Cai J. CRISPR-Cas9-based method for isolating microgametes of Eimeria tenella. Vet Parasitol 2024; 327:110131. [PMID: 38301346 DOI: 10.1016/j.vetpar.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Eimeria tenella infections are known to cause severe caecal damage and death of the infected chicken. Gamogony is an essential stage in E. tenella life cycle and in the establishment of coccidiosis. Prior research had extensively explored isolation and separation of the parasite gametes - microgamete (male) and macrogamete (female). However, there is little information on the efficient, highly purified and distinctly separated male and female gametes. In this study, we generated a genome editing line expressing mCherry fluorescent protein fused with GCS1 protein in E. tenella by using Toxoplasma gondii CRISPR-Cas9 system, flow cytometry and fluorescence microscopy. This allowed precise separation of E. tenella male and female gametes in the transgenic parasite population. The separation of male and female gametes would not only build on our understanding of E. tenella transmission, but it would also facilitate development of gametocidal compounds as drug targets for E. tenella infection.
Collapse
Affiliation(s)
- Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Joshua Seun Olajide
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| |
Collapse
|
2
|
Abdi Ghavidel A, Aghamiri S, Raee P, Mohammadi-Yeganeh S, Noori E, Bandehpour M, Kazemi B, Jajarmi V. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains. Acta Parasitol 2024; 69:121-134. [PMID: 38127288 DOI: 10.1007/s11686-023-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Genome manipulation of Leishmania species and the creation of modified strains are widely employed strategies for various purposes, including gene function studies, the development of live attenuated vaccines, and the engineering of host cells for protein production. OBJECTIVE Despite the introduction of novel manipulation approaches like CRISPR/Cas9 technology with significant advancements in recent years, the development of a reliable protocol for efficiently and precisely altering the genes of Leishmania strains remains a challenging endeavor. Following the successful adaptation of the CRISPR/Cas9 system for higher eukaryotic cells, several research groups have endeavored to apply this system to manipulate the genome of Leishmania. RESULTS Despite the substantial differences between Leishmania and higher eukaryotes, the CRISPR/Cas9 system has been effectively tested and applied in Leishmania. CONCLUSION: This comprehensive review summarizes all the CRISPR/Cas9 systems that have been employed in Leishmania, providing details on their methods and the expression systems for Cas9 and gRNA. The review also explores the various applications of the CRISPR system in Leishmania, including the deletion of multicopy gene families, the development of the Leishmania vaccine, complete gene deletions, investigations into chromosomal translocations, protein tagging, gene replacement, large-scale gene knockout, genome editing through cytosine base replacement, and its innovative use in the detection of Leishmania. In addition, the review offers an up-to-date overview of all double-strand break repair mechanisms in Leishmania.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Khandibharad S, Singh S. Synthetic biology for combating leishmaniasis. Front Microbiol 2024; 15:1338749. [PMID: 38362504 PMCID: PMC10867266 DOI: 10.3389/fmicb.2024.1338749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Despite the efforts to control and treat the disease, it still remains a major public health problem in many countries. Synthetic biology is a rapidly evolving interdisciplinary field that combines biology, engineering, and computer science to design and construct novel biological systems. In recent years, synthetic biology approaches have shown great promise for developing new and effective strategies to combat leishmaniasis. In this perspective, we summarize the recent advances in the use of synthetic biology for the development of vaccines, diagnostic tools, and novel therapeutics for leishmaniasis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, Pune, India
| |
Collapse
|
4
|
Zarei Z, Mohebali M, Dehghani H, Khamesipour A, Tavakkol-Afshari J, Akhoundi B, Abbaszadeh-Afshar MJ, Alizadeh Z, Skandari SE, Asl AD, Razmi GR. Live attenuated Leishmania infantum centrin deleted mutant (LiCen -/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comp Immunol Microbiol Infect Dis 2023; 97:101984. [PMID: 37119594 DOI: 10.1016/j.cimid.2023.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
This study was designed to evaluate the safety, immunogenicity, and efficacy of a single dose of L. infantum (LiCen-/-) live attenuated candidate vaccine against canine leishmaniasis (CanL). Eighteen healthy domestic dogs with no anti-Leishmania antibodies and negative leishmanin skin test (LST) were randomly inoculated intravenously with either L. infantum (LiCen-/-) vaccine candidate in 10 dogs or phosphate-buffered saline (PBS) in 8 dogs. The safety, immunogenicity, and efficacy rate of L. infantum (LiCen-/-) vaccine candidate against CanL were evaluated by different criteria, including clinical manifestations, injection-site lesion, hematology and biochemistry values, anti-Leishmania antibodies using direct agglutination test (DAT), delayed-type hypersensitivity (DTH) using LST, and CD4+ and CD8+ T-cells subsets, as well as by measuring interferon (IFN-γ), interleukin (IL-23), IL-17, and IL-10 cytokines. Spleen aspiration and detection of Leishmania parasite using parasitological examinations (microscopy and culture) were performed in both vaccinated and control groups. Two months after intervention, each dog was challenged intraperitoneally (IP) with wide type (WT) L. infantum. Two-month follow-up post vaccination showed no clinical signs and serious side effects associated with the vaccination. A significant increase was found in the expression of IL-17, CD4+, and CD8+ gene transcripts in PBMCs, as well as increased levels of Th1 cytokines, and reduction of Th2 cytokine. The efficacy of the vaccine candidate was calculated to be 42.85%. While the time window for assessing the vaccine's effectiveness was too limited to draw any real conclusions but the preliminary results showed a moderate efficacy rate due to inoculation a single dose of L. infantum (LiCen-/-) vaccine candidate. Further investigations with more sample sizes and multiple doses of the vaccine candidate using natural challenges in the endemic areas of CanL are recommended.
Collapse
Affiliation(s)
- Zabihollah Zarei
- Department of Pathobiology, School Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box 91775-1793, Mashhad, Iran; Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Tavakkol-Afshari
- Immunogenetics and Tissue Culture Department, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Mohammad Javad Abbaszadeh-Afshar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Zahra Alizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Seyed Ebrahim Skandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolhossein Dalimi Asl
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholam Reza Razmi
- Department of Pathobiology, School Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box 91775-1793, Mashhad, Iran.
| |
Collapse
|
5
|
Urán Landaburu L, Didier Garnham M, Agüero F. Targeting trypanosomes: how chemogenomics and artificial intelligence can guide drug discovery. Biochem Soc Trans 2023; 51:195-206. [PMID: 36606702 DOI: 10.1042/bst20220618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Trypanosomatids are protozoan parasites that cause human and animal neglected diseases. Despite global efforts, effective treatments are still much needed. Phenotypic screens have provided several chemical leads for drug discovery, but the mechanism of action for many of these chemicals is currently unknown. Recently, chemogenomic screens assessing the susceptibility or resistance of parasites carrying genome-wide modifications started to define the mechanism of action of drugs at large scale. In this review, we discuss how genomics is being used for drug discovery in trypanosomatids, how integration of chemical and genomics data from these and other organisms has guided prioritisations of candidate therapeutic targets and additional chemical starting points, and how these data can fuel the expansion of drug discovery pipelines into the era of artificial intelligence.
Collapse
Affiliation(s)
- Lionel Urán Landaburu
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Mercedes Didier Garnham
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
6
|
Paulini K, Lypaczewski P, Zhang WW, Perera DJ, Ndao M, Matlashewski G. Investigating the Leishmania donovani sacp Gene and Its Role in Macrophage Infection and Survival in Mice. Trop Med Infect Dis 2022; 7:384. [PMID: 36422936 PMCID: PMC9694005 DOI: 10.3390/tropicalmed7110384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
The protozoan parasite Leishmania donovani is a causative agent of the neglected tropical disease known as visceral leishmaniasis, which can be lethal when untreated. Studying Leishmania viru-lence factors is crucial in determining how the parasite causes disease and identifying new targets for treatment. One potential virulence factor is L. donovani's abundantly secreted protein: secreted acid phosphatase (SAcP). Whole-genome analysis revealed that the sacp gene was present in three copies in wild type L. donovani. Using CRISPR-Cas9 gene editing; we generated a sacp gene knockout termed LdΔSAcP, which demonstrated a loss of both the SAcP protein and an associated reduction in secreted acid phosphatase activity. Genome sequencing confirmed the precise dele-tion of the sacp gene in LdΔSAcP and identified several changes in the genome. LdΔSAcP demonstrated no significant changes in promastigote proliferation or its ability to infect and survive in macrophages compared to the wildtype strain. LdΔSAcP also demonstrated no change in murine liver infection; however, survival was impaired in the spleen. Taken together these results show that SAcP is not necessary for the survival of promastigotes in culture but may support long-term survival in the spleen. These observations also show that the use of CRISPR gene editing and WGS together are effective to investigate the function and phenotype of complex potential drug targets such as multicopy genes.
Collapse
Affiliation(s)
- Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Momar Ndao
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Abstract
In mammalian cells, DNA double-strand breaks (DSBs) are mainly repaired by nonhomologous end joining (NHEJ) pathway. Ku (a heterodimer formed by Ku70 and Ku80 proteins) and DNA ligase IV are the core NHEJ factors. Ku could also be involved in other cellular processes, including telomere length regulation, DNA replication, transcription, and translation control. Leishmania, an early branching eukaryote and the causative agent of leishmaniasis, has no functional NHEJ pathway due to its lack of DNA ligase IV and other NHEJ factors but retains Ku70 and Ku80 proteins. In this study, we generated Leishmania donovani Ku70 disruption mutants and Ku70 and Ku80 double gene (Ku70/80) disruption mutants. We found that Leishmania Ku is still involved in DSB repair, possibly through its binding to DNA ends to block and slowdown 5′ end resections and Ku-Ku or other protein interactions. Depending on location of a DSB between the direct repeat genomic sequences, Leishmania Ku could have an inhibiting effect, no effect or a promoting effect on the DSB repair mediated by single strand annealing (SSA), the most frequently used DSB repair pathway in Leishmania. Ku70/80 proteins are also required for the healthy proliferation of Leishmania cells. Interestingly, unlike in Trypanosoma brucei and L. mexicana, Ku70/80 proteins are dispensable for maintaining the normal lengths of telomeres in L. donovani. We also show it is possible to reconstitute the two components (Ku and Ligase D) NHEJ pathway derived from Mycobacterium marinum in Leishmania. This improved DSB repair fidelity and efficiency in Leishmania and sets up an example that the bacterial NHEJ pathway can be successfully reconstructed in an NHEJ-deficient eukaryotic parasite. IMPORTANCE Nonhomologous end joining (NHEJ) is the most efficient double-stranded DNA break (DSB) repair pathway in mammalian cells. In contrast, the protozoan parasite Leishmania has no functional NHEJ pathway but retains the core NHEJ factors of Ku70 and Ku80 proteins. In this study, we found that Leishmania Ku heterodimers are still participating in DSB repair possibly through blocking 5′ end resections and Ku-Ku protein interactions. Depending on the DSB location, Ku could have an inhibiting or promoting effect on DSB repair mediated by the single-strand annealing repair pathway. Ku is also required for the normal growth of the parasite but surprisingly dispensable for maintaining the telomere lengths. Further, we show it is possible to introduce Mycobacterium marinum NHEJ pathway into Leishmania. Understanding DSB repair mechanisms of Leishmania may improve the CRISPR gene targeting specificity and efficiency and help identify new drug targets for this important human parasite.
Collapse
|
8
|
Volpedo G, Pacheco-Fernandez T, Holcomb EA, Zhang WW, Lypaczewski P, Cox B, Fultz R, Mishan C, Verma C, Huston RH, Wharton AR, Dey R, Karmakar S, Oghumu S, Hamano S, Gannavaram S, Nakhasi HL, Matlashewski G, Satoskar AR. Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. NPJ Vaccines 2022; 7:32. [PMID: 35236861 PMCID: PMC8891280 DOI: 10.1038/s41541-022-00449-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Thalia Pacheco-Fernandez
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Erin A Holcomb
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Rebecca Fultz
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Chelsea Mishan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ryan H Huston
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Abigail R Wharton
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Steve Oghumu
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA.
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Sharma R, Avendaño Rangel F, Reis-Cunha JL, Marques LP, Figueira CP, Borba PB, Viana SM, Beneke T, Bartholomeu DC, de Oliveira CI. Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9-Based Editing. Front Cell Infect Microbiol 2022; 11:790418. [PMID: 35252020 PMCID: PMC8892584 DOI: 10.3389/fcimb.2021.790418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Leishmania braziliensis is the main causative agent of Tegumentary Leishmaniasis in the Americas. However, difficulties related to genome manipulation, experimental infection, and parasite growth have so far limited studies with this species. CRISPR-Cas9-based technology has made genome editing more accessible, and here we have successfully employed the LeishGEdit approach to attenuate L. braziliensis. We generated a transgenic cell line expressing Cas9 and T7 RNA polymerase, which was employed for the targeted deletion of centrin, a calcium-binding cytoskeletal protein involved in the centrosome duplication in eukaryotes. Centrin-deficient Leishmania exhibit growth arrest at the amastigote stage. Whole-genome sequencing of centrin-deficient L. braziliensis (LbCen−/−) did not indicate the presence of off-target mutations. In vitro, the growth rates of LbCen−/− and wild-type promastigotes were similar, but axenic and intracellular LbCen−/− amastigotes showed a multinucleated phenotype with impaired survival following macrophage infection. Upon inoculation into BALB/c mice, LbCen−/− were detected at an early time point but failed to induce lesion formation, contrary to control animals, infected with wild-type L. braziliensis. A significantly lower parasite burden was also observed in mice inoculated with LbCen−/−, differently from control mice. Given that centrin-deficient Leishmania sp. have become candidates for vaccine development, we propose that LbCen−/− can be further explored for the purposes of immunoprophylaxis against American Tegumentary Leishmaniasis.
Collapse
Affiliation(s)
- Rohit Sharma
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
| | - Francys Avendaño Rangel
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - João Luís Reis-Cunha
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Sayonara M. Viana
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Camila I. de Oliveira
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- INCT—Instituto de Investigação em Doenças Tropicais, Salvador, Brazil
- *Correspondence: Camila I. de Oliveira,
| |
Collapse
|
10
|
da Silva MS. DNA Double-Strand Breaks: A Double-Edged Sword for Trypanosomatids. Front Cell Dev Biol 2021; 9:669041. [PMID: 33937271 PMCID: PMC8085331 DOI: 10.3389/fcell.2021.669041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
For nearly all eukaryotic cells, stochastic DNA double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions. DSB processing and repair can cause sequence deletions, loss of heterozygosity, and chromosome rearrangements resulting in cell death or carcinogenesis. However, trypanosomatids (single-celled eukaryotes parasites) do not seem to follow this premise strictly. Several studies have shown that trypanosomatids depend on DSBs to perform several events of paramount importance during their life cycle. For Trypanosoma brucei, DSBs formation is associated with host immune evasion via antigenic variation. In Trypanosoma cruzi, DSBs play a crucial role in the genetic exchange, a mechanism that is still little explored but appear to be of fundamental importance for generating variability. In Leishmania spp., DSBs are necessary to generate genomic changes by gene copy number variation (CNVs), events that are essential for these organisms to overcome inhospitable conditions. As DSB repair in trypanosomatids is primarily conducted via homologous recombination (HR), most of the events associated with DSBs are HR-dependent. This review will discuss the latest findings on how trypanosomatids balance the benefits and inexorable challenges caused by DSBs.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
11
|
Zhang WW, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N, Siddiqui A, Simonyan V, Oliveira F, Coutinho-Abreu IV, DeSouza-Vieira T, Meneses C, Oristian J, Serafim TD, Musa A, Nakamura R, Saljoughian N, Volpedo G, Satoskar M, Satoskar S, Dagur PK, McCoy JP, Kamhawi S, Valenzuela JG, Hamano S, Satoskar AR, Matlashewski G, Nakhasi HL. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat Commun 2020; 11:3461. [PMID: 32651371 PMCID: PMC7351751 DOI: 10.1038/s41467-020-17154-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2020] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Abid Siddiqui
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Vahan Simonyan
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Thiago DeSouza-Vieira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Abu Musa
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan and Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan and Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Noushin Saljoughian
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Greta Volpedo
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Monika Satoskar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
- Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Sanika Satoskar
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA
- Northeast Ohio Medical University, Rootstown, Ohio, 44272, USA
| | - Pradeep K Dagur
- National Institute of Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20852, USA
| | - J Philip McCoy
- National Institute of Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan and Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, 43210, USA.
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|