1
|
Peserico A, Canciello A, Prencipe G, Gramignoli R, Melai V, Scortichini G, Bellocci M, Capacchietti G, Turriani M, Di Pancrazio C, Berardinelli P, Russo V, Mattioli M, Barboni B. Optimization of a nanoparticle uptake protocol applied to amniotic-derived cells: unlocking the therapeutic potential. J Mater Chem B 2024; 12:8977-8992. [PMID: 39140678 DOI: 10.1039/d4tb00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Prencipe
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Maura Turriani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Mauro Mattioli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
2
|
Bruce G, Bagherpour S, Duch M, Plaza JA, Stolnik S, Pérez-García L. Cuboids Prevail When Unraveling the Influence of Microchip Geometry on Macrophage Interactions and Metabolic Responses. ACS Biomater Sci Eng 2024; 10:5689-5700. [PMID: 39167686 PMCID: PMC11388147 DOI: 10.1021/acsbiomaterials.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Drug delivery advances rely on using nano- and microsized carriers to transfer therapeutic molecules, although challenges persist in increasing the availability of new and even approved pharmaceutical products. Particle shape, a critical determinant in how these carriers distribute within the body after administration, raises opportunities of using, for instance, micrometer-sized nonspherical particles for vascular targeting and thereby creating new prospects for precise drug delivery to specific targeted areas. The versatility of polycrystalline silicon microfabrication allows for significant variation in the size and shape of microchips, and so, in the current work, photolithography was employed to create differently shaped polysilicon microchips, including cuboids, cubes, bars, and cylinders, to explore the influence of particle shape on cellular interactions. These microchips with different shapes and lateral dimensions, accounting for surface areas in the range of ca. 15 to 120 μm2 and corresponding total volumes of 0.4 to 27 μm3, serve as ideal models for investigating their interactions with macrophages with diameters of ca. 20 μm. Side-scattering imaging flow cytometry was employed for studying the interaction of label-free prepared microchips with RAW 264.7 macrophages. Using a dose of 3 microchips per cell, results show that cuboids exhibit the highest cellular association (ca. 25%) and uptake (ca. 20%), suggesting their potential as efficient carriers for targeted drug delivery to macrophages. Conversely, similarly sized cylinders and bar-shaped microchips exhibit lower uptakes of about 8% and about 6%, respectively, indicating potential benefits in evading macrophage recognition. On average, 1-1.5 microchips were internalized, and ca. 1 microchip was surface-bound per cell, with cuboids showing the higher values overall. Macrophages respond to microchips by increasing their metabolic activity and releasing low levels of intracellular enzymes, indicating reduced toxicity. Interestingly, increasing the particle dose enhances macrophage metabolic activity without significantly affecting enzyme release.
Collapse
Affiliation(s)
- Gordon Bruce
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Marta Duch
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Snow Stolnik
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
3
|
Kendall RL, Ray JL, Hamilton RF, Holian A. Self-replicating murine ex vivo cultured alveolar macrophages as a model for toxicological studies of particle-induced inflammation. Toxicol Appl Pharmacol 2023; 461:116400. [PMID: 36702314 PMCID: PMC10022441 DOI: 10.1016/j.taap.2023.116400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Alveolar macrophages (AM) are integral to maintaining homeostasis within the lungs following exposure to inhaled particles. However, due to the high animal number requirements for in vitro research with primary AM, there remains a need for validated cell models that replicate alveolar macrophages in form and function to better understand the mechanisms that contribute to particle-induced inflammation and disease. A novel, easily adaptable, culture model that facilitates the continued expansion of murine alveolar macrophages for several months, termed murine ex vivo cultured AM (mexAM) has been recently described. Therefore, the present work evaluated the use of mexAMs as a suitable model for primary AM interactions with nano- and micro-sized particles. mexAM displayed a comparable profile of functional phenotype gene expression as primary AM and similar particle uptake capabilities. The NLRP3 inflammasome-driven IL-1β inflammatory response to crystalline silica and various nanoparticles was also assessed, as well as the effects of cationic amphiphilic drugs to block particle-induced inflammation. For all endpoints, mexAM showed a comparable response to primary AM. Altogether, the present work supports the use of mexAM as a validated replacement for primary AM cultures thereby reducing animal numbers and serving as an effective model for mechanistic investigation of inflammatory pathways in particle-induced respiratory disease.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America.
| | - Jessica L Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
4
|
Inhibition of cGAS ameliorates acute lung injury triggered by zinc oxide nanoparticles. Toxicol Lett 2022; 373:62-75. [PMID: 36368621 DOI: 10.1016/j.toxlet.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Zinc oxide nanoparticles (ZnONPs) have been widely used in various industrial and biomedical fields. Occupational or accidental inhalation exposure to ZnONPs might lead to acute lung injury (ALI). Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are critical for the initiation and expansion of inflammation and contribute to tissue injury; however, the role and mechanism of the cGAS-STING pathway in ALI-induced by ZnONPs are unclear. METHODS Male C57BL/6 J mice were intratracheally injected with ZnONPs (0.6 mg/kg) or mock. The mice were euthanized and the degree of lung injury was determined 3 days after the instillation of ZnONPs. The BEAS-2B cell line was used as a cell model to investigate the cytotoxicity of ZnONPs in vitro. RESULTS We found that ZnONPs inhalation induced ALI in mice, manifested by exacerbated lung pathological changes, mitochondrial damage, oxidative stress and inflammation. Interestingly, cGAS and STING were activated in the lung tissues of the mice and BEAS-2B lung epithelial cells treated with ZnONPs. More importantly, we illustrated that the cGAS inhibitor RU.521 inhibited the activation of the cGAS-STING pathway, further decreased oxidative stress and inflammation, and led to ameliorated lung injury in mice treated with ZnONPs. CONCLUSION This study demonstrated that ZnONPs trigger the activation of the cGAS-STING pathway, which plays an important role in ZnONPs-induced ALI. Inhibition of cGAS with RU.521 mitigates the oxidative stress induced by ZnONPs, suggesting that targeting the cGAS-STING pathway may be a feasible strategy to ameliorate the pulmonary injury caused by nanoparticles.
Collapse
|
5
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
6
|
Chang-Chien J, Huang JL, Tsai HJ, Wang SL, Kuo ML, Yao TC. Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112484. [PMID: 34237641 DOI: 10.1016/j.ecoenv.2021.112484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Exposure to particulate matter (PM) has been associated with DNA damage, but the relationships between PM, telomere length and cellular senescence remain unclear. This study aimed to investigate the effects and potential mechanisms of PM on telomere length and cellular senescence in human lung epithelial cells. Human lung epithelial A549 cells were exposed to PM for 24 h. Cell viability and cytotoxicity were measured by the WST-1 assay and the lactate dehydrogenase release, respectively. Cellular uptake of PM was observed using transmission electron microscopy. Telomere length was measured using qPCR and expressed as T/S ratio. Cell cycle progression was analyzed by flow cytometry. Expression of human telomerase reverse transcriptase (hTERT) and cell cycle regulators was measured using mRNA by qPCR and protein levels by Western blot. Cellular senescence was determined by the expression of senescence-associated β-galactosidase (SA-β-Gal) with fluorescent microscopy and flow cytometry. Exposed to PM at the concentration of 200 μg/ml decreased cell viability and increased LDH levels in culture medium. Remarkably increased uptake of PM, shortening of telomere length, induction of G0/G1 phase arrest, and increased expression of senescence hallmarks were observed after exposure to PM in A549 cells. PM exposure induced upregulation of p21 and downregulation of proliferating cell nuclear antigen (PCNA) and hTERT expression, but no significant change in p53 expression, in A549 cells. Overall, exposure to PM may downregulate hTERT and PCNA through p53-independent induction of p21 expression, leading to telomere shortening, G0/G1 arrest and the onset of cellular senescence in human lung epithelial cells.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Jing-Long Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Ling Wang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 33302, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
7
|
Wang L, Mello DF, Zucker RM, Rivera NA, Rogers NMK, Geitner NK, Boyes WK, Wiesner MR, Hsu-Kim H, Meyer JN. Lack of Detectable Direct Effects of Silver and Silver Nanoparticles on Mitochondria in Mouse Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11166-11175. [PMID: 34346225 PMCID: PMC8814061 DOI: 10.1021/acs.est.1c02295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Silver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose. However, 24 h treatments with 15 nm AgNPs and 6 nm GA-AgNPs (5 and 10 μg/mL) and AgNO3 (1 and 3 μg/mL), concentrations that resulted in either 10 or 30% cytotoxicity, failed to cause more toxicity to AML12 cells grown on galactose than glucose. Furthermore, colocalization analysis and subcellular Ag quantification did not show any enrichment of silver content in mitochondria in either medium. Finally, the effects of the same exposures on mitochondrial respiration were mild or undetectable, a result inconsistent with mitochondrial toxicity causing cell death. Our results suggest that neither ionic Ag nor the AgNPs that we tested specifically target mitochondria and are inconsistent with mitochondrial dysfunction being the primary cause of cell death after Ag exposure under these conditions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708
- Department of Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Danielle F. Mello
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708
| | - Robert M. Zucker
- Department of U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, 27709
| | - Nelson A. Rivera
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Nicholas M K Rogers
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Nicholas K. Geitner
- Department of U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, 27709
| | - William K. Boyes
- Department of U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, 27709
| | - Mark R. Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Heileen Hsu-Kim
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, 27708
| | - Joel N. Meyer
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708
| |
Collapse
|
8
|
Kowalczyk P, Szymczak M, Maciejewska M, Laskowski Ł, Laskowska M, Ostaszewski R, Skiba G, Franiak-Pietryga I. All That Glitters Is Not Silver-A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int J Mol Sci 2021; 22:E854. [PMID: 33467032 PMCID: PMC7830466 DOI: 10.3390/ijms22020854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/23/2022] Open
Abstract
Silver and its nanoparticles (AgNPs) have different faces, providing different applications. In recent years, the number of positive nanosilver applications has increased substantially. It has been proven that AgNPs inhibit the growth and survival of bacteria, including human and animal pathogens, as well as fungi, protozoa and arthropods. Silver nanoparticles are known from their antiviral and anti-cancer properties; however, they are also very popular in medical and pharmaceutical nanoengineering as carriers for precise delivery of therapeutic compounds, in the diagnostics of different diseases and in optics and chemistry, where they act as sensors, conductors and substrates for various syntheses. The activity of AgNPs has not been fully discovered; therefore, we need interdisciplinary research to fulfil this knowledge. New forms of products with silver will certainly find application in the future treatment of many complicated and difficult to treat diseases. There is still a lack of appropriate and precise legal condition regarding the circulation of nanomaterials and the rules governing their safety use. The relatively low toxicity, relative biocompatibility and selectivity of nanoparticle interaction combined with the unusual biological properties allow their use in animal production as well as in bioengineering and medicine. Despite a quite big knowledge on this topic, there is still a need to organize the data on AgNPs in relation to specific microorganisms such as bacteria, viruses or fungi. We decided to put this knowledge together and try to show positive and negative effects on prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Magdalena Maciejewska
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Łódź, Poland;
| | - Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | | | - Grzegorz Skiba
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Ida Franiak-Pietryga
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr., La Jolla, CA 92037, USA
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, 251 Pomorska Str., 92-213 Łódź, Poland
| |
Collapse
|
9
|
Zucker RM, Ortenzio J, Degn LL, Boyes WK. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy. PLoS One 2020; 15:e0240268. [PMID: 33259485 PMCID: PMC7707489 DOI: 10.1371/journal.pone.0240268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
During studies on the absorption and interactions between silver nanoparticles and mammalian cells grown in vitro it was observed that large extracellular rings of silver nanoparticles were deposited on the microscope slide, many located near post-mitotic cells. Silver nanoparticles (AgNP, 80nm), coated with citrate, were incubated at concentrations of 0.3 to 30 μg/ml with a human-derived culture of retinal pigment epithelial cells (ARPE-19) and observed using darkfield and fluorescent microscopy, 24 h after treatment. Approximately cell-sized extracellular rings of deposited AgNP were observed on the slides among a field of dispersed individual AgNP. The mean diameter of 45 nanoparticles circles was 62.5 +/-12 microns. Ring structures were frequently observed near what appeared to be post-mitotic daughter cells, giving rise to the possibility that cell membrane fragments were deposited on the slide during mitosis, and those fragments selectively attracted and retained silver nanoparticles from suspension in the cell culture medium. These circular structures were observable for the following technical reasons: 1) darkfield microscope could observe single nanoparticles below 100 nm in size, 2) a large concentration (108 and 109) of nanoparticles was used in these experiments 3) negatively charged nanoparticles were attracted to adhesion membrane proteins remaining on the slide from mitosis. The observation of silver nanoparticles attracted to apparent remnants of cellular mitosis could be a useful tool for the study of normal and abnormal mitosis.
Collapse
Affiliation(s)
- Robert M. Zucker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Jayna Ortenzio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - Laura L. Degn
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| | - William K. Boyes
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Reproductive and Developmental Toxicology Branch, Research Triangle Park, Durham, NC, United States of America
| |
Collapse
|